1
|
Shayan N, Ghiyasimoghaddam N, Mirkatuli HA, Baghbani M, Ranjbarzadhagh Z, Mohtasham N. The biomarkers for maintenance Cancer stem cell features can be applicable in precision medicine of head and neck squamous cell carcinoma. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 125:101906. [PMID: 38688401 DOI: 10.1016/j.jormas.2024.101906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/30/2024] [Accepted: 04/27/2024] [Indexed: 05/02/2024]
Abstract
Cancer stem cells (CSCs) play a crucial role in tumor relapse, proliferation, invasion, and drug resistance in head and neck squamous cell carcinoma (HNSCC). This narrative review aims to synthesize data from articles published between 2019 and 2023 on biomarkers for detecting CSCs in HNSCC and changes in molecular pathways, genetics, epigenetics, and non-coding RNAs (ncRNAs) in CSCs relevant to precision medicine approaches in HNSCC management. The search encompassed 41 in vitro studies and 22 clinical studies. CSCs exhibit diverse molecular profiles and unique biomarker expression patterns, offering significant potential for HNSCC diagnosis, treatment, and prognosis, thereby enhancing patient survival. Their remarkable self-renewal ability and adaptability are closely linked to tumorigenicity development and maintenance. Assessing biomarkers before and after therapy can aid in identifying various cell types associated with cancer progression and relapse. Screening for CSCs, senescent tumor cells, and cells correlated with the senescence process post-treatment has proven highly beneficial. However, the clinical application of precision medicine in HNSCC management is hindered by the lack of specific and definitive CSC biomarkers. Furthermore, our limited understanding of CSC plasticity, governed by genomic, transcriptomic, and epigenomic alterations during tumorigenesis, as well as the bidirectional interaction of CSCs with the tumor microenvironment, underscores the need for further research. Well-designed studies involving large patient cohorts are, therefore, essential to establish a standardized protocol and address these unresolved queries.
Collapse
Affiliation(s)
- Navidreza Shayan
- Department of Medical Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Negin Ghiyasimoghaddam
- Department of Emergency Medicine, Bohlool Hospital, Gonabad University of Medical Sciences, Gonabad, Iran
| | | | | | - Zahra Ranjbarzadhagh
- Department of Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nooshin Mohtasham
- Oral and Maxillofacial Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Bizzoca ME, Caponio VCA, Lo Muzio L, Claudio PP, Cortese A. Methods for Overcoming Chemoresistance in Head and Neck Squamous Cell Carcinoma: Keeping the Focus on Cancer Stem Cells, a Systematic Review. Cancers (Basel) 2024; 16:3004. [PMID: 39272862 PMCID: PMC11394389 DOI: 10.3390/cancers16173004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
According to the "cancer stem cell" (CSCs) theory, tumors are a diverse and expanding group of malignant cells that originate from a small number of CSCs. Despite treatment, these cells can still become active and proliferate, which can result in distant metastasis and local recurrences. A new paradigm in cancer treatment involves targeting both CSCs and the cancer cells in a tumor. This review aims to examine the literature on methods published to overcome chemoresistance due to the presence of CSCs in head and neck cancers. The review was registered with PROSPERO (ID# CRD42024512809). After Pub Med, Scopus, and WoS database searches, 31 relevant articles on oral squamous cell carcinoma (OSCC) were selected. Compounds that increased chemosensitivity by targeting CSCs in head and neck squamous cell carcinoma (HNSCC) were divided into (1) natural products, (2) adjuvant molecules to traditional chemotherapy, and (3) CSCs targeting patient-specific fresh biopsies for functional precision medicine.
Collapse
Affiliation(s)
- Maria Eleonora Bizzoca
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | | | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Pier Paolo Claudio
- Department of Pharmacology and Toxicology, Cancer Center & Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Antonio Cortese
- Unit of Maxillofacial Surgery, Department of Medicine, Surgery, and Dentistry, University of Salerno, 84084 Salerno, Italy
| |
Collapse
|
3
|
Olmedo I, Martínez D, Carrasco-Rojas J, Jara JA. Mitochondria in oral cancer stem cells: Unraveling the potential drug targets for new and old drugs. Life Sci 2023; 331:122065. [PMID: 37659591 DOI: 10.1016/j.lfs.2023.122065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Head and neck cancer is a major health problem worldwide, with most cases arising in the oral cavity. Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer, accounting for over 90% of all cases. Compared to other types of cancer, OSCC, has the worse prognosis, with a 5-year survival rate of 50%. Additionally, OSCC is characterized by a high rate of resistance to chemotherapy treatment, which may be partly explained by the presence of cancer stem cells (CSC) subpopulation. CSC can adapt to harmful environmental condition and are highly resistant to both chemotherapy and radiotherapy treatments, thus contributing to tumor relapse. The aim of this review is to highlight the role of mitochondria in oral CSC as a potential target for oral cancer treatment. For this purpose, we reviewed some fundamental aspects of the most validated protein markers of stemness, autophagy, the mitochondrial function and energy metabolism in oral CSC. Moreover, a discussion will be made on why energy metabolism, especially oxidative phosphorylation in CSC, may offer such a diverse source of original pharmacological target for new drugs. Finally, we will describe some drugs able to disturb mitochondrial function, with emphasis on those aimed to interrupt the electron transport chain function, as novel therapeutic strategies in multidrug-resistant oral CSC. The reutilization of old drugs approved for clinical use as new antineoplastics, in cancer treatment, is also matter of revision.
