1
|
Lynn BK, De Leenheer P, Schuster M. Putting theory to the test: An integrated computational/experimental chemostat model of the tragedy of the commons. PLoS One 2024; 19:e0300887. [PMID: 38598418 PMCID: PMC11006152 DOI: 10.1371/journal.pone.0300887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/06/2024] [Indexed: 04/12/2024] Open
Abstract
Cooperation via shared public goods is ubiquitous in nature, however, noncontributing social cheaters can exploit the public goods provided by cooperating individuals to gain a fitness advantage. Theory predicts that this dynamic can cause a Tragedy of the Commons, and in particular, a 'Collapsing' Tragedy defined as the extinction of the entire population if the public good is essential. However, there is little empirical evidence of the Collapsing Tragedy in evolutionary biology. Here, we experimentally demonstrate this outcome in a microbial model system, the public good-producing bacterium Pseudomonas aeruginosa grown in a continuous-culture chemostat. In a growth medium that requires extracellular protein digestion, we find that P. aeruginosa populations maintain a high density when entirely composed of cooperating, protease-producing cells but completely collapse when non-producing cheater cells are introduced. We formulate a mechanistic mathematical model that recapitulates experimental observations and suggests key parameters, such as the dilution rate and the cost of public good production, that define the stability of cooperative behavior. We combine model prediction with experimental validation to explain striking differences in the long-term cheater trajectories of replicate cocultures through mutational events that increase cheater fitness. Taken together, our integrated empirical and theoretical approach validates and parametrizes the Collapsing Tragedy in a microbial population, and provides a quantitative, mechanistic framework for generating testable predictions of social behavior.
Collapse
Affiliation(s)
- Bryan K. Lynn
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - Patrick De Leenheer
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
- Department of Mathematics, Oregon State University, Corvallis, Oregon, United States of America
| | - Martin Schuster
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
2
|
Sohel Mondal S, Ray A, Chakraborty S. Hypochaos prevents tragedy of the commons in discrete-time eco-evolutionary game dynamics. CHAOS (WOODBURY, N.Y.) 2024; 34:023122. [PMID: 38377296 DOI: 10.1063/5.0190800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
While quite a few recent papers have explored game-resource feedback using the framework of evolutionary game theory, almost all the studies are confined to using time-continuous dynamical equations. Moreover, in such literature, the effect of ubiquitous chaos in the resulting eco-evolutionary dynamics is rather missing. Here, we present a deterministic eco-evolutionary discrete-time dynamics in generation-wise non-overlapping population of two types of harvesters-one harvesting at a faster rate than the other-consuming a self-renewing resource capable of showing chaotic dynamics. In the light of our finding that sometimes chaos is confined exclusively to either the dynamics of the resource or that of the consumer fractions, an interesting scenario is realized: The resource state can keep oscillating chaotically, and hence, it does not vanish to result in the tragedy of the commons-extinction of the resource due to selfish indiscriminate exploitation-and yet the consumer population, whose dynamics depends directly on the state of the resource, may end up being composed exclusively of defectors, i.e., high harvesters. This appears non-intuitive because it is well known that prevention of tragedy of the commons usually requires substantial cooperation to be present.
Collapse
Affiliation(s)
- Samrat Sohel Mondal
- Department of Physics, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Avishuman Ray
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
| | - Sagar Chakraborty
- Department of Physics, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
3
|
Shao J, Rong N, Wu Z, Gu S, Liu B, Shen N, Li Z. Siderophore-mediated iron partition promotes dynamical coexistence between cooperators and cheaters. iScience 2023; 26:107396. [PMID: 37701813 PMCID: PMC10494312 DOI: 10.1016/j.isci.2023.107396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/26/2023] [Accepted: 07/11/2023] [Indexed: 09/14/2023] Open
Abstract
Microbes shape their habitats by consuming resources and producing a diverse array of chemicals that can serve as public goods. Despite the risk of exploitation by cheaters, genes encoding sharable molecules like siderophores are widely found in nature, prompting investigations into the mechanisms that allow producers to resist invasion by cheaters. In this work, we presented the chemostat-typed "resource partition model" to demonstrate that dividing the iron resource between private and public siderophores can promote stable or dynamic coexistence between producers and cheaters in a well-mixed environment. Moreover, our analysis shows that when microbes not only consume but also produce resources, chemical innovation leads to stability criteria that differ from those of classical consumer resource models, resulting in more complex dynamics. Our work sheds light on the role of chemical innovations in microbial communities and the potential for resource partition to facilitate dynamical coexistence between cooperative and cheating organisms.
