1
|
Dang Y, Zhang P, Jiang P, Ke J, Xiao Y, Zhu Y, Liu M, Li M, Wu J, Liu J, Tian B, Liu X. Temperature-dependent variations in under-canopy herbaceous foliar diseases following shrub encroachment in grasslands. Nat Commun 2025; 16:1131. [PMID: 39875409 PMCID: PMC11775204 DOI: 10.1038/s41467-025-56439-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 01/13/2025] [Indexed: 01/30/2025] Open
Abstract
Shrub encroachment into grasslands poses a global concern, impacting species biodiversity and ecosystem functioning. Yet, the effect of shrub encroachment on herbaceous diseases and the dependence of that effect on climatic factors remain ambiguous. This study spans over 4,000 km, examining significant variability in temperature and precipitation. Our findings reveal that herbaceous plant species richness diminishes the pathogen load of foliar fungal diseases of herbaceous plants in both shrub and grassland patches. Temperature emerges as the primary driver of variations in herbaceous biomass and pathogen load within herbaceous plant communities. Disparities in herbaceous biomass between shrub and grassland patches elucidate changes in pathogen load. In colder regions, shrub encroachment diminishes herbaceous biomass and pathogen load. Conversely, in warmer regions, shrubs either do not reduce or even amplify pathogen load. These discoveries underscore the necessity for adaptive management strategies tailored to specific shrub encroachment scenarios.
Collapse
Affiliation(s)
- Yilin Dang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
- National Plateau Wetlands Research Center and Yunnan Key Laboratory of Plateau Wetland Conservation Restoration and Ecological Services, Southwest Forestry University, Kunming, China
| | - Peng Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Peixi Jiang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Junsheng Ke
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Yao Xiao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Yingying Zhu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, Shanghai, China
| | - Mu Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Minjie Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Jihua Wu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Jianquan Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China.
| | - Bin Tian
- National Plateau Wetlands Research Center and Yunnan Key Laboratory of Plateau Wetland Conservation Restoration and Ecological Services, Southwest Forestry University, Kunming, China.
| | - Xiang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China.
| |
Collapse
|
2
|
Ribeiro Dos Santos U, Lima Dos Santos J. Lessons from the field: Trichoderma in agriculture and human health. Can J Microbiol 2025; 71:1-15. [PMID: 40227123 DOI: 10.1139/cjm-2024-0227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
The use of Trichoderma in agriculture as both a biocontrol agent and biofertilizer hinges on its ability to colonize the rhizosphere, promote plant growth, endure adverse environments, compete for space and nutrients, and produce enzymes and secondary metabolites to mycoparasitize and infect other fungus. In humans, Trichoderma exhibits the capacity to infect various bodily tissues, leading to Trichodermosis. There has been a notable increase in cases ranging from superficial to fatal, invasive, and disseminated infections, particularly among immunocompromised individuals. Trichoderma species employ diverse strategies to colonize and survive in various environments, infecting phytopathogens; however, the mechanisms and virulence factors contributing to human infections remain poorly understood. In this mini review, we provide a brief overview and contextualization of the virulence mechanisms employed by Trichoderma in parasitizing other fungi, as well as those implicated in modulating plant immunity and inducing human infections. Furthermore, we discuss the similarity of these virulence factors capable of modulating the mammalian immune system and their potential implications for human infection.
Collapse
Affiliation(s)
- Uener Ribeiro Dos Santos
- Immunobiology Laboratory, Department of Biological Sciences, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - Jane Lima Dos Santos
- Immunobiology Laboratory, Department of Biological Sciences, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| |
Collapse
|
3
|
Lu M, Wen T, Guo M, Li Q, Peng X, Zhang Y, Lu Z, Wang J, Xu Y, Zhang C. Regulation of Intracellular Reactive Oxygen Species Levels after the Development of Phallus rubrovolvatus Rot Disease Due to Trichoderma koningii Mycoparasitism. J Fungi (Basel) 2023; 9:jof9050525. [PMID: 37233236 DOI: 10.3390/jof9050525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/27/2023] Open
Abstract
Phallus rubrovolvatus is a unique mushroom used for medicinal and dietary purposes in China. In recent years, however, the rot disease of P. rubrovolvatus has seriously affected its yield and quality, becoming an economically important threat. In this study, samples of symptomatic tissues were collected, isolated, and identified from five major P. rubrovolvatus production regions in Guizhou Province, China. Based on combined analyses of phylogenies (ITS and EF1-α), morphological characteristics and Koch's postulates, Trichoderma koningiopsis and Trichoderma koningii were identified as the pathogenic fungal species. Among these, T. koningii exhibited stronger pathogenicity than the other strains; thus, T. koningii was used as the test strain in the follow-up experiments. Upon co-culturing T. koningii with P. rubrovolvatus, the hyphae of the two species were intertwined, and the color of the P. rubrovolvatus hyphae changed from white to red. Moreover, T. koningii hyphae were wrapped around P. rubrovolvatus hyphae, leading to their shortening and convolution and ultimately inhibiting their growth due to wrinkling; T. koningii penetrated the entire basidiocarp tissue of P. rubrovolvatus, causing serious damage to the host basidiocarp cells. Further analyses revealed that T. koningii infection resulted in the swelling of basidiocarps and significantly enhanced the activity of defense-related enzymes, such as malondialdehyde, manganese peroxidase, and polyphenol oxidase. These findings offer theoretical support for further research on the infection mechanisms of pathogenic fungi and the prevention of diseases caused by them.