Collapse
Affiliation(s)
- Ivonne Olmedo
- Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Daniela Martínez
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Javiera Carrasco-Rojas
- Center for Regenerative Medicine, School of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - José A Jara
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Santiago, Chile; Department of Toxicological and Pharmacological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
4
|
Herzog AE, Somayaji R, Nör JE. Bmi-1: A master regulator of head and neck cancer stemness. FRONTIERS IN ORAL HEALTH 2023; 4:1080255. [PMID: 36726797 PMCID: PMC9884974 DOI: 10.3389/froh.2023.1080255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/02/2023] [Indexed: 01/18/2023] Open
Abstract
Head and neck cancers are composed of a diverse group of malignancies, many of which exhibit an unacceptably low patient survival, high morbidity and poor treatment outcomes. The cancer stem cell (CSC) hypothesis provides an explanation for the substantial patient morbidity associated with treatment resistance and the high frequency of tumor recurrence/metastasis. Stem cells are a unique population of cells capable of recapitulating a heterogenous organ from a single cell, due to their capacity to self-renew and differentiate into progenitor cells. CSCs share these attributes, in addition to playing a pivotal role in cancer initiation and progression by means of their high tumorigenic potential. CSCs constitute only a small fraction of tumor cells but play a major role in tumor initiation and therapeutic evasion. The shift towards stem-like phenotype fuels many malignant features of a cancer cell and mediates resistance to conventional chemotherapy. Bmi-1 is a master regulator of stem cell self-renewal as part of the polycomb repressive complex 1 (PRC1) and has emerged as a prominent player in cancer stem cell biology. Bmi-1 expression is upregulated in CSCs, which is augmented by tumor-promoting factors and various conventional chemotherapies. Bmi-1+ CSCs mediate chemoresistance and metastasis. On the other hand, inhibiting Bmi-1 rescinds CSC function and re-sensitizes cancer cells to chemotherapy. Therefore, elucidating the functional role of Bmi-1 in CSC-mediated cancer progression may unveil an attractive target for mechanism-based, developmental therapeutics. In this review, we discuss the parallels in the role of Bmi-1 in stem cell biology of health and disease and explore how this can be leveraged to advance clinical treatment strategies for head and neck cancer.
Collapse
Affiliation(s)
- Alexandra E. Herzog
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Ritu Somayaji
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Jacques E. Nör
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States,Department of Otolaryngology – Head and Neck Surgery, University of Michigan Medical School; Ann Arbor, MI, United States,Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, United States,Universityof Michigan Rogel Cancer Center, Ann Arbor, MI, United States
| |
Collapse
|
5
|
Siqueira JM, Heguedusch D, Rodini CO, Nunes FD, Rodrigues MFSD. Mechanisms involved in cancer stem cell resistance in head and neck squamous cell carcinoma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:116-137. [PMID: 37065869 PMCID: PMC10099599 DOI: 10.20517/cdr.2022.107] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/04/2023] [Accepted: 02/08/2023] [Indexed: 04/18/2023]
Abstract
Despite scientific advances in the Oncology field, cancer remains a leading cause of death worldwide. Molecular and cellular heterogeneity of head and neck squamous cell carcinoma (HNSCC) is a significant contributor to the unpredictability of the clinical response and failure in cancer treatment. Cancer stem cells (CSCs) are recognized as a subpopulation of tumor cells that can drive and maintain tumorigenesis and metastasis, leading to poor prognosis in different types of cancer. CSCs exhibit a high level of plasticity, quickly adapting to the tumor microenvironment changes, and are intrinsically resistant to current chemo and radiotherapies. The mechanisms of CSC-mediated therapy resistance are not fully understood. However, they include different strategies used by CSCs to overcome challenges imposed by treatment, such as activation of DNA repair system, anti-apoptotic mechanisms, acquisition of quiescent state and Epithelial-mesenchymal transition, increased drug efflux capacity, hypoxic environment, protection by the CSC niche, overexpression of stemness related genes, and immune surveillance. Complete elimination of CSCs seems to be the main target for achieving tumor control and improving overall survival for cancer patients. This review will focus on the multi-factorial mechanisms by which CSCs are resistant to radiotherapy and chemotherapy in HNSCC, supporting the use of possible strategies to overcome therapy failure.
Collapse
Affiliation(s)
- Juliana Mota Siqueira
- Department of Stomatology, Discipline of Oral and Maxillofacial Pathology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Daniele Heguedusch
- Department of Stomatology, Discipline of Oral and Maxillofacial Pathology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Camila Oliveira Rodini
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo 17012-230, Brazil
| | - Fabio Daumas Nunes
- Department of Stomatology, Discipline of Oral and Maxillofacial Pathology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Maria Fernanda Setúbal Destro Rodrigues
- Biophotonics Applied to Health Sciences, Nove de Julho University, UNINOVE, São Paulo 01504-001, Brazil
- Correspondence to: PhD. Maria Fernanda Setúbal Destro Rodrigues. Biophotonics Applied to Health Sciences, Nove de Julho University, UNINOVE, Rua Vergueiro, 235/249 - Liberdade, São Paulo 01504-001, Brazil. E-mail:
| |
Collapse
|
6
|
Liu YT, Yu CC, Lu MY, Chao SC, Liao YW, Yu CH, Lee YH. miR-146a participates in the regulation of cancer stemness of oral carcinoma cells. J Dent Sci 2022; 18:503-509. [PMID: 37021226 PMCID: PMC10068381 DOI: 10.1016/j.jds.2022.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/01/2022] [Indexed: 12/09/2022] Open
Abstract
Background/purpose Increasing evidence regarded the existence of cancer stem cells (CSCs) as a leading cause of therapy failure and tumor relapse due to their self-renewal and differentiation abilities. Although ectopic overexpression of micro-RNAs (miRNAs) can modulate the cancer stemness and tumor development in oral cancer, their molecular mechanism is still unclear. Therefore, in the present study, we attempt to uncover the role of miR-146a in the maintenance of oral CSCs. Materials and methods The expression of miR-146a was determined using qRT-PCR analysis. Aldehyde dehydrogenase (ALDH) enzymic activity and sphere formation assays were used to evaluate the cancer stemness and self-renewal, respectively. Functional assays, including migration/invasion Transwell and colony formation assay, were used to evaluate the aggressive abilities. Luciferase reporter assay was performed to validate the relationship between miR-146a and Numb. Results In the present study, we reported an increased expression of miR-146a in the oral squamous cell carcinoma (OSCC) specimen, primary OSCC cells sphere, and high ALDH1 activity population within OSCC cells. Inhibition of miR-146a significantly suppressed the ALDH1 activity, self-renewal capacity, and aggressive abilities, including migration, invasion, and colony formation. Moreover, we demonstrated that Numb is a functional target of miR-146a in OSCC-CSCs. Notably, silencing of Numb could retrieve the self-renewal and migration impaired by knockdown of miR-146a. Conclusion Our results indicate that miR-146a can regulate the cancer stemness in OSCC by modulating Numb, and hence miR-146a/Numb axis can serve as a potential target for oral cancer therapy.
