1
|
Castillo J, Tonon AC, Hidalgo MP, Silva A, Tassino B. Individual light history matters to deal with the Antarctic summer. Sci Rep 2023; 13:12081. [PMID: 37495664 PMCID: PMC10372057 DOI: 10.1038/s41598-023-39315-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023] Open
Abstract
The effect of light, main zeitgeber of the circadian system, depends on the time of day it is received. A brief trip to the Antarctic summer (ANT) allowed us to explore the impact of a sudden and synchronized increase in light exposure on activity-rest rhythms and sleep patterns of 11 Uruguayan university students, and to assess the significance of light history in determining individual circadian phase shift. Measurements collected in the peri-equinox in Montevideo, Uruguay (baseline situation, MVD) and in ANT, included sleep logs, actigraphy, and salivary melatonin to determine dim-light melatonin onset (DLMO), the most reliable marker of circadian phase. The increase in light exposure in ANT with respect to MVD (affecting both light-sensitive windows with opposite effects on the circadian phase) resulted in no net change in DLMO among participants as some participants advanced their DLMO and some others delayed it. The ultimate cause of each participant's distinctive circadian phase shift relied on the unique change in light exposure each individual was subjected to between their MVD and ANT. This study shows an association between the individual light history and the circadian phase shift.
Collapse
Affiliation(s)
- Julieta Castillo
- Grupo Cronobiología, Comisión Sectorial de Investigación Científica, Universidad de la República, Montevideo, Uruguay
| | - André C Tonon
- Laboratório de Cronobiologia e Sono, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - María Paz Hidalgo
- Laboratório de Cronobiologia e Sono, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana Silva
- Grupo Cronobiología, Comisión Sectorial de Investigación Científica, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Bettina Tassino
- Grupo Cronobiología, Comisión Sectorial de Investigación Científica, Universidad de la República, Montevideo, Uruguay.
- Sección Etología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay.
| |
Collapse
|
2
|
Eubank JM, Oberlin DJ, Alto A, Sahyoun NR, Asongwed E, Monroe-Lord L, Harrison EA. Effects of Lifestyle Factors on Cognition in Minority Population of Older Adults: A Review. Front Nutr 2022; 9:841070. [PMID: 35369047 PMCID: PMC8966895 DOI: 10.3389/fnut.2022.841070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/14/2022] [Indexed: 11/16/2022] Open
Abstract
The onset of dementia and Alzheimer's disease (AD) is projected to expand over the next several decades in the United States as the population ages. However, the cognitive health burden is not equally distributed among the population, as Hispanics and African Americans are at higher risk of AD when compared with Non-Hispanic Whites. There is some evidence to indicate that cognitive decline may be associated with lifestyle factors and that interventions in these domains may prevent or delay this decline. These lifestyle factors include social engagement, physical activity, both aerobic and strength training, dietary intake, sleep and stress. This review summarizes, in general, what is known about the relationship between risk factors and cognition and, in particular what is known about this relationship in minority populations. The results show that the relationship between these risk factors and cognitive decline is stronger for some of the factors such as physical activity and dietary intake and weaker for the other factors depending on what is measured and in what populations. It does appear, however, that the studies in minority populations is limited and warrants more targeted research and interventions.
Collapse
Affiliation(s)
- Jacob M. Eubank
- Lehman College, City University of New York, New York, NY, United States
- *Correspondence: Jacob M. Eubank ; orcid.org/0000-0003-1806-9308
| | - Douglas J. Oberlin
- Lehman College, City University of New York, New York, NY, United States
| | - Andrew Alto
- Lehman College, City University of New York, New York, NY, United States
| | - Nadine R. Sahyoun
- Department of Nutrition and Food Science, University of Maryland College Park, College Park, MD, United States
| | - Elmira Asongwed
- College of Agriculture, Urban Sustainability and Environmental Sciences, University of the District of Columbia, Washington, DC, United States
| | - Lillie Monroe-Lord
- College of Agriculture, Urban Sustainability and Environmental Sciences, University of the District of Columbia, Washington, DC, United States
| | | |
Collapse
|
3
|
Delisle BP, George AL, Nerbonne JM, Bass JT, Ripplinger CM, Jain MK, Hermanstyne TO, Young ME, Kannankeril PJ, Duffy JF, Goldhaber JI, Hall MH, Somers VK, Smolensky MH, Garnett CE, Anafi RC, Scheer FA, Shivkumar K, Shea SA, Balijepalli RC. Understanding Circadian Mechanisms of Sudden Cardiac Death: A Report From the National Heart, Lung, and Blood Institute Workshop, Part 2: Population and Clinical Considerations. Circ Arrhythm Electrophysiol 2021; 14:e010190. [PMID: 34719257 PMCID: PMC8865094 DOI: 10.1161/circep.121.010190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Sudden cardiac death (SCD) is the sudden, unexpected death due to abrupt loss of heart function secondary to cardiovascular disease. In certain populations living with cardiovascular disease, SCD follows a distinct 24-hour pattern in occurrence, suggesting day/night rhythms in behavior, the environment, and endogenous circadian rhythms result in daily spans of increased vulnerability. The National Heart, Lung, and Blood Institute convened a workshop, Understanding Circadian Mechanisms of Sudden Cardiac Death to identify fundamental questions regarding the role of the circadian rhythms in SCD. Part 2 summarizes research gaps and opportunities in the areas of population and clinical research identified in the workshop. Established research supports a complex interaction between circadian rhythms and physiological responses that increase the risk for SCD. Moreover, these physiological responses themselves are influenced by several biological variables, including the type of cardiovascular disease, sex, age, and genetics, as well as environmental factors. The emergence of new noninvasive biotechnological tools that continuously measure key cardiovascular variables, as well as the identification of biomarkers to assess circadian rhythms, hold promise for generating large-scale human data sets that will delineate which subsets of individuals are most vulnerable to SCD. Additionally, these data will improve our understanding of how people who suffer from circadian disruptions develop cardiovascular diseases that increase the risk for SCD. Emerging strategies to identify new biomarkers that can quantify circadian health (eg, environmental, behavioral, and internal misalignment) may lead to new interventions and therapeutic targets to prevent the progression of cardiovascular diseases that cause SCD.