Collapse
Affiliation(s)
- Jiqi Shao
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Nan Rong
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Zhenchao Wu
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Shaohua Gu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Beibei Liu
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Ning Shen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Zhiyuan Li
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Tinta T, Zhao Z, Bayer B, Herndl GJ. Jellyfish detritus supports niche partitioning and metabolic interactions among pelagic marine bacteria. MICROBIOME 2023; 11:156. [PMID: 37480075 PMCID: PMC10360251 DOI: 10.1186/s40168-023-01598-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/13/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Jellyfish blooms represent a significant but largely overlooked source of labile organic matter (jelly-OM) in the ocean, characterized by a high protein content. Decaying jellyfish are important carriers for carbon export to the ocean's interior. To accurately incorporate them into biogeochemical models, the interactions between microbes and jelly-OM have yet to be fully characterized. We conducted jelly-OM enrichment experiments in microcosms to simulate the scenario experienced by the coastal pelagic microbiome after the decay of a jellyfish bloom. We combined metagenomics, endo- and exo-metaproteomic approaches to obtain a mechanistic understanding on the metabolic network operated by the jelly-OM degrading bacterial consortium. RESULTS Our analysis revealed that OM released during the decay of jellyfish blooms triggers a rapid shuffling of the taxonomic and functional profile of the pelagic bacterial community, resulting in a significant enrichment of protein/amino acid catabolism-related enzymes in the jelly-OM degrading community dominated by Pseudoalteromonadaceae, Alteromonadaceae and Vibrionaceae, compared to unamended control treatments. In accordance with the proteinaceous character of jelly-OM, Pseudoalteromonadaceae synthesized and excreted enzymes associated with proteolysis, while Alteromonadaceae contributed to extracellular hydrolysis of complex carbohydrates and organophosphorus compounds. In contrast, Vibrionaceae synthesized transporter proteins for peptides, amino acids and carbohydrates, exhibiting a cheater-type lifestyle, i.e. benefiting from public goods released by others. In the late stage of jelly-OM degradation, Rhodobacteraceae and Alteromonadaceae became dominant, growing on jelly-OM left-overs or bacterial debris, potentially contributing to the accumulation of dissolved organic nitrogen compounds and inorganic nutrients, following the decay of jellyfish blooms. CONCLUSIONS Our findings indicate that specific chemical and metabolic fingerprints associated with decaying jellyfish blooms are substantially different to those previously associated with decaying phytoplankton blooms, potentially altering the functioning and biogeochemistry of marine systems. We show that decaying jellyfish blooms are associated with the enrichment in extracellular collagenolytic bacterial proteases, which could act as virulence factors in human and marine organisms' disease, with possible implications for marine ecosystem services. Our study also provides novel insights into niche partitioning and metabolic interactions among key jelly-OM degraders operating a complex metabolic network in a temporal cascade of biochemical reactions to degrade pulses of jellyfish-bloom-specific compounds in the water column. Video Abstract.
Collapse
Affiliation(s)
- Tinkara Tinta
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia.
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria.
| | - Zihao Zhao
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
| | - Barbara Bayer
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Gerhard J Herndl
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
- NIOZ, Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
- Vienna Metabolomics & Proteomics Center, University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Scarinci G, Sourjik V. Impact of direct physical association and motility on fitness of a synthetic interkingdom microbial community. THE ISME JOURNAL 2023; 17:371-381. [PMID: 36566339 PMCID: PMC9938286 DOI: 10.1038/s41396-022-01352-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022]
Abstract
Mutualistic exchange of metabolites can play an important role in microbial communities. Under natural environmental conditions, such exchange may be compromised by the dispersal of metabolites and by the presence of non-cooperating microorganisms. Spatial proximity between members during sessile growth on solid surfaces has been shown to promote stabilization of cross-feeding communities against these challenges. Nonetheless, many natural cross-feeding communities are not sessile but rather pelagic and exist in turbulent aquatic environments, where partner proximity is often achieved via direct cell-cell adhesion, and cooperation occurs between physically associated cells. Partner association in aquatic environments could be further enhanced by motility of individual planktonic microorganisms. In this work, we establish a model bipartite cross-feeding community between bacteria and yeast auxotrophs to investigate the impact of direct adhesion between prokaryotic and eukaryotic partners and of bacterial motility in a stirred mutualistic co-culture. We demonstrate that adhesion can provide fitness benefit to the bacterial partner, likely by enabling local metabolite exchange within co-aggregates, and that it counteracts invasion of the community by a non-cooperating cheater strain. In a turbulent environment and at low cell densities, fitness of the bacterial partner and its competitiveness against a non-cooperating strain are further increased by motility that likely facilitates partner encounters and adhesion. These results suggest that, despite their potential fitness costs, direct adhesion between partners and its enhancement by motility may play key roles as stabilization factors for metabolic communities in turbulent aquatic environments.