Collapse
Affiliation(s)
- Yen-Tze Liu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Family Medicine, Changhua Christian Hospital, Changhua, Taiwan
- Department of Holistic Wellness, MingDao University, Changhua, Taiwan
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Yi Lu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shih-Chi Chao
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research and Education, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan
| | - Yi-Wen Liao
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chuan-Hang Yu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
- Corresponding author. School of Dentistry, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung 40201, Taiwan. Fax: 886-4-24759065.
| | - Yu-Hsien Lee
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
- Corresponding author. School of Dentistry, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung 40201, Taiwan. Fax: 886-4-24759065.
| |
Collapse
|
7
|
Mutated FANCA Gene Role in the Modulation of Energy Metabolism and Mitochondrial Dynamics in Head and Neck Squamous Cell Carcinoma. Cells 2022; 11:cells11152353. [PMID: 35954197 PMCID: PMC9425438 DOI: 10.3390/cells11152353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Fanconi Anaemia (FA) is a rare recessive genetic disorder characterized by a defective DNA repair mechanism. Although aplastic anaemia is the principal clinical sign in FA, patients develop a head and neck squamous cell carcinoma (HNSCC) with a frequency 500–700 folds higher than the general population, which appears more aggressive, with survival of under two years. Since FA gene mutations are also associated with a defect in the aerobic metabolism and an increased oxidative stress accumulation, this work aims to evaluate the effect of FANCA mutation on the energy metabolism and the relative mitochondrial quality control pathways in an HNSCC cellular model. Energy metabolism and cellular antioxidant capacities were evaluated by oximetric, luminometric, and spectrophotometric assays. The dynamics of the mitochondrial network, the quality of mitophagy and autophagy, and DNA double-strand damage were analysed by Western blot analysis. Data show that the HNSCC cellular model carrying the FANCA gene mutation displays an altered electron transport between respiratory Complexes I and III that does not depend on the OxPhos protein expression. Moreover, FANCA HNSCC cells show an imbalance between fusion and fission processes and alterations in autophagy and mitophagy pathways. Together, all these alterations associated with the FANCA gene mutation cause cellular energy depletion and a metabolic switch to glycolysis, exacerbating the Warburg effect in HNSCC cells and increasing the growth rate. In addition, the altered DNA repair due to the FANCA mutation causes a higher accumulation of DNA damage in the HNSCC cellular model. In conclusion, changes in energy metabolism and mitochondrial dynamics could explain the strict correlation between HNSCC and FA genes, helping to identify new therapeutic targets.
Collapse
|
8
|
Patel U, Kannan S, Rane SU, Mittal N, Gera P, Patil A, Manna S, Shejwal V, Noronha V, Joshi A, Patil VM, Prabhash K, Mahimkar MB. Prognostic and predictive roles of cancer stem cell markers in head and neck squamous cell carcinoma patients receiving chemoradiotherapy with or without nimotuzumab. Br J Cancer 2022; 126:1439-1449. [PMID: 35140342 PMCID: PMC9091234 DOI: 10.1038/s41416-022-01730-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/07/2022] [Accepted: 01/28/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Anti-EGFR-based therapies have limited success in HNSCC patients. Predictive biomarkers are needed to identify the patients most likely to benefit from these therapies. Here, we present predictive and prognostic associations of different cancer stem cell markers in HPV-negative locally advanced (LA) HNSCC patients. METHODS Pretreatment tumour tissues of 404 HPV-negative LA-HNSCCs patients, a subset of-phase 3-randomised study comparing cisplatin-radiation(CRT) and nimotuzumab plus cisplatin-radiation(NCRT) were examined. The expression levels of CD44, CD44v6, CD98hc, ALDH1A1, SOX2 and OCT4A were evaluated using immunohistochemistry. Progression-free survival(PFS), loco-regional control(LRC),- and overall survival(OS) were estimated by Kaplan-Meier method. Hazard ratios were estimated by Cox proportional hazard models. RESULTS NCRT showed significantly improved OS with low membrane expression of CD44 compared to CRT [HR (95% CI) = 0.63 (0.46-0.88)]. Patients with low CD44v6 also showed better outcomes with NCRT [LRC: HR (95% CI) = 0.25 (0.10-0.62); OS: HR (95% CI) = 0.38 (0.19-0.74)]. No similar benefit with NCRT observed in patients with high CD44 or CD44v6 expression. Bootstrap resampling confirmed the predictive effect of CD44 (Interaction P = 0.015) and CD44v6 (Interaction P = 0.041) for OS. Multivariable Cox analysis revealed an independent negative prognostic role of CD98hc membrane expression for LRC [HR (95% CI) = 0.63(0.39-1.0)] and OS[HR (95% CI) = 0.62 (0.40-0.95)]. CONCLUSIONS CD44 and CD44v6 are potential predictive biomarkers for NCRT response. CD98hc emerged as an independent negative prognostic biomarker. CLINICAL TRIAL REGISTRATION Registered with the Clinical Trial Registry of India (Trial registration identifier-CTRI/2014/09/004980).
