1
|
Rodriguez Sala M, Skalli O, Chandrasekaran S, Worsley M, Leventis N, Sabri F. Influence of aerogel mechanical properties on collagen micromorphology and its architecture. SOFT MATTER 2025; 21:1555-1570. [PMID: 39888334 DOI: 10.1039/d4sm01158a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Previously, we demonstrated the promise of aerogels for the repair of nerve injuries as neural cells extend longer processes (neurites) when grown on aerogels compared to a control surface. We also reported that the aerogel surface topography influenced neurite length. Neurite extension may be boosted by depositing collagen on the aerogel prior to plating the cells. Indeed, collagen has many applications in biomaterials for nerve repair because it profoundly influences cellular properties such as shape and motility. Using collagen to enhance neurite extension requires knowing the effect of collagen deposition on the aerogel surface profile as well as how the aerogel's surface topography influences collagen organization into fibers or films. Herein, we have examined by SEM and profilometry the reciprocal relationship between collagen micromorphology and aerogel surface features including pore diameters, surface roughness, and Young's modulus (Y). Using 5 types of aerogels differing from each other by these parameters, we show that increasing the collagen surface concentration from 4 to 20 μg cm-2 leads to a gradual transition in collagen architecture from discrete fibers to films where individual fibers were not discernible. The collagen surface concentration at which deposited collagen changes from filaments to films (transition point, T.P.) was strongly dependent on aerogel physical properties as it increased with increasing pore diameter and surface roughness, while Y had little effect. These results provide a practical framework to customize the organization of collagen fibers on scaffolds for biomedical applications.
Collapse
Affiliation(s)
- Martina Rodriguez Sala
- Department of Physics and Material Science, The University of Memphis, Memphis, Tennessee, 38152, USA.
| | - Omar Skalli
- Department of Biological Sciences, The University of Memphis, Memphis, Tennessee, 38152, USA.
| | | | - Marcus Worsley
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.
| | | | - Firouzeh Sabri
- Department of Physics and Material Science, The University of Memphis, Memphis, Tennessee, 38152, USA.
| |
Collapse
|
2
|
Teixeira Polez R, Huynh N, Pridgeon CS, Valle-Delgado JJ, Harjumäki R, Österberg M. Insights into spheroids formation in cellulose nanofibrils and Matrigel hydrogels using AFM-based techniques. Mater Today Bio 2024; 26:101065. [PMID: 38706731 PMCID: PMC11066555 DOI: 10.1016/j.mtbio.2024.101065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/30/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024] Open
Abstract
The recent FDA decision to eliminate animal testing requirements emphasises the role of cell models, such as spheroids, as regulatory test alternatives for investigations of cellular behaviour, drug responses, and disease modelling. The influence of environment on spheroid formation are incompletely understood, leading to uncertainty in matrix selection for scaffold-based 3D culture. This study uses atomic force microscopy-based techniques to quantify cell adhesion to Matrigel and cellulose nanofibrils (CNF), and cell-cell adhesion forces, and their role in spheroid formation of hepatocellular carcinoma (HepG2) and induced pluripotent stem cells (iPS(IMR90)-4). Results showed different cell behaviour in CNF and Matrigel cultures. Both cell lines formed compact spheroids in CNF but loose cell aggregates in Matrigel. Interestingly, the type of cell adhesion protein, and not the bond strength, appeared to be a key factor in the formation of compact spheroids. The gene expression of E- and N-cadherins, proteins on cell membrane responsible for cell-cell interactions, was increased in CNF culture, leading to formation of compact spheroids while Matrigel culture induced integrin-laminin binding and downregulated E-cadherin expression, resulting in looser cell aggregates. These findings enhance our understanding of cell-biomaterial interactions in 3D cultures and offer insights for improved 3D cell models, culture biomaterials, and applications in drug research.