Collapse
Affiliation(s)
- Meiling Lu
- School of Pharmacy, Guizhou University, Guiyang 550025, China
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
- The Engineering Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang 550025, China
- The Mushroom Research Centre, Guizhou University, Guiyang 550025, China
| | - Tingchi Wen
- School of Pharmacy, Guizhou University, Guiyang 550025, China
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
- The Engineering Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang 550025, China
- The Mushroom Research Centre, Guizhou University, Guiyang 550025, China
| | - Ming Guo
- Guizhou Jinchandashan Biotechnology Co., Ltd., Nayong 553300, China
| | - Qihua Li
- Guizhou Jinsun Biotechnology Co., Ltd., Zhijin 552100, China
| | - Xingcan Peng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
- The Engineering Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang 550025, China
- The Mushroom Research Centre, Guizhou University, Guiyang 550025, China
- Center of Excellence in Fungal Research, and School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Yan Zhang
- School of Pharmacy, Guizhou University, Guiyang 550025, China
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
- The Engineering Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang 550025, China
- The Mushroom Research Centre, Guizhou University, Guiyang 550025, China
| | - Zhenghua Lu
- The Engineering Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang 550025, China
- The Mushroom Research Centre, Guizhou University, Guiyang 550025, China
- Guizhou Jinsun Biotechnology Co., Ltd., Zhijin 552100, China
| | - Jian Wang
- The Key Laboratory of Agricultural Bioengineering, Guizhou University, Guiyang 550025, China
| | - Yanjun Xu
- The Mushroom Research Centre, Guizhou University, Guiyang 550025, China
| | - Chao Zhang
- School of Pharmacy, Guizhou University, Guiyang 550025, China
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
- The Engineering Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang 550025, China
- The Mushroom Research Centre, Guizhou University, Guiyang 550025, China
| |
Collapse
|
4
|
Dos Santos UR, Dos Santos JL. Trichoderma after crossing kingdoms: infections in human populations. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:97-126. [PMID: 36748123 DOI: 10.1080/10937404.2023.2172498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Trichoderma is a saprophytic fungus that is used worldwide as a biocontrol and biofertilizer agent. Although considered nonpathogenic until recently, reports of human infections produced by members of the Trichoderma genus are increasing. Numerous sources of infection were proposed based upon patient data and phylogenetic analysis, including air, agriculture, and healthcare facilities, but the deficit of knowledge concerning Trichoderma infections makes patient treatment difficult. These issues are compounded by isolates that present profiles which exhibit high minimum inhibitory concentration values to available antifungal drugs. The aim of this review is to present the global distribution and sources of infections that affect both immunocompetent and immunocompromised hosts, clinical features, therapeutic strategies that are used to treat patients, as well as highlighting treatments with the best responses. In addition, the antifungal susceptibility profiles of Trichoderma isolates that have emerged in recent decades were examined and which antifungal drugs need to be further evaluated as potential candidates to treat Trichoderma infections are also indicated.
Collapse
Affiliation(s)
- Uener Ribeiro Dos Santos
- Immunobiology Laboratory, Department of Biological Science, State University of Santa Cruz, Ilhéus, BA, Brazil
| | - Jane Lima Dos Santos
- Immunobiology Laboratory, Department of Biological Science, State University of Santa Cruz, Ilhéus, BA, Brazil
| |
Collapse
|
5
|
Salicylic Acid Treatment Alleviates the Heat Stress Response by Reducing the Intracellular ROS Level and Increasing the Cytosolic Trehalose Content in Pleurotus ostreatus. Microbiol Spectr 2023; 11:e0311322. [PMID: 36507658 PMCID: PMC9927586 DOI: 10.1128/spectrum.03113-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pleurotus ostreatus is usually cultivated in horticultural facilities that lack environmental control systems and often suffer heat stress (HS). Salicylic acid (SA) is recognized as a plant defense-related hormone. Here, SA treatment (200 μM) induced fungal resistance to HS of P. ostreatus, with decreased malondialdehyde (MDA) content and HSP expression. Further analysis showed that SA treatment in P. ostreatus increased the cytosolic trehalose content and reduced the intracellular reactive oxygen species (ROS) level. Moreover, H2O2 could restore the MDA content and HSP expression of P. ostreatus treated with SA under HS. In addition, trehalose (25 mM) or CaCl2 (5 mM) treatment induced fungal resistance to HS, and CaCl2 treatment increased the cytosolic trehalose content of P. ostreatus under HS. However, inhibiting Ca2+ levels using Ca2+ inhibitors or mutants reversed the trehalose content induced by SA in P. ostreatus under HS. In addition, inhibiting trehalose biosynthesis using Tps-silenced strains reversed the MDA content and HSP expression of P. ostreatus treated with SA under HS. Taken together, these results indicate that SA treatment alleviates the HS response of P. ostreatus by reducing the intracellular ROS level and increasing the cytosolic trehalose content. IMPORTANCE Heat stress (HS) is a crucial environmental challenge for edible fungi. Salicylic acid (SA), a plant defense-related hormone, plays key roles in plant responses to biotic and abiotic stresses. In this study, we found that SA treatment increased the cytosolic trehalose content and induced fungal resistance to HS in P. ostreatus. Further analysis showed that SA can alleviate the HS of P. ostreatus by reducing the intracellular ROS level and increasing the cytosolic trehalose content. Our results help to understand the mechanism underlying the responses of P. ostreatus to HS. In addition, this research provides new insights for the cultivation of P. ostreatus.