Collapse
Affiliation(s)
- Usha Patel
- grid.410871.b0000 0004 1769 5793Mahimkar Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India ,grid.450257.10000 0004 1775 9822Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Sadhana Kannan
- grid.450257.10000 0004 1775 9822Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India ,grid.410871.b0000 0004 1769 5793Biostatistician, Clinical Research Secretariat, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Swapnil U. Rane
- grid.450257.10000 0004 1775 9822Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India ,grid.410871.b0000 0004 1769 5793Department of Pathology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Neha Mittal
- grid.450257.10000 0004 1775 9822Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India ,grid.410871.b0000 0004 1769 5793Department of Pathology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Poonam Gera
- grid.450257.10000 0004 1775 9822Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India ,grid.410871.b0000 0004 1769 5793Biorepository, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Asawari Patil
- grid.450257.10000 0004 1775 9822Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India ,grid.410871.b0000 0004 1769 5793Department of Pathology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Subhakankha Manna
- grid.410871.b0000 0004 1769 5793Mahimkar Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Vishwayani Shejwal
- grid.410871.b0000 0004 1769 5793Mahimkar Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Vanita Noronha
- grid.450257.10000 0004 1775 9822Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India ,grid.410871.b0000 0004 1769 5793Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Amit Joshi
- grid.450257.10000 0004 1775 9822Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India ,grid.410871.b0000 0004 1769 5793Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Vijay M. Patil
- grid.450257.10000 0004 1775 9822Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India ,grid.410871.b0000 0004 1769 5793Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Kumar Prabhash
- grid.450257.10000 0004 1775 9822Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India ,grid.410871.b0000 0004 1769 5793Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Manoj B. Mahimkar
- grid.410871.b0000 0004 1769 5793Mahimkar Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India ,grid.450257.10000 0004 1775 9822Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| |
Collapse
|
9
|
Precision Medicine in Head and Neck Cancers: Genomic and Preclinical Approaches. J Pers Med 2022; 12:jpm12060854. [PMID: 35743639 PMCID: PMC9224778 DOI: 10.3390/jpm12060854] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 02/07/2023] Open
Abstract
Head and neck cancers (HNCs) represent the sixth most widespread malignancy worldwide. Surgery, radiotherapy, chemotherapeutic and immunotherapeutic drugs represent the main clinical approaches for HNC patients. Moreover, HNCs are characterised by an elevated mutational load; however, specific genetic mutations or biomarkers have not yet been found. In this scenario, personalised medicine is showing its efficacy. To study the reliability and the effects of personalised treatments, preclinical research can take advantage of next-generation sequencing and innovative technologies that have been developed to obtain genomic and multi-omic profiles to drive personalised treatments. The crosstalk between malignant and healthy components, as well as interactions with extracellular matrices, are important features which are responsible for treatment failure. Preclinical research has constantly implemented in vitro and in vivo models to mimic the natural tumour microenvironment. Among them, 3D systems have been developed to reproduce the tumour mass architecture, such as biomimetic scaffolds and organoids. In addition, in vivo models have been changed over the last decades to overcome problems such as animal management complexity and time-consuming experiments. In this review, we will explore the new approaches aimed to improve preclinical tools to study and apply precision medicine as a therapeutic option for patients affected by HNCs.
Collapse
|
10
|
de Camargo MR, Frazon TF, Inacio KK, Smiderle FR, Amôr NG, Dionísio TJ, Santos CF, Rodini CO, Lara VS. Ganoderma lucidum polysaccharides inhibit in vitro tumorigenesis, cancer stem cell properties and epithelial-mesenchymal transition in oral squamous cell carcinoma. JOURNAL OF ETHNOPHARMACOLOGY 2022; 286:114891. [PMID: 34910952 DOI: 10.1016/j.jep.2021.114891] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The polysaccharides of the millenary mushroom Ganoderma lucidum (GL) have been shown for decades to present anti-tumor activities, but few studies evaluated its importance on cancer stem cells and EMT process. Cancer stem cells (CSC) drive the development of carcinoma and are also involved in cancer treatment failure, being a good target for treatment success. Also, the process of epithelial-mesenchymal transition (EMT) is involved in metastasis and cancer relapse. Besides that, the increasing incidence worldwide of oral squamous cell carcinoma (OSCC) became a public health issue with a high rate of metastasis and poor quality of life for patients during and after treatment. AIM OF THE STUDY to evaluate G. lucidum polysaccharides (GLPS) in vitro effects on OSCC, focusing on hallmarks associated with tumorigenesis using the SCC-9, a squamous cells carcinoma lineage from the tongue. MATERIALS AND METHODS SCC-9 cells were treated in vitro for 72h with different GLPS concentrations. The controls cells were maintained with culture media only and cisplatin was used as treatment control. After the treatment period, the cells were evaluated. RESULTS GLPS treatment changed cell morphology and granularity, delayed migration, decreased colony, and impaired sphere formation, thereby leading to a non-invasive and less proliferative behavior of tumoral cells. Additionally, GLPS downregulated CSC, EMT, and drug sensitivity (ABC) markers. CONCLUSIONS These results show that the natural product GLPS has the potential to be an important ally for tongue squamous cell carcinoma treatment, bringing the millenary compound to modern therapy, providing a basis for future studies and the improvement of life quality for OSCC patients.
Collapse
Affiliation(s)
- Marcela Rodrigues de Camargo
- Department of Surgery, Stomatology, Pathology and Radiology. Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Talita Fonseca Frazon
- Department of Surgery, Stomatology, Pathology and Radiology. Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Kelly Karina Inacio
- Department of Biological Sciences. Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Fhernanda Ribeiro Smiderle
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
| | - Nádia Ghinelli Amôr
- Department of Biological Sciences. Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Thiago José Dionísio
- Department of Biological Sciences. Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Carlos Ferreira Santos
- Department of Biological Sciences. Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Camila Oliveira Rodini
- Department of Biological Sciences. Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Vanessa Soares Lara
- Department of Surgery, Stomatology, Pathology and Radiology. Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil.