Collapse
Affiliation(s)
- Giovanni Scarinci
- grid.419554.80000 0004 0491 8361Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany.
| |
Collapse
|
6
|
Xenophontos C, Harpole WS, Küsel K, Clark AT. Cheating Promotes Coexistence in a Two-Species One-Substrate Culture Model. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.786006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cheating in microbial communities is often regarded as a precursor to a “tragedy of the commons,” ultimately leading to over-exploitation by a few species and destabilization of the community. While current evidence suggests that cheaters are evolutionarily and ecologically abundant, they can also play important roles in communities, such as promoting cooperative behaviors of other species. We developed a closed culture model with two microbial species and a single, complex nutrient substrate (the metaphorical “common”). One of the organisms, an enzyme producer, degrades the substrate, releasing an essential and limiting resource that it can use both to grow and produce more enzymes, but at a cost. The second organism, a cheater, does not produce the enzyme but can access the diffused resource produced by the other species, allowing it to benefit from the public good without contributing to it. We investigated evolutionarily stable states of coexistence between the two organisms and described how enzyme production rates and resource diffusion influence organism abundances. Our model shows that, in the long-term evolutionary scale, monocultures of the producer species drive themselves extinct because selection always favors mutant invaders that invest less in enzyme production, ultimately driving down the release of resources. However, the presence of a cheater buffers this process by reducing the fitness advantage of lower enzyme production, thereby preventing runaway selection in the producer, and promoting coexistence. Resource diffusion rate controls cheater growth, preventing it from outcompeting the producer. These results show that competition from cheaters can force producers to maintain adequate enzyme production to sustain both itself and the cheater. This is similar to what is known in evolutionary game theory as a “snowdrift game” – a metaphor describing a snow shoveler and a cheater following in their clean tracks. We move further to show that cheating can stabilize communities and possibly be a precursor to cooperation, rather than extinction.
Collapse
|
7
|
Das Bairagya J, Mondal SS, Chowdhury D, Chakraborty S. Game-environment feedback dynamics in growing population: Effect of finite carrying capacity. Phys Rev E 2021; 104:044407. [PMID: 34781515 DOI: 10.1103/physreve.104.044407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/28/2021] [Indexed: 11/07/2022]
Abstract
The tragedy of the commons (TOC) is an unfortunate situation where a shared resource is exhausted due to uncontrolled exploitation by the selfish individuals of a population. Recently, the paradigmatic replicator equation has been used in conjunction with a phenomenological equation for the state of the shared resource to gain insight into the influence of the games on the TOC. The replicator equation, by construction, models a fixed infinite population undergoing microevolution. Thus, it is unable to capture any effect of the population growth and the carrying capacity of the population although the TOC is expected to be dependent on the size of the population. Therefore, in this paper, we present a mathematical framework that incorporates the density dependent payoffs and the logistic growth of the population in the eco-evolutionary dynamics modeling the game-resource feedback. We discover a bistability in the dynamics: a finite carrying capacity can either avert or cause the TOC depending on the initial states of the resource and the initial fraction of cooperators. In fact, depending on the type of strategic game-theoretic interaction, a finite carrying capacity can either avert or cause the TOC when it is exactly the opposite for the corresponding case with infinite carrying capacity.
Collapse
Affiliation(s)
- Joy Das Bairagya
- Department of Physics, Indian Institute of Technology, Kanpur 208016, India
| | | | | | - Sagar Chakraborty
- Department of Physics, Indian Institute of Technology, Kanpur 208016, India
| |
Collapse
|
8
|
García-Contreras R, Loarca D. The bright side of social cheaters: potential beneficial roles of "social cheaters" in microbial communities. FEMS Microbiol Ecol 2020; 97:6006265. [PMID: 33238304 DOI: 10.1093/femsec/fiaa239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/23/2020] [Indexed: 11/13/2022] Open
Abstract
Cooperation in microbial communities via production of public goods is susceptible to social cheating, since selfish individuals that do not contribute to their synthesis but benefit from their production thrive in the presence of cooperators. This behavior has been observed in the laboratory using bacterial and yeast models. Moreover, growing evidence indicates that cheating is frequent in natural microbial communities. In the laboratory, social cheating can promote population collapse or "tragedy of the commons" when excessive. Nevertheless, there are diverse mechanisms that counteract cheating in microbes, as well as theoretical and experimental evidence that suggests possible beneficial roles of social cheaters for the microbial populations. In this mini review manuscript we compile and discuss such possible roles.