Collapse
|
6
|
Li Z, Zhang S, Xue J, Mu B, Song H, Liu Y. Exogenous Melatonin Treatment Induces Disease Resistance against Botrytis cinerea on Post-Harvest Grapes by Activating Defence Responses. Foods 2022; 11:foods11152231. [PMID: 35953999 PMCID: PMC9367934 DOI: 10.3390/foods11152231] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 12/03/2022] Open
Abstract
Botrytis cinerea seriously affects the value of post-harvest grapes. Melatonin can act as an exogenous regulator in the resistance of exogenous pathogens due to its antioxidant activity. An artificial inoculation trial was conducted to research the induced resistance mechanism of melatonin treatment using the table grape “Muscat Hamburg” (Vitis vinifera L. cv). Grapes were immersed with 0.02, 0.2, and 2 mmol/L melatonin, followed by B. cinerea suspension injections after 48 h. The results showed that the mycelial growth and spore germination of B. cinerea was not significantly inhibited by melatonin at different concentrations (0.02–2 mmol/L). However, post-harvest melatonin treatment inhibited the increase of disease incidence and severity of grey mould, induced the synthesis and accumulation of total phenols and flavonoids, reduced malondialdehyde generation, and inhibited an increase in cell membrane permeability. Meanwhile, defensive enzyme activities, including superoxide dismutase (SOD), peroxidize (POD), catalase (CAT), phenylalanine ammonia-lyase (PAL), polyphenol oxidase (PPO), chitinase (CHI), and β-1,3-glucanase, were significantly increased in fruits treated with exogenous melatonin. These results suggested that exogenous melatonin treatment could activate defence responses to combat the infection of B. cinerea in post-harvest grapes.
Collapse
Affiliation(s)
- Zezhen Li
- College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (Z.L.); (J.X.); (B.M.)
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (H.S.); (Y.L.)
| | - Shujuan Zhang
- College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (Z.L.); (J.X.); (B.M.)
- Correspondence: ; Tel.: +86-139-3549-1091
| | - Jianxin Xue
- College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (Z.L.); (J.X.); (B.M.)
| | - Bingyu Mu
- College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (Z.L.); (J.X.); (B.M.)
| | - Hong Song
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (H.S.); (Y.L.)
| | - Yanping Liu
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (H.S.); (Y.L.)
| |
Collapse
|
7
|
Phylogenetic Analysis of Trichoderma Species Associated with Green Mold Disease on Mushrooms and Two New Pathogens on Ganoderma sichuanense. J Fungi (Basel) 2022; 8:jof8070704. [PMID: 35887460 PMCID: PMC9318549 DOI: 10.3390/jof8070704] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022] Open
Abstract
Edible and medicinal mushrooms are extensively cultivated and commercially consumed around the world. However, green mold disease (causal agent, Trichoderma spp.) has resulted in severe crop losses on mushroom farms worldwide in recent years and has become an obstacle to the development of the Ganoderma industry in China. In this study, a new species and a new fungal pathogen on Ganoderma sichuanense fruitbodies were identified based on the morphological characteristics and phylogenetic analysis of two genes, the translation elongation factor 1-α (TEF1) and the second-largest subunit of RNA polymerase II (RPB2) genes. The new species, Trichoderma ganodermatigerum sp. nov., belongs to the Harzianum clade, and the new fungal pathogen was identified as Trichoderma koningiopsis. Furthermore, in order to better understand the interaction between Trichoderma and mushrooms, as well as the potential biocontrol value of pathogenic Trichoderma, we summarized the Trichoderma species and their mushroom hosts as best as possible, and the phylogenetic relationships within mushroom pathogenic Trichoderma species were discussed.
Collapse
|
8
|
Di Marco S, Metruccio EG, Moretti S, Nocentini M, Carella G, Pacetti A, Battiston E, Osti F, Mugnai L. Activity of Trichoderma asperellum Strain ICC 012 and Trichoderma gamsii Strain ICC 080 Toward Diseases of Esca Complex and Associated Pathogens. Front Microbiol 2022; 12:813410. [PMID: 35154039 PMCID: PMC8831765 DOI: 10.3389/fmicb.2021.813410] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/16/2021] [Indexed: 01/19/2023] Open
Abstract
Grapevine trunk diseases are widespread in all grape-growing countries. The diseases included in the Esca complex of diseases are particularly common in European vineyards. Their distinctive foliar symptoms are well known to be associated not only with losses in quantity, as with all grapevine wood diseases, but also with losses in the quality of the crop. Protection of pruning wounds is known to reduce infections in artificial inoculations and, to some extent, reduce the external leaf symptoms. The application of biological control agents in the field is typically started at the first appearance of symptoms. In this article, the two strains belonging to two different species, Trichoderma asperellum ICC 012 and T. gamsii ICC 080, which are present in a commercial formulation, were tested in vitro, in vivo in artificial inoculation, and in the field in long-term experiments where the wounds on four young asymptomatic vineyards were protected since 1 or 2 years after planting. The in vitro trials highlighted the different temperature requirements of the two strains, the direct mycoparasitizing activity of T. asperellum, and the indirect activity shown by both Trichoderma strains. The in vivo trials confirmed the ability of the two strains to reduce the colonization following artificial inoculations with the high, unnatural concentration of spores used in artificial infections, even if with variable efficacy, and with long persistence as they could be reisolated 7 months post-application. The preventive applications carried out over 9 years showed a very high reduction in symptom development in the treated vines, on annual and cumulated incidence and on the death of vines, with disease reduction varying from 66 to almost 90%. Early and annual application of protection to the pruning wounds appears to be the best method for reducing damages caused by grapevine leaf stripe disease (a disease of the Esca complex of diseases). Trichoderma appears to offer an efficient, environmentally friendly, and long-lasting protection in the presence of a natural inoculum concentration.