| |
Collapse
|
11
|
Su TR, Yu CC, Chao SC, Huang CC, Liao YW, Hsieh PL, Yu CH, Lin SS. Fenofibrate diminishes the self-renewal and metastasis potentials of oral carcinoma stem cells through NF-κB signaling. J Formos Med Assoc 2022; 121:1900-1907. [DOI: 10.1016/j.jfma.2022.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/24/2022] Open
|
12
|
Maurya M, Gupta V, Agarwal P, Kumar M, Sagar M, Raghuvanshi S, Gupta S. Expression of aldehyde dehydrogenase 1A1 in oral squamous cell carcinoma and its correlation with clinicopathological parameters. Natl J Maxillofac Surg 2022; 13:208-215. [PMID: 36051794 PMCID: PMC9426695 DOI: 10.4103/njms.njms_402_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 12/30/2021] [Accepted: 01/15/2022] [Indexed: 11/04/2022] Open
Abstract
Background: Materials and Methods: Results: Conclusion:
Collapse
|
13
|
Discrimination of Cancer Stem Cell Markers ALDH1A1, BCL11B, BMI-1, and CD44 in Different Tissues of HNSCC Patients. ACTA ACUST UNITED AC 2021; 28:2763-2774. [PMID: 34287293 PMCID: PMC8293237 DOI: 10.3390/curroncol28040241] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/03/2021] [Accepted: 07/11/2021] [Indexed: 12/31/2022]
Abstract
Cancer stem cells (CSCs) are accountable for the progress of head and neck squamous cell carcinoma (HNSCC). This exploratory study evaluated the expression of molecular CSC markers in different tissues of HNSCC patients. Tissue specimens of primary tumor, lymph node metastases and macroscopically healthy mucosa of 12 consecutive HNSCC patients, that were treated with surgery and adjuvant radio(chemo)therapy upon indication, were collected. Samples were assessed for the expression of p16 as a surrogate for HPV-related disease and different molecular stem cell markers (ALDH1A1, BCL11B, BMI-1, and CD44). In the cohort, seven patients had HPV-related HNSCC; six thereof were oropharyngeal squamous cell carcinoma. While expression of BMI-1 and BCL11B was significantly lower in healthy mucosa than both tumor and lymph node metastasis, there were no differences between tumor and lymph node metastasis. In the HPV-positive sub-cohort, these differences remained significant for BMI-1. However, no significant differences in these three tissues were found for ALDH1A1 and CD44. In conclusion, this exploratory study shows that CSC markers BMI-1 and BCL11B discriminate between healthy and cancerous tissue, whereas ALDH1A1 and CD44 were expressed to a comparable extent in healthy mucosa and cancerous tissues.
Collapse
|
14
|
Affolter A, Lammert A, Kern J, Scherl C, Rotter N. Precision Medicine Gains Momentum: Novel 3D Models and Stem Cell-Based Approaches in Head and Neck Cancer. Front Cell Dev Biol 2021; 9:666515. [PMID: 34307351 PMCID: PMC8296983 DOI: 10.3389/fcell.2021.666515] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the current progress in the development of new concepts of precision medicine for head and neck squamous cell carcinoma (HNSCC), in particular targeted therapies and immune checkpoint inhibition (CPI), overall survival rates have not improved during the last decades. This is, on the one hand, caused by the fact that a significant number of patients presents with late stage disease at the time of diagnosis, on the other hand HNSCC frequently develop therapeutic resistance. Distinct intratumoral and intertumoral heterogeneity is one of the strongest features in HNSCC and has hindered both the identification of specific biomarkers and the establishment of targeted therapies for this disease so far. To date, there is a paucity of reliable preclinical models, particularly those that can predict responses to immune CPI, as these models require an intact tumor microenvironment (TME). The "ideal" preclinical cancer model is supposed to take both the TME as well as tumor heterogeneity into account. Although HNSCC patients are frequently studied in clinical trials, there is a lack of reliable prognostic biomarkers allowing a better stratification of individuals who might benefit from new concepts of targeted or immunotherapeutic strategies. Emerging evidence indicates that cancer stem cells (CSCs) are highly tumorigenic. Through the process of stemness, epithelial cells acquire an invasive phenotype contributing to metastasis and recurrence. Specific markers for CSC such as CD133 and CD44 expression and ALDH activity help to identify CSC in HNSCC. For the majority of patients, allocation of treatment regimens is simply based on histological diagnosis and on tumor location and disease staging (clinical risk assessments) rather than on specific or individual tumor biology. Hence there is an urgent need for tools to stratify HNSCC patients and pave the way for personalized therapeutic options. This work reviews the current literature on novel approaches in implementing three-dimensional (3D) HNSCC in vitro and in vivo tumor models in the clinical daily routine. Stem-cell based assays will be particularly discussed. Those models are highly anticipated to serve as a preclinical prediction platform for the evaluation of stable biomarkers and for therapeutic efficacy testing.
Collapse
Affiliation(s)
- Annette Affolter
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | | | | | | |
Collapse
|
15
|
Lammert A, Affolter A, Gvaramia D, Heid J, Jungbauer F, Scherl C, Tenschert E, Rotter N, Willett N, Kern J. [The tumor stem cell niche of head and neck - point of intersection with therapeutic potential?]. Laryngorhinootologie 2021; 100:23-29. [PMID: 33401320 DOI: 10.1055/a-1260-3054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
An increasing amount of evidence suggests the existence of a stem cell-like population in head and neck squamous cell carcinoma (HNSCC). These cells have been termed cancer stem cells (CSC) due to the shared properties with somatic stem cells, such as the ability to self-renew and differentiate. Furthermore, the CSC are thought to be resistant to antineoplastic treatments and are therefore clinically relevant. As with somatic stem cells, CSC are thought to reside in a specialized supportive microenvironment, called the stem cell niche. One possible strategy to target the CSC could be through affecting functions of the stem cell niche.Stromal cell-derived factor-1 (SDF-1) is a multifunctional cytokine, which is secreted by e. g. stromal cells within the niche. SDF-1 is known to be the major regulator of stem cell trafficking between the niche and the peripheral vascular system. It elicits the chemotactic activity through interaction with a transmembrane receptor CXCR4, expressed by CSC. The SDF-1-CXCR4-axis is thought to play a crucial role in the interaction between CSC and their supportive cells in the tumor niche. A better understanding of these interactions could help in gaining further insight into the pathophysiology of progression/recurrence of malignant diseases and aid in finding new strategies for therapy.Specialized cell culture models are of advantage for deciphering the mechanisms of interaction between CSC and their niche. We anticipate that the recent technological advancements in bioprinting and the development of complex 3D cell culture model systems will contribute to our understanding of these mechanisms and to the establishment of individualized therapies.Here were provide an overview of the current knowledge on the CSC-tumor stem cell niche interactions in HNSCC with a focus on the SDF-1-CXCR4 axis.