Collapse
Affiliation(s)
- Rodolfo García-Contreras
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autonoma de México, Circuto Escolar 411A, Copilco Universidad, Coyoacán, 04360, Mexico City, Mexico
| | - Daniel Loarca
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autonoma de México, Circuto Escolar 411A, Copilco Universidad, Coyoacán, 04360, Mexico City, Mexico
| |
Collapse
|
9
|
Neves HI, Machado GT, Ramos TCDS, Yang HM, Yagil E, Spira B. Competition for nutritional resources masks the true frequency of bacterial mutants. BMC Biol 2020; 18:194. [PMID: 33317515 PMCID: PMC7737367 DOI: 10.1186/s12915-020-00913-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/03/2020] [Indexed: 12/02/2022] Open
Abstract
Background It is widely assumed that all mutant microorganisms present in a culture are able to grow and form colonies, provided that they express the features required for selection. Unlike wild-type Escherichia coli, PHO-constitutive mutants overexpress alkaline phosphatase and hence can hydrolyze glycerol-2-phosphate (G2P) to glycerol and form colonies on plates having G2P as the sole carbon source. These mutations mostly occur in the pst operon. However, the frequency of PHO-constitutive colonies on the G2P selective plate is exceptionally low. Results We show that the rate in which spontaneous PHO-constitutive mutations emerge is about 8.0 × 10−6/generation, a relatively high rate, but the growth of most existing mutants is inhibited by their neighboring wild-type cells. This inhibition is elicited only by non-mutant viable bacteria that can take up and metabolize glycerol formed by the mutants. Evidence indicates that the few mutants that do form colonies derive from microclusters of mutants on the selective plate. A mathematical model that describes the fate of the wild-type and mutant populations under these circumstances supports these results. Conclusion This scenario in which neither the wild-type nor the majority of the mutants are able to grow resembles an unavoidable “tragedy of the commons” case which results in the collapse of the majority of the population. Cooperation between rare adjacent mutants enables them to overcome the competition and eventually form mutant colonies. The inhibition of PHO-constitutive mutants provides an example of mutant frequency masked by orders of magnitude due to a competition between mutants and their ancestral wild-type cells. Similar “tragedy of the commons-like” cases may occur in other settings and should be taken into consideration while estimating true mutant frequencies and mutation rates. Supplementary Information The online version contains supplementary material available at (doi:10.1186/s12915-020-00913-1).
Collapse
Affiliation(s)
- Henrique Iglesias Neves
- Departamento de Microbiologia, Instituto de Ciências Biomédicas Universidade de São Paulo, São Paulo, SP, Brazil
| | - Gabriella Trombini Machado
- Departamento de Microbiologia, Instituto de Ciências Biomédicas Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Hyun Mo Yang
- Departamento de Matemática Aplicada, Instituto de Matemática, Estatística e Computação Científica, Campinas, SP, Brazil
| | - Ezra Yagil
- Departament of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Beny Spira
- Departamento de Microbiologia, Instituto de Ciências Biomédicas Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
10
|
Lynn BK, De Leenheer P. Division of labor in bacterial populations. Math Biosci 2019; 316:108257. [PMID: 31518580 DOI: 10.1016/j.mbs.2019.108257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/08/2019] [Accepted: 09/08/2019] [Indexed: 11/26/2022]
Abstract
Cooperating behaviors abound across all domains of life, but are vulnerable to invasion by cheaters. An important evolutionary question is to determine mechanisms that stabilize and maintain cooperation levels and prevent population collapse. Policing is one strategy populations may employ to achieve this goal, and it has been observed in many natural populations including microbes. Here we present and analyze a division of labor model to investigate if, when and how policing can be a cooperation-stabilizing mediator. The model represents a chemostat where cooperators produce a public good that benefits all individuals, and where toxin-producers produce a toxin that harms both cooperators and cheaters. We show that in many cases, the mere presence of toxin-producers is not enough to avoid a Tragedy of the Commons in which all individuals go extinct. The main focus of our work is to identify conditions on various model parameters which ensure that a mixed population of cooperators and toxin-producers can stably coexist and can avoid invasion by a cheater population. This happens when all of the following conditions hold: (i) The cost of policing must exceed the cost of cooperation. (ii) There is enough "collateral damage" caused by policing, i.e. the toxicity rate experienced by cooperators is sufficiently high, and (iii) The toxin affects cheaters even more than cooperators, and we provide a precise mathematical condition of how much stronger this effect should be.
Collapse
Affiliation(s)
- Bryan K Lynn
- Department of Integrative Biology, Oregon State University, United States.
| | - Patrick De Leenheer
- Department of Mathematics, Oregon State University, United States; Department of Integrative Biology, Oregon State University, United States.
| |
Collapse
|
11
|
|