Collapse
Affiliation(s)
- Roberta Teixeira Polez
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790, Helsinki, Finland
| | - Ngoc Huynh
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland
| | - Chris S. Pridgeon
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790, Helsinki, Finland
| | - Juan José Valle-Delgado
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland
| | - Riina Harjumäki
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790, Helsinki, Finland
| | - Monika Österberg
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland
| |
Collapse
|
3
|
Khan NR, Sharmin T, Bin Rashid A. Exploring the Versatility of Aerogels: Broad Applications in Biomedical Engineering, Astronautics, Energy Storage, Biosensing, and Current Progress. Heliyon 2024; 10:e23102. [PMID: 38163169 PMCID: PMC10754877 DOI: 10.1016/j.heliyon.2023.e23102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Aerogels are unique and extremely porous substances with fascinating characteristics such as ultra-low density, extraordinary surface area, and excellent thermal insulation capabilities. Due to their exceptional features, aerogels have attracted significant interest from various fields, including energy, environment, aerospace, and biomedical engineering. This review paper presents an overview of the trailblazing research on aerogels, aiming at their preparation, characterization, and applications. Various methods of aerogel synthesis, such as sol-gel, supercritical drying, are discussed. Additionally, recent progress in the characterization of aerogel structures, including their morphology, porosity, and thermal properties, are extensively reviewed. Finally, aerogel's utilizations in numerous disciplines, for instance, energy storage, thermal insulation, catalysis, environmental remedy, and biomedical applications, are summarized. This review paper provides a comprehensive understanding of aerogels and their prospective uses in diverse fields, highlighting their unique properties for future research and development.
Collapse
Affiliation(s)
- Nazia Rodoshi Khan
- Department of Industrial and Production Engineering, Military Institute of Science and Technology (MIST), Dhaka, Bangladesh
| | - Tasnuva Sharmin
- Department of Mechanical and Production Engineering, Islamic University of Technology (IUT), Dhaka, Bangladesh
| | - Adib Bin Rashid
- Department of Industrial and Production Engineering, Military Institute of Science and Technology (MIST), Dhaka, Bangladesh
| |
Collapse
|
4
|
Kim C, Robitaille M, Christodoulides J, Ng Y, Raphael M, Kang W. Hs27 fibroblast response to contact guidance cues. Sci Rep 2023; 13:21691. [PMID: 38066191 PMCID: PMC10709656 DOI: 10.1038/s41598-023-48913-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Contact guidance is the phenomena of how cells respond to the topography of their external environment. The morphological and dynamic cell responses are strongly influenced by topographic features such as lateral and vertical dimensions, namely, ridge and groove widths and groove depth ([Formula: see text], respectively). However, experimental studies that independently quantify the effect of the individual dimensions as well as their coupling on cellular function are still limited. In this work, we perform extensive parametric studies in the dimensional space-well beyond the previously studied range in the literature-to explore topographical effects on morphology and migration of Hs27 fibroblasts via static and dynamic analyses of live cell images. Our static analysis reveals that the [Formula: see text] is most significant, followed by the [Formula: see text]. The fibroblasts appear to be more elongated and aligned in the groove direction as the [Formula: see text] increases, but their trend changes after 725 nm. Interestingly, the cell shape and alignment show a very strong correlation regardless of [Formula: see text]. Our dynamic analysis confirms that directional cell migration is also strongly influenced by the [Formula: see text], while the effect of the [Formula: see text] and [Formula: see text] is statistically insignificant. Directional cell migration, as observed in the static cell behavior, shows the statistically significant transition when the [Formula: see text] is 725 nm, showing the intimate links between cell morphology and migration. We propose possible scenarios to offer mechanistic explanations of the observed cell behavior.