Collapse
Affiliation(s)
- Anne Lammert
- Klinik für Hals-Nasen-Ohren-Heilkunde, Kopf- und Halschirurgie, Fakultät Mannheim, Universität Heidelberg
| | - Annette Affolter
- Klinik für Hals-Nasen-Ohren-Heilkunde, Kopf- und Halschirurgie, Fakultät Mannheim, Universität Heidelberg
| | - David Gvaramia
- Klinik für Hals-Nasen-Ohren-Heilkunde, Kopf- und Halschirurgie, Fakultät Mannheim, Universität Heidelberg
| | - Jonas Heid
- Klinik für Hals-Nasen-Ohren-Heilkunde, Kopf- und Halschirurgie, Fakultät Mannheim, Universität Heidelberg
| | - Frederic Jungbauer
- Klinik für Hals-Nasen-Ohren-Heilkunde, Kopf- und Halschirurgie, Fakultät Mannheim, Universität Heidelberg
| | - Claudia Scherl
- Klinik für Hals-Nasen-Ohren-Heilkunde, Kopf- und Halschirurgie, Fakultät Mannheim, Universität Heidelberg
| | - Esther Tenschert
- Klinik für Hals-Nasen-Ohren-Heilkunde, Kopf- und Halschirurgie, Fakultät Mannheim, Universität Heidelberg
| | - Nicole Rotter
- Klinik für Hals-Nasen-Ohren-Heilkunde, Kopf- und Halschirurgie, Fakultät Mannheim, Universität Heidelberg
| | - Nicola Willett
- Klinik für Hals-Nasen-Ohren-Heilkunde, Kopf- und Halschirurgie, Fakultät Mannheim, Universität Heidelberg
| | - Johann Kern
- Klinik für Hals-Nasen-Ohren-Heilkunde, Kopf- und Halschirurgie, Fakultät Mannheim, Universität Heidelberg
| |
Collapse
|
16
|
Jakob M, Sharaf K, Schirmer M, Leu M, Küffer S, Bertlich M, Ihler F, Haubner F, Canis M, Kitz J. Role of cancer stem cell markers ALDH1, BCL11B, BMI-1, and CD44 in the prognosis of advanced HNSCC. Strahlenther Onkol 2020; 197:231-245. [PMID: 32588101 PMCID: PMC7892527 DOI: 10.1007/s00066-020-01653-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022]
Abstract
Purpose Cancer stem cells (CSCs) are held accountable for the progress of head and neck squamous cell carcinoma (HNSCC). In the presented study, the authors evaluated the prognostic value of CSC markers in two particular HNSCC cohorts. Methods This two cohort study consisted of 85 patients with advanced stage HNSCC, treated with primary radio(chemo)therapy (pRCT), and 95 patients with HNSCC, treated with surgery and partially adjuvant radio(chemo)therapy. Overall survival (OS), disease-free survival (DFS), and disease-specific survival (DSS) were assessed. Samples were assessed for the expression of different molecular stem cell markers (ALDH1, BCL11B, BMI‑1, and CD44). Results In the pRCT cohort, none of the baseline patient and tumor features exhibited a statistically significant relation with survival in either the cohort or the human papillomavirus (HPV)-stratified subcohorts. High expression of BMI‑1 significantly decreased OS and DFS, while high expression of CD44 decreased all modes of survival. Multivariate analysis showed significant prognostic influence for all tested CSC markers, with high BMI‑1 and CD44 decreasing survival (BMI-1: OS, DFS, DSS; CD44: OS, DFS) and high ALDH1 and BCL11B showing a beneficial effect on survival (ALDH1: OS, DFS; BCL11B: OS, DSS). In the surgical cohort, classical prognosticators such as HPV status, R1 resection, and nodal status in HPV-negative HNSCC played a significant role, but the tested CSC markers showed no significant effect on prognosis. Conclusion Although validation in independent cohorts is still needed, testing for CSC markers in patients with advanced or late stage HNSCC might be beneficial, especially if many comorbidities exist or disease is irresectable. The findings might guide the development and earlier use of targeted therapies in the future. Electronic supplementary material The online version of this article (10.1007/s00066-020-01653-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mark Jakob
- Department of Otolaryngology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany. .,Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany.
| | - Kariem Sharaf
- Department of Otolaryngology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany.
| | - Markus Schirmer
- Department of Radiation Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Martin Leu
- Department of Radiation Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Küffer
- Department of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Mattis Bertlich
- Department of Otolaryngology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Friedrich Ihler
- Department of Otolaryngology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany.,German Center of Vertigo and Dizziness, University Hospital, LMU Munich, Munich, Germany
| | - Frank Haubner
- Department of Otolaryngology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Martin Canis
- Department of Otolaryngology, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Julia Kitz
- Department of Pathology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
17
|
Rodriguez-Ramirez C, Nör JE. p53 and Cell Fate: Sensitizing Head and Neck Cancer Stem Cells to Chemotherapy. Crit Rev Oncog 2019; 23:173-187. [PMID: 30311573 DOI: 10.1615/critrevoncog.2018027353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Head and neck cancers are deadly diseases that are diagnosed annually in approximately half a million individuals worldwide. Growing evidence supporting a role for cancer stem cells (CSCs) in the pathobiology of head and neck cancers has led to increasing interest in identifying therapeutics to target these cells. Apart from the canonical tumor-suppressor functions of p53, emerging research supports a significant role for this protein in physiological stem cell and CSC maintenance and reprogramming. Therefore, p53 has become a promising target to sensitize head and neck CSCs to chemotherapy. In this review, we highlight the role of p53 in stem cell maintenance and discuss potential implications of targeting p53 to treat patients with head and neck cancers.