Collapse
Affiliation(s)
- Stefano Di Marco
- Institute of BioEconomy, National Research Council, Bologna, Italy
| | | | - Samuele Moretti
- Plant Pathology and Entomology Section, Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), University of Florence, Florence, Italy
- *Correspondence: Samuele Moretti,
| | - Marco Nocentini
- Plant Pathology and Entomology Section, Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), University of Florence, Florence, Italy
| | - Giuseppe Carella
- Plant Pathology and Entomology Section, Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), University of Florence, Florence, Italy
| | - Andrea Pacetti
- Plant Pathology and Entomology Section, Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), University of Florence, Florence, Italy
| | - Enrico Battiston
- Plant Pathology and Entomology Section, Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), University of Florence, Florence, Italy
| | - Fabio Osti
- Institute of BioEconomy, National Research Council, Bologna, Italy
- Fabio Osti,
| | - Laura Mugnai
- Plant Pathology and Entomology Section, Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), University of Florence, Florence, Italy
| |
Collapse
|
9
|
da Silveira AA, Andrade JSP, Guissoni ACP, da Costa AC, de Carvalho E Silva A, da Silva HG, Brito P, de Souza GRL, Fernandes KF. Larvicidal potential of cell wall degrading enzymes from Trichoderma asperellum against Aedes aegypti (Diptera: Culicidae). Biotechnol Prog 2021; 37:e3182. [PMID: 34115926 DOI: 10.1002/btpr.3182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/14/2021] [Accepted: 06/01/2021] [Indexed: 11/06/2022]
Abstract
Aedes aegypti is a mosquito vector of arboviruses such as dengue, chikungunya, zika and yellow fever that cause important public health diseases. The incidence and gravity of these diseases justifies the search for effective measures to reduce the presence of this vector in the environment. Bioinsecticides are an effective alternative method for insect control, with added ecological benefits such as biodegradability. The current study demonstrates that a chitinolytic enzyme complex produced by the fungus Trichoderma asperellum can disrupt cuticle formation in the L3 larvae phase of A. aegypti, suggesting such biolarvicidal action could be used for mosquito control. T. asperellum was exposed to chitin from different sources. This induction of cell wall degrading enzymes, including chitinase, N-acetylglucosaminidase and β-1,3-glucanase. Groups of 20 L3 larvae of A. aegypti were exposed to varying concentrations of chitinolytic enzymes induced with commercial chitin (CWDE) and larvae cell wall degrading enzymes (L-CWDE). After 72 h of exposure to the CWDE, 100% of larvae were killed. The same percent mortality was observed after 48 h of exposure to L-CWDE at half the CWDE enzyme mixture concentration. Exoskeleton deterioration was further observed by scanning and electron microscopy. Our findings indicate that L-CWDE produced by T. asperellum reflect chitinolytic enzymes with greater specificity for L3 larval biomolecules. This specificity is characterized by the high percentage of mortality compared with CWDE treatments and also by abrupt changes in patterns of the cellular structures visualized by scanning and transmission electron microscopy. These mixtures of chitinolytic enzymes could be candidates, as adjuvant or synergistic molecules, to replace conventional chemical insecticides currently in use.
