1
|
Liang Z, Dai X, Li W, Chen W, Shi Q, Wei Y, Liang Q, Lin Y. Development of a spinopelvic complex finite element model for quantitative analysis of the biomechanical response of patients with degenerative spondylolisthesis. Med Biol Eng Comput 2025; 63:575-594. [PMID: 39425882 DOI: 10.1007/s11517-024-03218-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024]
Abstract
Research on degenerative spondylolisthesis (DS) has focused primarily on the biomechanical responses of pathological segments, with few studies involving muscle modelling in simulated analysis, leading to an emphasis on the back muscles in physical therapy, neglecting the ventral muscles. The purpose of this study was to quantitatively analyse the biomechanical response of the spinopelvic complex and surrounding muscle groups in DS patients using integrative modelling. The findings may aid in the development of more comprehensive rehabilitation strategies for DS patients. Two new finite element spinopelvic complex models with detailed muscles for normal spine and DS spine (L4 forwards slippage) modelling were established and validated at multiple levels. Then, the spinopelvic position parameters including peak stress of the lumbar isthmic-cortical bone, intervertebral discs, and facet joints; peak strain of the ligaments; peak force of the muscles; and percentage difference in the range of motion were analysed and compared under flexion-extension (F-E), lateral bending (LB), and axial rotation (AR) loading conditions between the two models. Compared with the normal spine model, the DS spine model exhibited greater stress and strain in adjacent biological tissues. Stress at the L4/5 disc and facet joints under AR and LB conditions was approximately 6.6 times greater in the DS spine model than in the normal model, the posterior longitudinal ligament peak strain in the normal model was 1/10 of that in the DS model, and more high-stress areas were found in the DS model, with stress notably transferring forwards. Additionally, compared with the normal spine model, the DS model exhibited greater muscle tensile forces in the lumbosacral muscle groups during F-E and LB motions. The psoas muscle in the DS model was subjected to 23.2% greater tensile force than that in the normal model. These findings indicated that L4 anterior slippage and changes in lumbosacral-pelvic alignment affect the biomechanical response of muscles. In summary, the present work demonstrated a certain level of accuracy and validity of our models as well as the differences between the models. Alterations in spondylolisthesis and the accompanying overall imbalance in the spinopelvic complex result in increased loading response levels of the functional spinal units in DS patients, creating a vicious cycle that exacerbates the imbalance in the lumbosacral region. Therefore, clinicians are encouraged to propose specific exercises for the ventral muscles, such as the psoas group, to address spinopelvic imbalance and halt the progression of DS.
Collapse
Affiliation(s)
- Ziyang Liang
- Department of Tuina and Spinal Orthopedics in Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, Guangdong, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, Guangdong, China
| | - Xiaowei Dai
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, Guangdong, China
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Weisen Li
- Department of Tuina and Spinal Orthopedics in Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, Guangdong, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, Guangdong, China
| | - Weimei Chen
- Department of Tuina and Spinal Orthopedics in Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, Guangdong, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, Guangdong, China
| | - Qi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yizong Wei
- Beijing Guangming Orthopedics and Traumatology Hospital, Beijing, 102200, China
| | - Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yuanfang Lin
- Department of Tuina and Spinal Orthopedics in Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, Guangdong, China.
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, Guangdong, China.
| |
Collapse
|
2
|
Tsukamoto M, Morimoto T, Yoshihara T, Hirata H, Toda Y, Kobayashi T, Mawatari M. Traction Spurs in the Lumbar Spine: A Historical Overview and Future Perspectives. Spine Surg Relat Res 2024; 8:354-361. [PMID: 39131417 PMCID: PMC11310535 DOI: 10.22603/ssrr.2023-0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/04/2023] [Indexed: 08/13/2024] Open
Abstract
Numerous studies have explored the connection between lumbar osteophytes, their pathophysiology, and instability since Macnab's 1971 report on traction spurs as an indicator of lumbar instability. This study provides a narrative historical overview of traction spurs, a classic finding that suggests lumbar instability. It summarizes the causes of anterior lumbar vertebral osteophytes, the relationship between traction spurs and lumbar spinal instability, and the clinical significance of traction spurs. Vertebral osteophytes are grouped into two categories, namely, traction spurs or claw spurs, which represent different stages of the same pathological process. Traction spurs are indicative of instability and occur in the early stage of disc degeneration, characterized by temporary dysfunction or instability. Traction spur formation following fusion surgery can predict union or nonunion, and it serves as an indicator of preoperative and postoperative segmental instability. The relationship between traction spurs and radiographic instability, as well as their association with imaging findings such as CT and MRI, has been clarified. Additionally, finite element analysis and mechanical testing have been used to investigate the significance of traction spurs. However, further research is needed to verify that traction spurs are an accurate indicator of pre- and postoperative lumbar instability.