Collapse
Affiliation(s)
- Christie Rodriguez-Ramirez
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109
| | - Jacques E Nör
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109; Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI; Department of Otolaryngology, University of Michigan School of Medicine, Ann Arbor, MI; Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI
| |
Collapse
|
18
|
An Effective Primary Head and Neck Squamous Cell Carcinoma In Vitro Model. Cells 2019; 8:cells8060555. [PMID: 31181618 PMCID: PMC6628367 DOI: 10.3390/cells8060555] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 01/10/2023] Open
Abstract
Head and neck squamous cell carcinoma is a highly malignant disease and research is needed to find new therapeutic approaches. Faithful experimental models are required for this purpose. Here, we describe the specific cell culture conditions enabling the efficient establishment of primary cell culture models. Whereas a classical 10% serum-containing medium resulted in the growth of fibroblast-like cells that outcompeted epithelial cells, we found that the use of specific culture conditions enabled the growth of epithelial tumor cells from HPV+ and HPV- head and neck cancer tissue applicable for research. EpCAM and high Thy-1 positivity on the cell surface were mutually exclusive and distinguished epithelial and fibroblast-like subpopulations in all primary cultures examined and thus can be used to monitor stromal contamination and epithelial cell content. Interestingly, cells of an individual patient developed tumor spheroids in suspension without the use of ultra-low attachment plates, whereas all other samples exclusively formed adherent cell layers. Spheroid cells were highly positive for ALDH1A1 and hence displayed a phenotype reminiscent of tumor stem cells. Altogether, we present a system to establish valuable primary cell culture models from head and neck cancer tissue at high efficiency that might be applicable in other tumor entities as well.
Collapse
|
19
|
Tarasov VV, Chubarev VN, Ashraf GM, Dostdar SA, Sokolov AV, Melnikova TI, Sologova SS, Grigorevskich EM, Makhmutovа A, Kinzirsky AS, Klochkov SG, Aliev G. How Cancer Cells Resist Chemotherapy: Design and Development of Drugs Targeting Protein-Protein Interactions. Curr Top Med Chem 2019; 19:394-412. [DOI: 10.2174/1568026619666190305130141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/20/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023]
Abstract
Background:Resistance toward chemotherapeutics is one of the main obstacles on the way to effective cancer treatment. Personalization of chemotherapy could improve clinical outcome. However, despite preclinical significance, most of the potential markers have failed to reach clinical practice partially due to the inability of numerous studies to estimate the marker’s impact on resistance properly.Objective:The analysis of drug resistance mechanisms to chemotherapy in cancer cells, and the proposal of study design to identify bona fide markers.Methods:A review of relevant papers in the field. A PubMed search with relevant keywords was used to gather the data. An example of a search request: drug resistance AND cancer AND paclitaxel.Results:We have described a number of drug resistance mechanisms to various chemotherapeutics, as well as markers to underlie the phenomenon. We also proposed a model of a rational-designed study, which could be useful in determining the most promising potential biomarkers.Conclusion:Taking into account the most reasonable biomarkers should dramatically improve clinical outcome by choosing the suitable treatment regimens. However, determining the leading biomarkers, as well as validating of the model, is a work for further investigations.
Collapse
Affiliation(s)
- Vadim V. Tarasov
- Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russian Federation
| | - Vladimir N. Chubarev
- Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russian Federation
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Samira A. Dostdar
- Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russian Federation
| | - Alexander V. Sokolov
- Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russian Federation
| | - Tatiana I. Melnikova
- Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russian Federation
| | - Susanna S. Sologova
- Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russian Federation
| | - Ekaterina M. Grigorevskich
- Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russian Federation
| | - Alfiya Makhmutovа
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
| | - Alexander S. Kinzirsky
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
| | - Sergey G. Klochkov
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
| | - Gjumrakch Aliev
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
| |
Collapse
|
20
|
Han S, Huang T, Wu X, Wang X, Li W, Liu S, Yang W, Shi Q, Li H, Shi K, Hou F. Prognostic value of ALDH1 and Nestin in advanced cancer: a systematic meta-analysis with trial sequential analysis. Ther Adv Med Oncol 2019; 11:1758835919830831. [PMID: 30833990 PMCID: PMC6393950 DOI: 10.1177/1758835919830831] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 10/28/2018] [Indexed: 12/24/2022] Open
Abstract
Background Novel prognostic markers and therapeutic targets for advanced cancer are urgently needed. This report with trial sequential analysis (TSA) was first conducted to provide robust estimates of the correlation between aldehyde dehydrogenase 1 (ALDH1) and Nestin and clinical outcomes of advanced cancer patients. Methods Hazard ratios (HRs) with 95% confidence intervals (CIs) were summarized for overall survival (OS), disease-free survival (DFS), progression-free survival (PFS), cancer-specific survival (CSS), relapse/recurrence-free survival (RFS), and metastasis-free survival (MFS) from multivariable analysis. TSA was performed to control for random errors. Results A total of 20 studies with 2050 patients (ALDH1: 15 studies with 1557 patients and Nestin: 5 studies with 493 patients) were identified. ALDH1 (HR = 2.28, p < 0.001) and Nestin (HR = 2.39, p < 0.001) were associated with a worse OS, as confirmed by TSA. Nestin positivity was linked to a poor PFS (HR = 2.08, p < 0.001), but ALDH1 was not linked to DFS, RFS, MFS, or PFS, and TSA showed that more studies were needed. Subgroup analysis by tumor type indicated that ALDH1 positivity may be associated with shorter OS in breast, head and neck cancers, but there was no association with colorectal cancer. Subgroup analysis by study source showed that ALDH1 positivity was correlated with a worse OS for Japanese (HR = 1.94, p = 0.002) and European patients (HR = 4.15, p < 0.001), but there was no association for Chinese patients. Subgroup analysis by survival rate showed that ALDH1 positivity correlated with poor OS at ⩾ 5 years (HR = 2.33, p < 0.001) or 10 years (HR = 1.76, p = 0.038). Conclusions ALDH1 may be more valuable as an effective therapeutic target than Nestin for improving the long-term survival rate of advanced cancer. Additional prospective clinical trials are needed across different cancer types.