Collapse
Affiliation(s)
- C Kim
- Mechanical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85281, USA
| | - M Robitaille
- US Naval Research Laboratory, Washington, DC, 20375, USA
| | | | - Y Ng
- Mechanical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85281, USA
| | - M Raphael
- US Naval Research Laboratory, Washington, DC, 20375, USA
| | - W Kang
- Mechanical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85281, USA.
| |
Collapse
|
5
|
Biomedical applications of silica-based aerogels: a comprehensive review. Macromol Res 2023. [DOI: 10.1007/s13233-023-00142-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
6
|
Ghimire S, Sala MR, Chandrasekaran S, Raptopoulos G, Worsley M, Paraskevopoulou P, Leventis N, Sabri F. Noninvasive Detection, Tracking, and Characterization of Aerogel Implants Using Diagnostic Ultrasound. Polymers (Basel) 2022; 14:polym14040722. [PMID: 35215635 PMCID: PMC8875680 DOI: 10.3390/polym14040722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 12/10/2022] Open
Abstract
Medical implants are routinely tracked and monitored using different techniques, such as MRI, X-ray, and ultrasound. Due to the need for ionizing radiation, the two former methods pose a significant risk to tissue. Ultrasound imaging, however, is non-invasive and presents no known risk to human tissue. Aerogels are an emerging material with great potential in biomedical implants. While qualitative observation of ultrasound images by experts can already provide a lot of information about the implants and the surrounding structures, this paper describes the development and study of two simple B-Mode image analysis techniques based on attenuation measurements and echogenicity comparisons, which can further enhance the study of the biological tissues and implants, especially of different types of biocompatible aerogels.
Collapse
Affiliation(s)
- Sagar Ghimire
- Department of Physics and Material Science, The University of Memphis, Memphis, TN 38152, USA; (S.G.); (M.R.S.)
| | - Martina Rodriguez Sala
- Department of Physics and Material Science, The University of Memphis, Memphis, TN 38152, USA; (S.G.); (M.R.S.)
| | | | - Grigorios Raptopoulos
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (G.R.); (P.P.)
| | - Marcus Worsley
- Lawrence Livermore National Laboratory, Livermore, CA 94551, USA; (S.C.); (M.W.)
| | - Patrina Paraskevopoulou
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (G.R.); (P.P.)
| | - Nicholas Leventis
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA;
| | - Firouzeh Sabri
- Department of Physics and Material Science, The University of Memphis, Memphis, TN 38152, USA; (S.G.); (M.R.S.)
- Correspondence:
| |
Collapse
|
7
|
Sala MR, Skalli O, Sabri F. Optimal structural and physical properties of aerogels for promoting robust neurite extension in vitro. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 135:112682. [DOI: 10.1016/j.msec.2022.112682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/15/2022] [Accepted: 01/21/2022] [Indexed: 01/02/2023]
|
8
|
Ferreira-Gonçalves T, Constantin C, Neagu M, Reis CP, Sabri F, Simón-Vázquez R. Safety and efficacy assessment of aerogels for biomedical applications. Biomed Pharmacother 2021; 144:112356. [PMID: 34710839 DOI: 10.1016/j.biopha.2021.112356] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 12/16/2022] Open
Abstract
The unique physicochemical properties of aerogels have made them an attractive class of materials for biomedical applications such as drug delivery, regenerative medicine, and wound healing. Their low density, high porosity, and ability to regulate the pore structure makes aerogels ideal nano/micro-structures for loading of drugs and active biomolecules. As a result of this, the number of in vitro and in vivo studies on the therapeutic efficacy of these porous materials has increased substantially in recent years and continues to be an area of great interest. However, data about their in vivo performance and safety is limited. Studies have shown that polymer-based, silica-based and some hybrid aerogels are generally regarded as safe but given that studies on the acute, subacute, and chronic toxicity for the majority of aerogel types is missing, more work is still needed. This review presents a comprehensive summary of different biomedical applications of aerogels proposed to date as well as new and innovative applications of aerogels in other areas such as decontamination. We have also reviewed their biological effect on cells and living organisms with a focus on therapeutic efficacy and overall safety (in vivo and in vitro).