Collapse
Affiliation(s)
- Masatsugu Tsukamoto
- Department of Orthopedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Tadatsugu Morimoto
- Department of Orthopedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Tomohito Yoshihara
- Department of Orthopedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Hirohito Hirata
- Department of Orthopedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Yu Toda
- Department of Orthopedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Takaomi Kobayashi
- Department of Orthopedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Masaaki Mawatari
- Department of Orthopedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
3
|
Galassi FM, Lorkiewicz W, Filipiak J, Nikodem A, Żądzińska E. Age- and sex-related changes in vertebral trabecular bone architecture in Neolithic and Mediaeval populations from Poland. Sci Rep 2024; 14:9977. [PMID: 38693297 PMCID: PMC11063184 DOI: 10.1038/s41598-024-59946-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
This paper investigates trabecular bone ontogenetic changes in two different Polish populations, one prehistoric and the other historical. The studied populations are from the Brześć Kujawski region in Kujawy (north-central Poland), one from the Neolithic Period (4500-4000 BC) and one from the Middle Ages (twelfth-sixteenth centuries AD), in total 62 vertebral specimens (32 males, 30 females). Eight morphometric parameters acquired from microCT scan images were analysed. Two-way ANOVA after Box-Cox transformation and multifactorial regression model were calculated. A significant decrease in percentage bone volume fraction (BV/TV; [%]) with age at death was observed in the studied sample; Tb.N (trabecular number) was also significantly decreased with age; trabecular separation (Tb.Sp) increased with advancing age; connectivity density (Conn.D) was negatively correlated with biological age and higher in the Neolithic population. These data are found to be compatible with data from the current biomedical literature, while no loss of horizontal trabeculae was recorded as would be expected based on modern osteoporosis.
Collapse
Affiliation(s)
- Francesco Maria Galassi
- Department of Anthropology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| | - Wiesław Lorkiewicz
- Department of Anthropology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Jarosław Filipiak
- Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Anna Nikodem
- Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Elżbieta Żądzińska
- Department of Anthropology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
- Biological Anthropology and Comparative Anatomy Research Unit, School of Medicine, University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
4
|
Pietsch H, Danelson K, Cavanaugh J, Hardy W. A comparison of fracture response in female and male lumbar spine in simulated under body blast component tests. J Mech Behav Biomed Mater 2024; 150:106303. [PMID: 38096612 DOI: 10.1016/j.jmbbm.2023.106303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/01/2023] [Accepted: 12/02/2023] [Indexed: 01/09/2024]
Abstract
Underbody blasts (UBB) from mines and improvised explosive devices in military combat can cause debilitating spine injuries to vehicle mounted soldiers. Due to the exclusion of females in combat roles in prior US Department of Defense policy, UBB exposure and injury have predominantly affected male soldiers. Recent policy changes have opened many combat roles to women serving in the US Military (Carter, 2015) and have increased the need to understand the injury potential for female Warfighters. The goal of this study was to investigate the fracture response of adult female lumbar spines compared to adult male spines in UBB relevant loading to identify potential differences in either fracture mechanism or force. Results are presented for 15 simulated UBB spine compression tests using three small female (SF), five large female (LF), and seven mid-sized male (MM) post-mortem human subjects (PMHS). These PMHS groups align to 5th- and 75th-percentile female and 50th-percentile males, based on height and weight from the 2012 Anthropometric Survey of U.S. Army Personnel (Gordon et al., 2014). Both small females and large females (similar in size to the males) were included to assess the role of size and/or sex in the response. Tests were conducted at Virginia Tech on a cam-driven linear compression rig, which included a 6-axis load cell and ram accelerometer to evaluate the fracture. Fracture was visualized through high-speed x-ray video. All female and male spines exhibited similar fracture initiation at the end plates and progression through the vertebral body. The resulting severe compression and burst fractures were representative of reported theatre injuries (Freedman et al., 2014). Mean axial fracture forces were -4182 ± 940 N (SF), -6225 ± 1180 N (LF), -5459 ± 1472 N (All Females) and -7993 ± 2445 N (MM). The SF group was found to have statistically significant differences in mean fracture force compared to both LF and MM groups, while no significant difference was found between LF and MM groups, although the mean force at initial fracture was lower for the LF group. The All-Females group Fz mean was significantly different from the MM group. These data suggest that the significant difference in weight between the SF and LF groups, did have an influence on the Fz outcome, when controlling for sex. Conversely, controlling for size in the LF and MM comparison, sex did influence the mean Fz, but was not statistically significant. Groups with combined sex and size differences, however, did show significant differences in mean Fz. Further study is warranted to understand whether sex or size has a larger effect on fracture force. Mean ram displacement (spine compression) values at fracture initiation were -6.0 ± 5.3 mm (SF), -4.4 ± 0.8 mm (LF), -5.0 ± 3.0 mm (All Females), -6.2 ± 4.5 mm (MM). Spine compression did not seem to be largely influenced by either sex or size, and none of the groups was found to have significant differences in mean displacement values.