Collapse
Affiliation(s)
- Alexsander Augusto da Silveira
- Laboratório de Química de Polímeros (LQP) - ICB2, Universidade Federal de Goiás, Goiânia, Brazil.,Faculdade Estácio de Sá de Goiás - FESGO, Goiânia, Brazil
| | - Jackeline Santana Paula Andrade
- Laboratório de Química de Polímeros (LQP) - ICB2, Universidade Federal de Goiás, Goiânia, Brazil.,Faculdade Estácio de Sá de Goiás - FESGO, Goiânia, Brazil
| | | | | | | | | | - Pedro Brito
- IPTSP - Universidade Federal de Goiás, Goiânia, Brazil
| | | | - Kátia Flávia Fernandes
- Laboratório de Química de Polímeros (LQP) - ICB2, Universidade Federal de Goiás, Goiânia, Brazil
| |
Collapse
|
10
|
Hewedy OA, Abdel Lateif KS, Seleiman MF, Shami A, Albarakaty FM, M. El-Meihy R. Phylogenetic Diversity of Trichoderma Strains and Their Antagonistic Potential against Soil-Borne Pathogens under Stress Conditions. BIOLOGY 2020; 9:E189. [PMID: 32718102 PMCID: PMC7466124 DOI: 10.3390/biology9080189] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/19/2022]
Abstract
Trichoderma species are known as excellent biocontrol agents against soil-borne pathogens that cause considerable crop losses. Eight strains of Trichoderma were isolated from five Egyptian regions. They identified based on translation elongation factor-1α (TEF1) sequencing as four different Trichoderma species: Trichoderma asperellum, Trichoderma harzianum, Trichoderma viride, and Trichoderma longibrachiatum. Optimal growth conditions (temperature and media), and the phosphate solubilization capability of Trichoderma strains were evaluated in vitro. Further, the ability of these strains to antagonize Fusarium solani, Macrophomina phaseolina, and Fusarium graminearum was also evaluated. The results revealed that Trichoderma harzianum (Th6) exhibited the highest antagonistic ability against F. solani, M. phaseolina and F. graminearum with inhibition rates of 71.42%, 72.97%, and 84.61%, respectively. Trichoderma viride (Tv8) exhibited the lowest antagonism against the same pathogens with inhibition rates of 50%, 64% and 69.23%, respectively. Simple-sequence repeats (SSRs) and random amplified polymorphic DNA (RAPD) markers were used to evaluate the genetic variability of the Trichoderma strains. The results revealed that of 45 RAPD amplified bands, 36 bands (80%) were polymorphic and of SSRs amplified 36 bands, 31 bands (86.11%) were polymorphic. The amplification of calmodulin and β-1,3-endoglucanase was noted at 500 bp and 230 bp, respectively. Data indicated that T. viride (Tv8) had the highest phosphate solubilization index (10.0 mm), while T. harzianum (Th6) had the lowest phosphate solubilization index (4.0 mm). In conclusion, T. harzianum (Th6) had the highest antagonistic activity in dual culture assay along with the growth rate; while T. viride (Tv8) had the highest phosphate solubilization activity. There are still gaps in obtaining new formulations, selecting potent Trichoderma strains to confirm disease control in planta. For improving Trichoderma recommendation in the organic agricultural system and sustaining the fertility of the soil, the field application of highly antagonistic biocontrol agents in different types of soil and plant species will be the first approach toward bio-pesticide treatments along with bio-fertilizer inoculation. Furthermore, secondary metabolites will be investigated for the most promising strains with the combination of different pathogens and application timing.
Collapse
Affiliation(s)
- Omar A. Hewedy
- Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
- Department of Genetics, Faculty of Agriculture, Menoufia University, Shibin El-Kom 32514, Egypt;
| | - Khalid S. Abdel Lateif
- Department of Genetics, Faculty of Agriculture, Menoufia University, Shibin El-Kom 32514, Egypt;
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Mahmoud F. Seleiman
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Department of Crop Sciences, Faculty of Agriculture, Menoufia University, Shibin El-kom 32514, Egypt
| | - Ashwag Shami
- Biology Department, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11617, Saudi Arabia; (A.S.); (F.M.A.)
| | - Fawziah M. Albarakaty
- Biology Department, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11617, Saudi Arabia; (A.S.); (F.M.A.)
- Department of Biology, College of Applied Sciences, Umm AlQura University, Makkah Al Moukarramh 21955, Saudi Arabia
| | - Rasha M. El-Meihy
- Department of Agricultural Microbiology, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
11
|
Kosanovic D, Grogan H, Kavanagh K. Exposure of Agaricus bisporus to Trichoderma aggressivum f. europaeum leads to growth inhibition and induction of an oxidative stress response. Fungal Biol 2020; 124:814-820. [PMID: 32883431 DOI: 10.1016/j.funbio.2020.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/06/2020] [Accepted: 07/05/2020] [Indexed: 12/27/2022]
Abstract
Green mould disease of mushroom, Agaricus bisporus,is caused by Trichodermaspecies and can result in substantial crop losses.Label free proteomic analysis of changes in the abundance of A. bisporusproteins following exposure to T. aggressivumsupernatantin vitroindicated increased abundance of proteins associated with an oxidative stress response (zinc ion binding (+6.6 fold); peroxidase activity (5.3-fold); carboxylic ester hydrolase (+2.4 fold); dipeptidase (+3.2 fold); [2Fe-2S] cluster assembly (+3.3 fold)). Proteins that decreased in relative abundance were associated with growth: structural constituent of ribosome, translation (-12 fold), deadenylation-dependent decapping of nuclear-transcribed mRNA (-3.4 fold), and small GTPase mediated signal transduction (-2.6 fold). In vivoanalysis revealed that 10-4 T. aggressivuminoculum decreased the mushroom yield by 29% to 56% and 10-3 T. aggressivuminoculum decreased the mushroom yield by 68% to 100%. Proteins that increased in abundance in A. bisporusin vivofollowing exposure to T. aggressivumindicated an oxidative stress response and included proteins with pyruvate kinase activity (+2.6 fold) and hydrolase activity (+2.1 fold)). The results indicate that exposure of A. bisporusmycelium to T. aggressivum in vitroand in vivoresulted in an oxidative stress response and reduction in growth.