Collapse
Affiliation(s)
- Tânia Ferreira-Gonçalves
- Research Institute for Medicines, iMed.ULisboa - Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Carolina Constantin
- Immunology Department, Victor Babes National Institute of Pathology, Bucharest 050096, Romania; Department of Pathology, Colentina University Hospital, Bucharest 020125, Romania.
| | - Monica Neagu
- Immunology Department, Victor Babes National Institute of Pathology, Bucharest 050096, Romania; Department of Pathology, Colentina University Hospital, Bucharest 020125, Romania.
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa - Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Instituto de Biofísica e Engenharia Biomédica, IBEB, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - Firouzeh Sabri
- Department of Physics and Materials Science, University of Memphis, Memphis 38152, TN, United States.
| | - Rosana Simón-Vázquez
- CINBIO, Universidade de Vigo, Immunology Group, 36310 Vigo, Spain; Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Spain.
| |
Collapse
|
9
|
Tan F, Rui X, Xiang X, Yu Z, Al-Rubeai M. Multimodal treatment combining cold atmospheric plasma and acidic fibroblast growth factor for multi-tissue regeneration. FASEB J 2021; 35:e21442. [PMID: 33774850 DOI: 10.1096/fj.202002611r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/21/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Cold atmospheric plasma (CAP) is an emerging technology for biomedical applications, exemplified by its antimicrobial and antineoplastic potentials. On the contrary, acidic fibroblast growth factor (aFGF) has been a long-standing potent mitogen for cells from various origins. In this study, we are the first to develop a multimodal treatment combining the aforementioned physicochemical and pharmacological treatments and investigated their individual and combined effects on wound healing, angiogenesis, neurogenesis, and osteogenesis. This work was performed at the tissue, cellular, protein, and gene levels, using histochemical staining, flow cytometry, ELISA, and PCR, respectively. Depending on the type of target tissue, various combinations of aforementioned methods were used. The results showed that the enhancement on would healing and angiogenesis by CAP and aFGF were synergistic. The former was manifested by increased murine fibroblast proliferation and reduced cutaneous tissue inflammation, whereas the latter by upregulated proangiogenic markers in vivo, for example, CD31, VEGF, and TGF-β, and downregulated antiangiogenic proteins in vitro, for example, angiostatin and angiopoietin-2, respectively. In addition, aFGF outperformed CAP during neurogenesis, which was evidenced by superior neurite outgrowth, while CAP exceeded aFGF in osteogenesis which was demonstrated by more substantial bone nodule formation. These novel findings not only support the fact that CAP and aFGF are both multipotent agents during tissue regeneration, but also highlight the potential of our multimodal treatment combining the individual advantages of CAP and aFGF. The versatile administration route, that is, topical and/or systemic, might further broaden its applications.