Collapse
Affiliation(s)
- Hollie Pietsch
- US Army DEVCOM Ground Vehicle Systems Center, Wayne State University, 6501 E 11 Mile Rd, Warren, MI, 48397, USA.
| | - Kerry Danelson
- Wake Forest University School of Medicine, Department of Orthopedic Surgery, Medical Center Blvd, Winston Salem, NC, 27157-1050, USA
| | - John Cavanaugh
- Wayne State University, Department of Biomedical Engineering (Retired), 818 W Hancock St, Detroit, MI, 48201, USA
| | - Warren Hardy
- Virginia Tech, Center for Injury Biomechanics, 443 Kelly Hall, 325 Stanger Street, Mail Code 0194, Blacksburg, VA, 24061, USA
| |
Collapse
|
5
|
Moses J, Hach S, Mason J, Treacher A. Defining and measuring objective and subjective spinal stiffness: a scoping review. Disabil Rehabil 2023; 45:4489-4502. [PMID: 36516462 DOI: 10.1080/09638288.2022.2152878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/24/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE Examine and identify the breadth of definitions and measures of objective and subjective spinal stiffness in the literature, with a focus on clinical implications. METHODS A scoping review was conducted to determine what is known about definitions and measures of the specific term of spinal stiffness. Following the framework by Arksey and O'Malley, eligible peer-reviewed studies identified using PubMed, Ebsco health, and Scopus were included if they reported definitions or measures of spinal stiffness. Using a data abstraction form, the studies were classified into four themes: biomechanical, surgical, pathophysiological, and segmental spinal assessment. To identify similarities and differences between studies, sixteen categories were generated. RESULTS In total, 2426 records were identified, and 410 met the eligibility criteria. There were 350 measures (132 subjective; 218 objective measures) and 93 indicators of spinal stiffness. The majority of studies (n = 69%) did not define stiffness. CONCLUSION This review highlights the breadth of objective and subjective measures that are both clinically and methodologically diverse. There is no consensus regarding a standardised definition of stiffness in the reviewed literature.
Collapse
Affiliation(s)
- Joel Moses
- Private Practice, Cambridge, New Zealand
| | - Sylvia Hach
- School of Community Studies, Unitec Institute of Technology, Auckland, New Zealand
| | | | | |
Collapse
|
6
|
Tuncay Duruöz M, Öz N, Gürsoy DE, Hande Gezer H. Clinical aspects and outcomes in osteoarthritis. Best Pract Res Clin Rheumatol 2023; 37:101855. [PMID: 37524622 DOI: 10.1016/j.berh.2023.101855] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/11/2023] [Indexed: 08/02/2023]
Abstract
Osteoarthritis (OA) is the most prevalent type of arthritis worldwide, and its incidence significantly increases with age. It commonly affects the knees, hips, spine, big toes, and hands. OA can be identified through clinical examination, symptoms, and imaging methods. Its main symptoms include pain, stiffness, and limitations in joint movement. Examinations may reveal coarse crepitus, bony enlargement, and tenderness at the joint line. In severe cases of OA, rest pain, night pain, and deformity may occur. OA can lead to decreased physical activity, function, and quality of life due to symptoms such as pain and stiffness. To evaluate these impacts, patient-reported outcome measures (PROMs) are necessary. Various generic, disease-specific, and joint-specific PROMs have been developed and used in clinical practice to assess the outcomes of OA.