Collapse
Affiliation(s)
| | - Alfred L. George
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, IL
| | - Jeanne M. Nerbonne
- Departments of Medicine, Cardiovascular Division, and Developmental Biology, Washington University School of Medicine, St. Louis, MO
| | - Joseph T. Bass
- Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL
| | | | - Mukesh K. Jain
- Department of Medicine, Case Western Reserve University, Cleveland, OH
| | - Tracey O. Hermanstyne
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO
| | - Martin E. Young
- Department of Medicine, University of Alabama, Birmingham, AL
| | | | | | | | - Martica H. Hall
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | | | | | | | - Ron C. Anafi
- Department of Medicine and Center for Sleep and Circadian Neurobiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | | | - Kalyanam Shivkumar
- Departement of Medicine, David Greffen School of Medicine at UCLA, Los Angeles, CA
| | - Steven A. Shea
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR
| | | |
Collapse
|
4
|
Abstract
Circadian rhythms describe physiological systems that repeat themselves with a cycle of approximately 24 h. Our understanding of the cellular and molecular origins of these oscillations has improved dramatically, allowing us to appreciate the significant role these oscillations play in maintaining physiological homeostasis. Circadian rhythms allow living organisms to predict and efficiently respond to a dynamically changing environment, set by repetitive day/night cycles. Since circadian rhythms underlie almost every aspect of human physiology, it is unsurprising that they also influence the response of a living organism to disease, stress, and therapeutics. Therefore, not only do the mechanisms that maintain health and disrupt homeostasis depend on our internal circadian clock, but also the way drugs are perceived and function depends on these physiological rhythms. We present a holistic view of the therapeutic process, discussing components such as disease state, pharmacokinetics, and pharmacodynamics, as well as adverse reactions that are critically affected by circadian rhythms. We outline challenges and opportunities in moving toward personalized medicine approaches that explore and capitalize on circadian rhythms for the benefit of the patient.
Collapse
Affiliation(s)
- Yaakov Nahmias
- Center for Bioengineering, School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ioannis P Androulakis
- Department of Biomedical Engineering and Department of Chemical & Biochemical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA; .,Department of Surgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
5
|
Chellappa SL. Individual differences in light sensitivity affect sleep and circadian rhythms. Sleep 2021; 44:zsaa214. [PMID: 33049062 PMCID: PMC7879412 DOI: 10.1093/sleep/zsaa214] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
Artificial lighting is omnipresent in contemporary society with disruptive consequences for human sleep and circadian rhythms because of overexposure to light, particularly in the evening/night hours. Recent evidence shows large individual variations in circadian photosensitivity, such as melatonin suppression, due to artificial light exposure. Despite the emerging body of research indicating that the effects of light on sleep and circadian rhythms vary dramatically across individuals, recommendations for appropriate light exposure in real-life settings rarely consider such individual effects. This review addresses recently identified links among individual traits, for example, age, sex, chronotype, genetic haplotypes, and the effects of evening/night light on sleep and circadian hallmarks, based on human laboratory and field studies. Target biological mechanisms for individual differences in light sensitivity include differences occurring within the retina and downstream, such as the central circadian clock. This review also highlights that there are wide gaps of uncertainty, despite the growing awareness that individual differences shape the effects of evening/night light on sleep and circadian physiology. These include (1) why do certain individual traits differentially affect the influence of light on sleep and circadian rhythms; (2) what is the translational value of individual differences in light sensitivity in populations typically exposed to light at night, such as night shift workers; and (3) what is the magnitude of individual differences in light sensitivity in population-based studies? Collectively, the current findings provide strong support for considering individual differences when defining optimal lighting specifications, thus allowing for personalized lighting solutions that promote quality of life and health.