Collapse
Affiliation(s)
- Dejana Kosanovic
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Helen Grogan
- Teagasc, Horticulture Development Department, Ashtown Research Centre, Dublin 15, Ireland
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
12
|
Yan Z, Wu X, Zhao M, Zhang J. Lactic acid accumulation under heat stress related to accelerated glycolysis and mitochondrial dysfunction inhibits the mycelial growth of Pleurotus ostreatus. Appl Microbiol Biotechnol 2020; 104:6767-6777. [PMID: 32533305 DOI: 10.1007/s00253-020-10718-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/19/2020] [Accepted: 06/01/2020] [Indexed: 01/28/2023]
Abstract
High temperature is a major threat to Pleurotus ostreatus cultivation. In this study, a potential mechanism by which P. ostreatus mycelia growth is inhibited under heat stress was explored. Lactate, as a microbial fermentation product, was found unexpectedly in the mycelia of P. ostreatus under heat stress, and the time-dependent accumulation and corresponding inhibitory effect of lactate on mycelial growth was further confirmed. The addition of a glycolysis inhibitor, 2-deoxy-D-glucose (2DG), reduced the lactate content in mycelia and slightly restored mycelial growth under high-temperature conditions, which indicated the accumulation of lactate can be inhibited by glycolysis inhibition. Further data revealed mitochondrial dysfunction under high-temperature conditions, with evidence of decreased oxygen consumption and adenosine triphosphate (ATP) synthesis and increased reactive oxygen species (ROS). The removal of ROS with ascorbic acid decreased the lactate content, and mycelial growth recovered to a certain extent, indicating lactate accumulation could be affected by the mitochondrial ROS. Moreover, metabolic data showed that glycolysis and the tricarboxylic acid cycle were enhanced. This study reported the accumulation of lactate in P. ostreatus mycelia under heat stress and the inhibitory effect of lactate on the growth of mycelia, which might provide further insights into the stress response mechanism of edible fungi. Key Points • Lactate can accumulate in Pleurotus ostreatus mycelia under heat stress and inhibit its growth. • The accumulation of lactate may be due to the acceleration of glycolysis and the dysfunction of mitochondria of P. ostreatus mycelia under high-temperature stress. • The glycolysis and tricarboxylic acid cycle of P. ostreatus mycelia were accelerated under high-temperature stress.
Collapse
Affiliation(s)
- Zhiyu Yan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Xiangli Wu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Mengran Zhao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Jinxia Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China. .,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| |
Collapse
|
13
|
Hou Z, Chen Q, Zhao M, Huang C, Wu X. Genome-wide characterization of the Zn(II) 2Cys 6 zinc cluster-encoding gene family in Pleurotus ostreatus and expression analyses of this family during developmental stages and under heat stress. PeerJ 2020; 8:e9336. [PMID: 32566411 PMCID: PMC7295025 DOI: 10.7717/peerj.9336] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
Pleurotus ostreatus is one of the most widely cultivated mushrooms in China. The regulatory mechanisms of fruiting body formation and the response to heat stress in P. ostreatus are main research focuses. The Zn(II)2Cys6 family is one of the largest families of transcriptional factors and plays important roles in multiple biological processes in fungi. In this study, we identified 66 zinc cluster proteins in P. ostreatus (PoZCPs) through a genome-wide search. The PoZCPs were classified into 15 types according to their zinc cluster domain. Physical and chemical property analyses showed a huge diversity among the PoZCPs. Phylogenetic analysis of PoZCPs classified these proteins into six groups and conserved motif combinations and similar gene structures were observed in each group. The expression profiles of these PoZCP genes during different developmental stages and under heat stress were further investigated by RNA-sequencing (RNA-seq), revealing diverse expression patterns. A total of 13 PoZCPs that may participate in development or the heat stress response were selected for validation of their expression levels through real-time quantitative PCR (RT-qPCR) analysis, and some developmental stage-specific and heat stress-responsive candidates were identified. The findings contribute to our understanding of the roles and regulatory mechanisms of ZCPs in P. ostreatus.
Collapse
Affiliation(s)
- Zhihao Hou
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Qiang Chen
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Mengran Zhao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Chenyang Huang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiangli Wu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
14
|
Wang G, Luo Y, Wang C, Zhou Y, Mou C, Kang H, Xiao Y, Bian Y, Gong YH. Hsp40 Protein LeDnaJ07 Enhances the Thermotolerance of Lentinula edodes and Regulates IAA Biosynthesis by Interacting LetrpE. Front Microbiol 2020; 11:707. [PMID: 32362887 PMCID: PMC7180325 DOI: 10.3389/fmicb.2020.00707] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/26/2020] [Indexed: 11/21/2022] Open
Abstract
Our previous study found that LeDnaJ07 RNAi decreased Lentinula edodes resistance to heat stress and Trichoderma atroviride infection. In this study, the structure and function of the LeDnaJ07 gene was analyzed by gene cloning and overexpression in L. edodes stress-sensitive strain YS55 via the Agrobacterium-mediated transformation method. Transformants were confirmed by qRT-PCR, fluorescence observation and Southern blotting. Overexpression of LeDnaJ07 in YS55 not only enhanced L. edodes mycelial resistance to heat stress but also facilitated mycelial growth. In the presence of heat stress, the intracellular IAA content showed a significant increase in the two LeDnaJ07 overexpression strains but only a slight change in the YS55 wild type strain. Moreover, the interaction between LeDnaJ07 and LetrpE was demonstrated via Y2H and BiFC assays. These results suggested that LeDnaJ07 may be involved in regulating IAA biosynthesis and the resistance of L. edodes to heat stresses via interacting with LetrpE.