Collapse
Affiliation(s)
- Mehmet Tuncay Duruöz
- Marmara University School of Medicine, Physical Medicine, Rehabilitation Department, Rheumatology Division, Istanbul, Turkey; Eastern Mediterranean University, Faculty of Medicine, Famagusta, North Cyprus.
| | - Nuran Öz
- Marmara University School of Medicine, Physical Medicine, Rehabilitation Department, Rheumatology Division, Istanbul, Turkey
| | - Didem Erdem Gürsoy
- İstanbul Prof. Dr. Cemil Taşçıoğlu City Hospital, Physical Medicine and Rehabilitation Department, Rheumatology Clinic, Istanbul, Turkeye
| | - Halise Hande Gezer
- Marmara University School of Medicine, Physical Medicine, Rehabilitation Department, Rheumatology Division, Istanbul, Turkey
| |
Collapse
|
7
|
Yeni YN, Oravec D, Drost J, Zauel R, Flynn MJ. Stiffness and Strain Properties Derived From Digital Tomosynthesis-Based Digital Volume Correlation Predict Vertebral Strength Independently From Bone Mineral Density. J Biomech Eng 2023; 145:041009. [PMID: 36350266 PMCID: PMC9791669 DOI: 10.1115/1.4056196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/31/2022] [Indexed: 11/11/2022]
Abstract
Vertebral fractures are the most common osteoporotic fractures, but their prediction using standard bone mineral density (BMD) measurements from dual energy X-ray absorptiometry (DXA) is limited in accuracy. Stiffness, displacement, and strain distribution properties derived from digital tomosynthesis-based digital volume correlation (DTS-DVC) have been suggested as clinically measurable metrics of vertebral bone quality. However, the extent to which these properties correlate to vertebral strength is unknown. To establish this relationship, two independent experiments, one examining isolated T11 and the other examining L3 vertebrae within the L2-L4 segments from cadaveric donors were utilized. Following DXA and DTS imaging, the specimens were uniaxially compressed to fracture. BMD, bone mineral content (BMC), and bone area were recorded for the anteroposterior and lateromedial views from DXA, stiffness, endplate to endplate displacement and distribution statistics of intravertebral strains were calculated from DTS-DVC and vertebral strength was measured from mechanical tests. Regression models were used to examine the relationships of strength with the other variables. Correlations of BMD with vertebral strength varied between experimental groups (R2adj = 0.19-0.78). DTS-DVC derived properties contributed to vertebral strength independently from BMD measures (increasing R2adj to 0.64-0.95). DTS-DVC derived stiffness was the best single predictor (R2adj = 0.66, p < 0.0001) and added the most to BMD in models of vertebral strength for pooled T11 and L3 specimens (R2adj = 0.95, p < 0.0001). These findings provide biomechanical relevance to DTS-DVC calculated properties of vertebral bone and encourage further efforts in the development of the DTS-DVC approach as a clinical tool.
Collapse
Affiliation(s)
- Yener N. Yeni
- Bone & Joint Center, Henry Ford Hospital Integrative Biosciences Center (iBio), 6135 Woodward, Detroit, MI 48202
| | - Daniel Oravec
- Bone & Joint Center, Henry Ford Hospital Integrative Biosciences Center (iBio), 6135 Woodward, Detroit, MI 48202
| | - Joshua Drost
- Bone & Joint Center, Henry Ford Hospital Integrative Biosciences Center (iBio), 6135 Woodward, Detroit, MI 48202
| | - Roger Zauel
- Bone & Joint Center, Henry Ford Hospital Integrative Biosciences Center (iBio), 6135 Woodward, Detroit, MI 48202
| | - Michael J. Flynn
- Department of Radiology, Henry Ford Hospital, One Ford Place, Suite 2F, Detroit, MI 48202
| |
Collapse
|
8
|
Farshad M, Cornaz F, Spirig JM, Sutter R, Farshad-Amacker NA, Widmer J. Spondylophyte classification based on biomechanical effects on segmental stiffness. Spine J 2022; 22:1903-1912. [PMID: 35671943 DOI: 10.1016/j.spinee.