Collapse
Affiliation(s)
- Sarah L Chellappa
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA
- Division of Sleep Medicine, Department of Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
6
|
Hasler BP, Wallace ML, White SJ, Molina BSG, Pedersen SL. Preliminary Evidence That Real World Sleep Timing and Duration are Associated With Laboratory-Assessed Alcohol Response. Alcohol Clin Exp Res 2019; 43:1575-1584. [PMID: 31070238 DOI: 10.1111/acer.14076] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/29/2019] [Indexed: 12/01/2022]
Abstract
BACKGROUND Sleep timing and evening chronotype have been implicated in alcohol use problems but research has yet to study them in relation to theory-driven laboratory-based measures of alcohol use disorder risk. The current study examined (i) whether chronotype, sleep timing, and/or sleep duration are associated with alcohol response (subjective stimulation, sedation, and behavioral disinhibition) and (ii) if sex and race moderate these associations. METHODS Adult drinkers (N = 144; 46 female participants) completed 2 counterbalanced beverage administration sessions (alcohol and nonalcohol) during which they rated stimulation/sedation and completed a cued go/no-go task. They reported bed and waketimes over 10 days. RESULTS Later sleep timing was associated with greater increases in alcohol stimulation, but among male and White participants only. Later sleep timing (among male participants) and greater eveningness (examined among White male participants only) were associated with greater overall stimulation on average in the alcohol session relative to the nonalcohol session, irrespective of alcohol consumption. More variable sleep duration was associated with greater increases in sedation. CONCLUSIONS These findings offer preliminary, but novel evidence that sleep characteristics may relate to the relative stimulating and sedating effects of alcohol, thereby influencing the risk for alcohol problems.
Collapse
Affiliation(s)
- Brant P Hasler
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Meredith L Wallace
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sarah J White
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Brooke S G Molina
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sarah L Pedersen
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
7
|
Voigt RM, Forsyth CB, Keshavarzian A. Circadian rhythms: a regulator of gastrointestinal health and dysfunction. Expert Rev Gastroenterol Hepatol 2019; 13:411-424. [PMID: 30874451 PMCID: PMC6533073 DOI: 10.1080/17474124.2019.1595588] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Circadian rhythms regulate much of gastrointestinal physiology including cell proliferation, motility, digestion, absorption, and electrolyte balance. Disruption of circadian rhythms can have adverse consequences including the promotion of and/or exacerbation of a wide variety of gastrointestinal disorders and diseases. Areas covered: In this review, we evaluate some of the many gastrointestinal functions that are regulated by circadian rhythms and how dysregulation of these functions may contribute to disease. This review also discusses some common gastrointestinal disorders that are known to be influenced by circadian rhythms as well as speculation about the mechanisms by which circadian rhythm disruption promotes dysfunction and disease pathogenesis. We discuss how knowledge of circadian rhythms and the advent of chrono-nutrition, chrono-pharmacology, and chrono-therapeutics might influence clinical practice. Expert opinion: As our knowledge of circadian biology increases, it may be possible to incorporate strategies that take advantage of circadian rhythms and chronotherapy to prevent and/or treat disease.
Collapse
Affiliation(s)
- Robin M Voigt
- Rush Department of Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, USA
| | - Christopher B Forsyth
- Rush Department of Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, USA
| | - Ali Keshavarzian
- Rush Department of Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
8
|
Putilov AA, Dorokhov VB, Puchkova AN, Arsenyev GN, Sveshnikov DS. Genetic-based signatures of the latitudinal differences in chronotype. BIOL RHYTHM RES 2018. [DOI: 10.1080/09291016.2018.1465249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Arcady A. Putilov
- Research Group for Math-Modeling of Biomedical Systems, The Research Institute for Molecular Biology and Biophysics, Novosibirsk, Russia
| | - Vladimir B. Dorokhov
- Laboratory of Sleep/Wake Neurobiology, the Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, Russia
| | - Alexandra N. Puchkova
- Laboratory of Sleep/Wake Neurobiology, the Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, Russia
- Center for Cognition and Communication, Pushkin State Russian Language Institute, Moscow, Russia
| | - Gleb N. Arsenyev
- Laboratory of Sleep/Wake Neurobiology, the Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, Russia
| | - Dmitry S. Sveshnikov
- Department of Normal Physiology, Medical Institute, Peoples’ Friendship University of Russia, Moscow, Russia
| |
Collapse
|
9
|
Putilov AA, Dorokhov VB, Poluektov MG. How have our clocks evolved? Adaptive and demographic history of the out-of-African dispersal told by polymorphic loci in circadian genes. Chronobiol Int 2017; 35:511-532. [DOI: 10.1080/07420528.2017.1417314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Arcady A. Putilov
- Research Group for Math-Modeling of Biomedical Systems, the Research Institute for Molecular Biology and Biophysics, Novosibirsk, Russia
| | - Vladimir B. Dorokhov
- Laboratory of Sleep/Wake Neurobiology, The Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, Russia
| | - Michael G. Poluektov
- Department of Nervous Diseases, Institute of Professional Education, I.M. Sechenov 1-st Moscow State Medical University, Moscow, Russia
| |
Collapse
|