Collapse
Affiliation(s)
- Fei Tan
- Department of ORL-HNS, Shanghai East Hospital, Shanghai, China.,School of Medicine, Tongji University, Shanghai, China.,The Royal College of Surgeons of England, London, UK
| | - Xiaoqing Rui
- Department of ORL-HNS, Shanghai East Hospital, Shanghai, China
| | - Xue Xiang
- Research Center for Translational Medicine, Shanghai East Hospital, Shanghai, China
| | - Zuoren Yu
- School of Medicine, Tongji University, Shanghai, China.,Research Center for Translational Medicine, Shanghai East Hospital, Shanghai, China
| | - Mohamed Al-Rubeai
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
10
|
Rodriguez Sala M, Chandrasekaran S, Skalli O, Worsley M, Sabri F. Enhanced neurite outgrowth on electrically conductive carbon aerogel substrates in the presence of an external electric field. SOFT MATTER 2021; 17:4489-4495. [PMID: 33949585 DOI: 10.1039/d1sm00183c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Previous works from our laboratory have firmly established that aerogels are a suitable substrate to elicit accelerated neurite extension. On non-conducting aerogels, in the presence of an externally-applied DC bias, neurons extended neurites which were preferentially aligned towards the anode. In this investigation, we sought to determine whether electrically-conductive carbon aerogels elicited a more robust alignment of neurites toward the anode than non-conductive aerogels due to the capacity of conductive aerogels to sustain a current, thereby providing a direct interface between neurons and the external electrical stimulus. To determine if this was the case, we plated PC12 neuronal cells on electrically conductive carbon aerolges derived from acetic acid-catalized resorcinol formaldehyde aerogels (ARF-CA) and subjected them to an external electric field. The voltages applied at the electrodes of the custom-built electro-stimulation chamber were 0 V, 15 V, and 30 V. For each voltage, the directionality and length of the neurites extended by PC12 cells were determined and compared to those observed when PC12 cells were plated on non-conductive aerogels subjected to the same voltage. The results show that the directionality of neurite extension was similar between conductive and non-conductive aerogels. A higher neurite length difference was observed on conductive aerogels with increasing voltage, 43% and 106% for 0-15 V and 0-30 V respectively, compared to non-conductive aerogels, 12% and 20%. These findings indicate that conductive carbon aerogels have a greater potential as scaffolds for nerve regeneration than non-conductive ones.
Collapse
Affiliation(s)
- Martina Rodriguez Sala
- Department of Physics and Materials Science, University of Memphis, Memphis, TN 38152, USA.
| | | | - Omar Skalli
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA.
| | - Marcus Worsley
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - Firouzeh Sabri
- Department of Physics and Materials Science, University of Memphis, Memphis, TN 38152, USA.
| |
Collapse
|
11
|
Sala MR, Skalli O, Leventis N, Sabri F. Nerve Response to Superelastic Shape Memory Polyurethane Aerogels. Polymers (Basel) 2020; 12:E2995. [PMID: 33334083 PMCID: PMC7765513 DOI: 10.3390/polym12122995] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 01/05/2023] Open
Abstract
We have previously shown the suitability of aerogels as scaffolds for neuronal cells. Here, we report on the use of superelastic shape memory polyurethane aerogels (SSMPA). SSMPA have a distinctly different stiffness than previously reported aerogels. The soft and deformable nature of SSMPA allowed for radial compression of the aerogel induced by a custom designed apparatus. This radial compression changed the pore diameter and surface roughness (Sa) of SSMPA, while maintaining similar stiffness. Two varieties of SSMPA were used, Mix-14 and Mix-18, with distinctly different pore diameters and Sa. Radial compression led to a decreased pore diameter, which, in turn, decreased the Sa. The use of custom designed apparatus and two types of SSMPA allowed us to examine the influence of stiffness, pore size, and Sa on the extension of processes (neurites) by PC12 neuronal cells. PC12 cells plated on SSMPA with a higher degree of radial compression extended fewer neurites per cell when compared to other groups. However, the average length of the neurites was significantly longer when compared to the unrestricted group and to those extended by cells plated on SSMPA with less radial compression. These results demonstrate that SSMPA with 1.9 µm pore diameter, 1.17 µm Sa, and 203 kPa stiffness provides the optimum combination of physical parameters for nerve regeneration.