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/05/2022] [Accepted: 06/01/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT The biomechanical impact of spondylophytes on segmental stiffness is largely unknown, despite their high incidence. PURPOSE The aim of this study was to quantify the biomechanical contribution according to location and cranio-caudal extent of spondylophytes and to create a clinically applicable radiological classification system. STUDY DESIGN Biomechanical cadaveric study. METHODS Twenty-six cadaveric human lumbar spinal segments with spondylophytes were tested with a displacement-controlled stepwise reduction method. The reduction in load required for the same motion after spondylophyte dissection was used to calculate the biomechanical contribution in flexion, extension, axial rotation, lateral bending, anterior, posterior and lateral shear. The spondylophytes were categorized by assessment of their anatomical position and cranio-caudal extent in computed tomography images (grade 1: spondylophytes spanning less than 50% of the disc-height, grade 2:>50%, grade 3:>90%, grade 4: bony bridging between the vertebrae) by two experienced radiologists. Cohen's kappa (κ) was used to report interreader reliability. RESULTS The largest biomechanical effect of non-bridging spondylophytes (grade 1-3) was recorded during contralateral bending with a grade-dependent contribution of up to 35%. Other loading directions including ipsilateral bending and translational loading were affected with values below 13%. Spondylophytes with osseous bridging (grade 4) show large contribution to the segmental stiffness in most loading conditions with values reaching over 80%. Interreader agreement for the spondylophyte grading was "substantial" (κ=0.73, p<.001). CONCLUSIONS The location and cranio-caudal extent of spondylophytes are essential parameters for their biomechanical effect. A reproducible classification has been validated biomechanically and helps evaluate the effect of specific spondylophyte configurations on segmental stiffness. CLINICAL SIGNIFICANCE Non-bridging spondylophytes primarily act as tensile structures and do not provide relevant propping. A classification system is presented to support understanding of the biomechanical consequences of different spondylophyte configuration for clinical decision making in surgical planning.
Collapse
Affiliation(s)
- Mazda Farshad
- Department of Orthopaedics, Balgrist University Hospital, Zurich, Switzerland.
| | - Frédéric Cornaz
- Department of Orthopaedics, Balgrist University Hospital, Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - José Miguel Spirig
- Department of Orthopaedics, Balgrist University Hospital, Zurich, Switzerland
| | - Reto Sutter
- Radiology, Balgrist University Hospital, Zurich, Switzerland
| | | | - Jonas Widmer
- Department of Orthopaedics, Balgrist University Hospital, Zurich, Switzerland; Spine Biomechanics, Department of Orthopaedics, Balgrist University Hospital, Zurich, Switzerland
| |
Collapse
|
9
|
Beauséjour MH, Petit Y, Wagnac É, Melot A, Troude L, Arnoux PJ. Cervical spine injury response to direct rear head impact. Clin Biomech (Bristol, Avon) 2022; 92:105552. [PMID: 34999391 DOI: 10.1016/j.clinbiomech.2021.105552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/29/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Direct rear head impact can occur during falls, road accidents, or sports accidents. They induce anterior shear, flexion and compression loads suspected to cause flexion-distraction injuries at the cervical spine. However, post-mortem human subject experiments mostly focus on sled impacts and not direct head impacts. METHODS Six male cadavers were subjected to a direct rear head impact of 3.5 to 5.5 m/s with a 40 kg impactor. The subjects were equipped with accelerometers at the forehead, mouth and sternum. High-speed cameras and stereography were used to track head displacements. Head range of motion in flexion-extension was measured before and after impact for four cadavers. The injuries were assessed from CT scan images and dissection. FINDINGS Maximum head rotation was between 43 degrees and 78 degrees, maximum cranial-caudal displacement between -12 mm and - 196 mm, and antero-posterior displacement between 90 mm and 139 mm during the impact. Four subjects had flexion-distraction injuries. Anterior vertebral osteophyte identification showed that fractures occurred at adjacent levels of osteophytic bridges. The other two subjects had no anterior osteophytes and suffered from C2 fracture, and one subject also had a C1-C2 subluxation. C6-C7 was the most frequently injured spinal level. INTERPRETATION Anterior vertebral osteophytes appear to influence the type and position of injuries. Osteophytes would seem to provide stability in flexion for the osteoarthritic cervical spine, but to also lead to stress concentration in levels adjacent to the osteophytes. Clinical management of patients presenting with osteophytes fracture should include neck immobilization and careful follow-up to ensure bone healing.