Collapse
Affiliation(s)
- Gangzheng Wang
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Yi Luo
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chen Wang
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yan Zhou
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chunye Mou
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Heng Kang
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yang Xiao
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yinbing Bian
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yu Hua Gong
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
15
|
Yan Z, Zhao M, Wu X, Zhang J. Metabolic Response of Pleurotus ostreatus to Continuous Heat Stress. Front Microbiol 2020; 10:3148. [PMID: 32038581 PMCID: PMC6990131 DOI: 10.3389/fmicb.2019.03148] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/29/2019] [Indexed: 11/13/2022] Open
Abstract
Heat stress seriously threatens the growth of Pleurotus ostreatus. Various studies have been performed to study the resistance of P. ostreatus to heat stress. Here, the metabolome was evaluated to determine the response of P. ostreatus mycelia to heat stress at different times (6, 12, 24, 48 h). More than 70 differential metabolites were detected and enriched in their metabolic pathways. Dynamic metabolites changes in enrichment pathways under heat stress showed that heat stress enhanced the degradation of unsaturated fatty acids and nucleotides, increased the content of amino acids and vitamins, and accelerated glycolysis and the tricarboxylic acid cycle in P. ostreatus. The time course changes of P. ostreatus metabolites under continuous heat stress demonstrated that amino acids continuously changed with heat stress, nucleotides clearly changed with heat stress at 12 and 48 h, and lipids exhibited an increasing trend with prolonged heat stress, while few types saccharides and vitamins changed under heat stress. Additionally, heat-treated P. ostreatus produced salicylic acid and other stress-resistant substances that were reported in plants. This study first reported the metabolites changes in P. ostreatus mycelia during 48 h of heat stress. The metabolic pathways and substances that changed with heat stress in this research will aid future studies on the resistance of P. ostreatus and other edible fungi to heat stress.
Collapse
Affiliation(s)
- Zhiyu Yan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Mengran Zhao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiangli Wu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jinxia Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
16
|
Hou L, Wang L, Wu X, Gao W, Zhang J, Huang C. Expression patterns of two pal genes of Pleurotus ostreatus across developmental stages and under heat stress. BMC Microbiol 2019; 19:231. [PMID: 31655558 PMCID: PMC6815457 DOI: 10.1186/s12866-019-1594-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 09/10/2019] [Indexed: 12/03/2022] Open
Abstract
Background Phenylalanine ammonia-lyase (PAL, EC 4.3.1.24) is the first key enzyme in the phenylpropanoid pathway. The pal gene has been widely studied in plants and participates in plant growth, development and defense systems. However, in Pleurotus ostreatus, the biological functions of pal during organismal development and exposure to abiotic stress have not been reported. Results In this study, we cloned and characterized the pal1 (2232 bp) and pal2 (2244 bp) genes from the basidiomycete P. ostreatus CCMSSC 00389. The pal1 and pal2 genes are interrupted by 6 and 10 introns, respectively, and encode proteins of 743 and 747 amino acids, respectively. Furthermore, prokaryotic expression experiments showed that PAL enzymes catalyzed the conversion of L-phenylalanine to trans-cinnamic acid. The function of pal1 and pal2 was determined by constructing overexpression (OE) and RNA interference (RNAi) strains. The results showed that the two pal genes had similar expression patterns during different developmental stages. The expression of pal genes was higher in the reproductive growth stage than in the vegetative growth stage. And the interference of pal1 and pal2 delayed the formation of primordia. The results of heat stress assays showed that the RNAi-pal1 strains had enhanced mycelial tolerance to high temperature, while the RNAi-pal2 strains had enhanced mycelial resistance to H2O2. Conclusions These results indicate that two pal genes may play a similar role in the development of P. ostreatus fruiting bodies, but may alleviate stress through different regulatory pathways under heat stress.
Collapse
Affiliation(s)
- Ludan Hou
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Lining Wang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xiangli Wu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Wei Gao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Jinxia Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Chenyang Huang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China. .,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, 12 Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
17
|
Liu Z, Li M, Yan P, Zhu Z, Liao L, Chen Q, Luo Y, Li H, Li J, Wang Q, Huang Y, Wu Y. Transcriptome analysis of the effects of Hericium erinaceus polysaccharide on the lymphocyte homing in Muscovy duck reovirus-infected ducklings. Int J Biol Macromol 2019; 140:697-708. [PMID: 31422190 DOI: 10.1016/j.ijbiomac.2019.08.130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/11/2019] [Accepted: 08/14/2019] [Indexed: 01/15/2023]
Abstract
Hericium erinaceus polysaccharide (HEP) is a bioactive substance present in the fruiting bodies of H. erinaceus. Previously we have shown that HEP can repair the intestinal injury caused by Muscovy duck reovirus (MDRV) infection in Muscovy ducklings. To examine the effect of HEP on intestine mucosal MDRV immunity and explore its possible mechanisms, an MDRV contact-infection model in the Muscovy ducklings was established. Transcriptome sequencing analysis was then performed to investigate the mechanism of action of HEP on intestine mucosal MDRV immunity. During the infection, the expression levels of genes involved in cellular activities (protein translation and binding, cytokine interaction, and adhesion molecules activities) in the infected ducklings were increased. The expression levels of adhesion molecules (α4β7, LFA-1) and chemotaxis cytokine receptors (CCR7, CCR9, and CCR10) were also significantly upregulated. Following HEP treatment, cellular activities and cytokines upregulated to various degrees play crucial roles in the immune defenses and antiviral activities of Muscovy ducklings. ELISA analysis results were consistent with the results of the transcriptome analysis. Overall, our results provide a basis for further studying the underlying mechanisms of HEP in regulating mucosal immunity and for the clinical application of HEP in controlling MDRV infection in the Muscovy duck industry.