Collapse
Affiliation(s)
- Martina Rodriguez Sala
- Department of Physics and Materials Science, University of Memphis, Memphis, TN 38152, USA
| | - Omar Skalli
- Department of Biological Science, University of Memphis, Memphis, TN 38152, USA;
| | - Nicholas Leventis
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA;
| | - Firouzeh Sabri
- Department of Physics and Materials Science, University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
12
|
Gentile F. Cell aggregation on nanorough surfaces. J Biomech 2020; 115:110134. [PMID: 33248702 DOI: 10.1016/j.jbiomech.2020.110134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 11/28/2022]
Abstract
The ability to control adhesion and the spatial organization of cells over nanoscale surfaces is essential in tissue engineering, regenerative medicine, the growth of organoids and spheroids as an in-vitro-model of human development and disease. Nonetheless, despite the several different works that have explored the influence of nanotopography on cell adhesion and clustering, little is known about how the forces arising from membrane conformational change developing during cell adaptation to a nanorough surface, and the cell-cell adhesion forces, interact to guide cell assembly. Here, starting from the works of Decuzzi and Ferrari, who examined how the energy of a cell varies while adhering to a nanoscale surface, and of Armstrong and collaborators, who developed a continuous model of cell-cell adhesion and morphogenesis, we provide a description of how nanotopography can modulate cellular clustering. In simulations where the parameters of the model were varied over large intervals, we found that nanoroughness may induce cell aggregation from a homogenous, uniform state, also for weak cell-cell adhesion. Results of the model are relevant in bio-engineering and biomedical nanotechnology, and may be of interest for those involved in the design and fabrication of biomaterials and scaffolds for tissue formation and repair.
Collapse
Affiliation(s)
- F Gentile
- Department of Electrical Engineering and Information Technology, University Federico II, 80125 Naples, Italy; Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy.
| |
Collapse
|
13
|
Rauti R, Renous N, Maoz BM. Mimicking the Brain Extracellular Matrix
in Vitro
: A Review of Current Methodologies and Challenges. Isr J Chem 2019. [DOI: 10.1002/ijch.201900052] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rossana Rauti
- Department of Biomedical Engineering Tel Aviv University Israel
| | - Noa Renous
- Department of Biomedical Engineering Tel Aviv University Israel
| | - Ben M. Maoz
- Department of Biomedical Engineering Tel Aviv University Israel
- Sagol School of Neuroscience Tel Aviv University Tel Aviv Israel
- The Center for Nanoscience and Nanotechnology Tel Aviv University Tel Aviv 69978 Israel
| |
Collapse
|
14
|
Wen YQ, Gao X, Wang A, Yang Y, Liu S, Yu Z, Song GB, Zhao HC. Substrate stiffness affects neural network activity in an extracellular matrix proteins dependent manner. Colloids Surf B Biointerfaces 2018; 170:729-735. [DOI: 10.1016/j.colsurfb.2018.03.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 12/15/2022]
|
15
|
Growing Neural PC-12 Cell on Crosslinked Silica Aerogels Increases Neurite Extension in the Presence of an Electric Field. J Funct Biomater 2018; 9:jfb9020030. [PMID: 29677113 PMCID: PMC6023435 DOI: 10.3390/jfb9020030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/11/2018] [Accepted: 04/18/2018] [Indexed: 12/27/2022] Open
Abstract
Externally applied electrical stimulation (ES) has been shown to enhance the nerve regeneration process and to influence the directionality of neurite outgrowth. In addition, the physical and chemical properties of the substrate used for nerve-cell regeneration is critical in fostering regeneration. Previously, we have shown that polyurea-crosslinked silica aerogels (PCSA) exert a positive influence on the extension of neurites by PC-12 cells, a cell-line model widely used to study neurite extension and electrical excitability. In this work, we have examined how an externally applied electric field (EF) influences the extension of neurites in PC-12 cells grown on two substrates: collagen-coated dishes versus collagen-coated crosslinked silica aerogels. The externally applied direct current (DC) bias was applied in vitro using a custom-designed chamber containing polydimethysiloxane (PDMS) embedded copper electrodes to create an electric field across the substrate for the cultured PC-12 cells. Results suggest orientation preference towards the anode, and, on average, longer neurites in the presence of the applied DC bias than with 0 V DC bias. In addition, neurite length was increased in cells grown on silica-crosslinked aerogel when compared to cells grown on regular petri-dishes. These results further support the notion that PCSA is a promising material for nerve regeneration.
Collapse
|