Collapse
Affiliation(s)
- Marie-Hélène Beauséjour
- Department of Mechanical Engineering, École de technologie supérieure, 1100 Notre-Dame Street West, H3C 1K3, Montreal, Quebec, Canada; Research Center, Hôpital du Sacré-Coeur de Montréal, 5400 Boulevard Gouin, H4J 1C5, Montreal, Quebec, Canada; International Laboratory on Spine Imaging and Biomechanics, France and Canada; Laboratoire de Biomécanique Appliquée-Université Gustave-Eiffel, Aix-Marseille Université, UMR T24, 51 boulevard Pierre Dramard, 13015 Marseille, France
| | - Yvan Petit
- Department of Mechanical Engineering, École de technologie supérieure, 1100 Notre-Dame Street West, H3C 1K3, Montreal, Quebec, Canada; Research Center, Hôpital du Sacré-Coeur de Montréal, 5400 Boulevard Gouin, H4J 1C5, Montreal, Quebec, Canada; International Laboratory on Spine Imaging and Biomechanics, France and Canada.
| | - Éric Wagnac
- Department of Mechanical Engineering, École de technologie supérieure, 1100 Notre-Dame Street West, H3C 1K3, Montreal, Quebec, Canada; Research Center, Hôpital du Sacré-Coeur de Montréal, 5400 Boulevard Gouin, H4J 1C5, Montreal, Quebec, Canada; International Laboratory on Spine Imaging and Biomechanics, France and Canada
| | - Anthony Melot
- International Laboratory on Spine Imaging and Biomechanics, France and Canada; Laboratoire de Biomécanique Appliquée-Université Gustave-Eiffel, Aix-Marseille Université, UMR T24, 51 boulevard Pierre Dramard, 13015 Marseille, France; Hôpital privé Clairval, 317 boulevard du Redon, 13009 Marseille, France
| | - Lucas Troude
- Neurosurgery, CHU Nord Marseille, Chemin des Bourrely, cedex 20, 13015 Marseille, France
| | - Pierre-Jean Arnoux
- International Laboratory on Spine Imaging and Biomechanics, France and Canada; Laboratoire de Biomécanique Appliquée-Université Gustave-Eiffel, Aix-Marseille Université, UMR T24, 51 boulevard Pierre Dramard, 13015 Marseille, France
| |
Collapse
|
10
|
Marras D, Palanca M, Cristofolini L. Effects Induced by Osteophytes on the Strain Distribution in the Vertebral Body Under Different Loading Configurations. Front Bioeng Biotechnol 2021; 9:756609. [PMID: 34778229 PMCID: PMC8585771 DOI: 10.3389/fbioe.2021.756609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/27/2021] [Indexed: 11/27/2022] Open
Abstract
The mechanical consequences of osteophytes are not completely clear. We aimed to understand whether and how the presence of an osteophyte perturbs strain distribution in the neighboring bone. The scope of this study was to evaluate the mechanical behavior induced by the osteophytes using full-field surface strain analysis in different loading configurations. Eight thoracolumbar segments, containing a vertebra with an osteophyte and an adjacent vertebra without an osteophyte (control), were harvested from six human spines. The position and size of the osteophytes were evaluated using clinical computed tomography imaging. The spine segments were biomechanically tested in the elastic regime in different loading configurations while the strains over the frontal and lateral surface of vertebral bodies were measured using digital image correlation. The strain fields in the vertebrae with and without osteophytes were compared. The correlation between osteophyte size and strain alteration was explored. The strain fields measured in the vertebrae with osteophytes were different from the control ones. In pure compression, we observed a mild trend between the size of the osteophyte and the strain distribution (R2 = 0.32, p = 0.15). A slightly stronger trend was found for bending (R2 = 0.44, p = 0.075). This study suggests that the osteophytes visibly perturb the strain field in the nearby vertebral area. However, the effect on the surrounding bone is not consistent. Indeed, in some cases the osteophyte shielded the neighboring bone, and in other cases, the osteophyte increased the strains.