Collapse
Affiliation(s)
- Zhenni Liu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China; Ganzhou Animal Husbandry Research Institute, Gannan Academy of Sciences, Ganzhou, 341000, People's Republic of China
| | - Minghui Li
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China
| | - Ping Yan
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China
| | - Zheng Zhu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China
| | - Lvyan Liao
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China; Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agricultural and Forestry University, Fuzhou 350002, People's Republic of China
| | - Qiang Chen
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China
| | - Yu Luo
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China
| | - Hongwen Li
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China
| | - Jian Li
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China; Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agricultural and Forestry University, Fuzhou 350002, People's Republic of China
| | - Quanxi Wang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China; Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agricultural and Forestry University, Fuzhou 350002, People's Republic of China
| | - Yifan Huang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China; Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agricultural and Forestry University, Fuzhou 350002, People's Republic of China
| | - Yijian Wu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China; Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agricultural and Forestry University, Fuzhou 350002, People's Republic of China.
| |
Collapse
|
18
|
High temperature induced disruption of the cell wall integrity and structure in Pleurotus ostreatus mycelia. Appl Microbiol Biotechnol 2018; 102:6627-6636. [PMID: 29846777 DOI: 10.1007/s00253-018-9090-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 10/16/2022]
Abstract
Fungal cells are surrounded by a tight cell wall to protect them from harmful environmental conditions and to resist lysis. The synthesis and assembly determine the shape, structure, and integrity of the cell wall during the process of mycelial growth and development. High temperature is an important abiotic stress, which affects the synthesis and assembly of cell walls. In the present study, the chitin and β-1,3-glucan concentrations in the cell wall of Pleurotus ostreatus mycelia were changed after high-temperature treatment. Significantly higher chitin and β-1,3-glucan concentrations were detected at 36 °C than those incubated at 28 °C. With the increased temperature, many aberrant chitin deposition patches occurred, and the distribution of chitin in the cell wall was uneven. Moreover, high temperature disrupts the cell wall integrity, and P. ostreatus mycelia became hypersensitive to cell wall-perturbing agents at 36 °C. The cell wall structure tended to shrink or distorted after high temperature. The cell walls were observed to be thicker and looser by using transmission electron microscopy. High temperature can decrease the mannose content in the cell wall and increase the relative cell wall porosity. According to infrared absorption spectrum, high temperature broke or decreased the glycosidic linkages. Finally, P. ostreatus mycelial cell wall was easily degraded by lysing enzymes after high-temperature treatment. In other words, the cell wall destruction caused by high temperature may be a breakthrough for P. ostreatus to be easily infected by Trichoderma.
Collapse
|
19
|
Qiu Z, Wu X, Zhang J, Huang C. High-Temperature Induced Changes of Extracellular Metabolites in Pleurotus ostreatus and Their Positive Effects on the Growth of Trichoderma asperellum. Front Microbiol 2018; 9:10. [PMID: 29403462 PMCID: PMC5780403 DOI: 10.3389/fmicb.2018.00010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/05/2018] [Indexed: 12/30/2022] Open
Abstract
Pleurotus ostreatus is a widely cultivated edible fungus in China. Green mold disease of P. ostreatus which can seriously affect yield is a common disease during cultivation. It occurs mostly after P. ostreatus mycelia have been subjected to high temperatures. However, little information is available on the relationship between high temperature and green mold disease. The aim of this study is to prove that extracellular metabolites of P. ostreatus affected by high temperature can promote the growth of Trichoderma asperellum. After P. ostreatus mycelia was subjected to high temperature, the extracellular fluid of P. ostreatus showed a higher promoting effect on mycelial growth and conidial germination of T. asperellum. The thiobarbituric acid reactive substance (TBARS) content reached the maximum after 48 h at 36°C. A comprehensive metabolite profiling strategy involving gas chromatography-mass spectrometry (GC/MS) combined with liquid chromatography-mass spectrometry (LC/MS) was used to analyze the changes of extracellular metabolites in response to high temperature. A total of 141 differential metabolites were identified, including 84.4% up-regulated and 15.6% down-regulated. Exogenous metabolites whose concentrations were increased after high temperature were randomly selected, and nearly all of them were able to promote the mycelial growth and conidial germination of T. asperellum. The combination of all selected exogenous metabolites also has the promotion effects on the mycelial growth and conidial germination of T. asperellum in a given concentration range in vitro. Overall, these results provide a first view that high temperature affects the extracellular metabolites of P. ostreatus, and the extensive change in metabolites promotes T. asperellum growth.
Collapse
Affiliation(s)
- Zhiheng Qiu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China
| | - Xiangli Wu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China
| | - Jinxia Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China
| | - Chenyang Huang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China
| |
Collapse
|