Collapse
Affiliation(s)
- Daniele Marras
- Department of Industrial Engineering, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | - Marco Palanca
- Department of Industrial Engineering, Alma Mater Studiorum-Università di Bologna, Bologna, Italy.,Department of Oncology and Metabolism, INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Luca Cristofolini
- Department of Industrial Engineering, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| |
Collapse
|
11
|
Auger JD, Frings N, Wu Y, Marty AG, Morgan EF. Trabecular Architecture and Mechanical Heterogeneity Effects on Vertebral Body Strength. Curr Osteoporos Rep 2020; 18:716-726. [PMID: 33215364 PMCID: PMC7891914 DOI: 10.1007/s11914-020-00640-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/24/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW We aimed to synthesize the recent work on the intra-vertebral heterogeneity in density, trabecular architecture and mechanical properties, its implications for fracture risk, its association with degeneration of the intervertebral discs, and its implications for implant design. RECENT FINDINGS As compared to the peripheral regions of the centrum, the central region of the vertebral body exhibits lower density and more sparse microstructure. As compared to the anterior region, the posterior region shows higher density. These variations are more pronounced in vertebrae from older persons and in those adjacent to degenerated discs. Mixed results have been reported in regard to variation along the superior-inferior axis and to relationships between the heterogeneity in density and vertebral strength and fracture risk. These discrepancies highlight that, first, despite the large amount of study of the intra-vertebral heterogeneity in microstructure, direct study of that in mechanical properties has lagged, and second, more measurements of vertebral loading are needed to understand how the heterogeneity affects distributions of stress and strain in the vertebra. These future areas of study are relevant not only to the question of spine fractures but also to the design and selection of implants for spine fusion and disc replacement. The intra-vertebral heterogeneity in microstructure and mechanical properties may be a product of mechanical adaptation as well as a key determinant of the ability of the vertebral body to withstand a given type of loading.
Collapse
Affiliation(s)
- Joshua D Auger
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA
| | - Neilesh Frings
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Yuanqiao Wu
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA
| | - Andre Gutierrez Marty
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA
| | - Elise F Morgan
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
12
|
Dang L, Zhu J, Liu Z, Liu X, Jiang L, Wei F, Song C. A new approach to the treatment of spinal instability: Fusion or structural reinforcement without surgery? Med Hypotheses 2020; 144:109900. [PMID: 32562916 DOI: 10.1016/j.mehy.2020.109900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/24/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023]
Abstract
Spinal instability related low back pain is a common condition resulting from degeneration and loss of stiffness of the intervertebral joint. In order to restore stability, highly invasive surgical fusion is needed for patients who are not responding to conservative treatment. Given the risk and complications of surgery, there has been the urge for improvement with a less invasive solution. Formation of vertebral body osteophytes is a common observation that has been treated as a degenerative condition. However, recent studies have associated it with reduced motion of spinal segments. Unlike the traditional view, we regard it as adaptive reactions aiming to repair and hypothesize that the spinal segments could be stabilized or fused by intentionally induced osteophytes growth at the mobile parts of the intervertebral joint. This could be achieved by injecting Bone Morphogenetic Proteins to the anterior ends of the vertebral bodies and/or the facet joints on both sides of two consecutive vertebrae percutaneously. If verified, it would be the first time that fusion could be achieved without surgery. Hence it would provide a valuable alternative to current treatments of spinal instability. Preliminary test in favor of this hypothesis is presented and we recommend that a formal study with sufficient number of samples is needed for verification.
Collapse
Affiliation(s)
- Lei Dang
- Department of Orthopedics, Peking University 3rd Hospital, Beijing Key Laboratory of Spinal Disease Research, No. 49 North Garden Rd., Haidian District, Beijing 100191, PR China
| | - Jinglin Zhu
- Department of Orthopedics, Beijing Shijitan Hospital, No. 10 Tieyi Rd., Yangfangdian Subdistrict, Haidian District, Beijing, PR China
| | - Zhongjun Liu
- Department of Orthopedics, Peking University 3rd Hospital, Beijing Key Laboratory of Spinal Disease Research, No. 49 North Garden Rd., Haidian District, Beijing 100191, PR China
| | - Xiaoguang Liu
- Department of Orthopedics, Peking University 3rd Hospital, Beijing Key Laboratory of Spinal Disease Research, No. 49 North Garden Rd., Haidian District, Beijing 100191, PR China
| | - Liang Jiang
- Department of Orthopedics, Peking University 3rd Hospital, Beijing Key Laboratory of Spinal Disease Research, No. 49 North Garden Rd., Haidian District, Beijing 100191, PR China
| | - Feng Wei
- Department of Orthopedics, Peking University 3rd Hospital, Beijing Key Laboratory of Spinal Disease Research, No. 49 North Garden Rd., Haidian District, Beijing 100191, PR China
| | - Chunli Song
- Department of Orthopedics, Peking University 3rd Hospital, Beijing Key Laboratory of Spinal Disease Research, No. 49 North Garden Rd., Haidian District, Beijing 100191, PR China.
| |
Collapse
|