Collapse
Affiliation(s)
- Susu Han
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Road, Shanghai 200071, People's Republic of China
| | - Tao Huang
- The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, People's Republic of China
| | - Xing Wu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xiyu Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Wen Li
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Shanshan Liu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Wei Yang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Qi Shi
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Hongjia Li
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Kunhe Shi
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Fenggang Hou
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Road, Shanghai 200071, People's Republic of China
| |
Collapse
|
21
|
Mohanta S, Sekhar Khora S, Suresh A. Cancer Stem Cell based molecular predictors of tumor recurrence in Oral squamous cell carcinoma. Arch Oral Biol 2019; 99:92-106. [PMID: 30641296 DOI: 10.1016/j.archoralbio.2019.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 02/01/2023]
Abstract
OBJECTIVE This study aimed to identify the cancer stem cell specific biomarkers that can be effective candidate prognosticators of oral squamous cell carcinoma. DESIGN Microarray-based meta-analysis derived transcriptional profile of head and neck cancers was compared with the Cancer Stem Cell database to arrive at a subset of markers. This subset was further co-related with clinico-pathological parameters, recurrence and survival of oral cancer patients (n = 313) in The Cancer Genome Atlas database and in oral cancer (n = 28) patients. RESULTS Meta-analysis in combination with database comparison identified a panel of 221 genes specific to head and neck cancers. Correlation of expression levels of these markers in the oral cancer cohort of The Cancer Genome Atlas (n = 313) with treatment outcome identified 54 genes (p < 0.05 or fold change >2) associated with disease recurrence, 8 genes (NQO1, UBE2C, EDNRB, FKBP4, STAT3, HOXA1, RIT1, AURKA) being significant with high fold change. Assessment of the efficacy of the subset (n = 54) as survival predictors identified an additional 4 genes (CDK1, GINS2, PHF5 A, ERBB2) that co-related with poor disease-free survival (p < 0.05). CDK1 showed a significant association with the clinical stage, margin status and with advanced pathological parameters. Initial patient validation indicated that CDK1 and NQO1 significantly co-related with the poor disease-free and overall survival (p < 0.05). CONCLUSION This panel of oral cancer specific, cancer stem cell associated markers identified in this study, a subset of which was validated, will be of clinical benefit subject to large scale validation studies.
Collapse
Affiliation(s)
- Simple Mohanta
- Integrated Head and Neck Oncology Program, Mazumdar Shaw Medical Foundation, Mazumdar Shaw Medical Center, Narayana Health City, Bommasandra Industrial Area, Anekal Taluk, Bangalore, 560099, Karnataka, India; Department of Head and Neck Oncology, Mazumdar Shaw Medical Center, Narayana Health City, Bommasandra Industrial Area, Anekal Taluk, Bangalore, 560099, Karnataka, India; School of Bio Sciences & Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Samanta Sekhar Khora
- School of Bio Sciences & Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Amritha Suresh
- Integrated Head and Neck Oncology Program, Mazumdar Shaw Medical Foundation, Mazumdar Shaw Medical Center, Narayana Health City, Bommasandra Industrial Area, Anekal Taluk, Bangalore, 560099, Karnataka, India; Department of Head and Neck Oncology, Mazumdar Shaw Medical Center, Narayana Health City, Bommasandra Industrial Area, Anekal Taluk, Bangalore, 560099, Karnataka, India; Mazumdar Shaw Medical Centre-Roswell Park Collaboration Program, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, 14263, New York, USA.
| |
Collapse
|
22
|
Qian X, Nie X, Wollenberg B, Sudhoff H, Kaufmann AM, Albers AE. Heterogeneity of Head and Neck Squamous Cell Carcinoma Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1139:23-40. [PMID: 31134493 DOI: 10.1007/978-3-030-14366-4_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Current systemic cancer treatment in head and neck squamous cell carcinoma (HNSCC) is moving toward more personalized approaches such as de-escalation protocols human-papilloma-virus dependent HNSCC or application of checkpoint inhibitors. However, these treatments have been challenged by cancer stem cells (CSC), a small population within the bulk tumor, which are leading to treatment failure, tumor recurrence, or metastases. This review will give an overview of the characteristics of HNSCC-CSC. Specifically, the mechanisms by which HNSCC-CSC induce tumor initiation, progression, recurrence, or metastasis will be discussed. Although evidence-based treatment options targeting HNSCC-CSC specifically are still being sought for, they warrant a promise for additional and sustainable treatment options where for HNSCC patients where others have failed.
Collapse
Affiliation(s)
- Xu Qian
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institutes of Health, Berlin, Germany.,Division of Molecular Diagnostics, Department of Laboratory Medicine, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
| | - Xiaobo Nie
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Kaifeng, People's Republic of China
| | - Barbara Wollenberg
- University Hospital Schleswig Holstein, Campus Lübeck, Clinic for Otorhinolaryngology - Head and Neck Surgery, Lübeck, Germany
| | - Holger Sudhoff
- Department of Otorhinolaryngology, Head and Neck Surgery, Klinikum Bielefeld, Bielefeld, Germany
| | - Andreas M Kaufmann
- Clinic for Gynecology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institutes of Health, Berlin, Germany
| | - Andreas E Albers
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institutes of Health, Berlin, Germany.
| |
Collapse
|
23
|
Chang MT, Lee SP, Fang CY, Hsieh PL, Liao YW, Lu MY, Tsai LL, Yu CC, Liu CM. Chemosensitizing effect of honokiol in oral carcinoma stem cells via regulation of IL-6/Stat3 signaling. ENVIRONMENTAL TOXICOLOGY 2018; 33:1105-1112. [PMID: 30076764 DOI: 10.1002/tox.22587] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/23/2018] [Accepted: 05/31/2018] [Indexed: 06/08/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common cancers worldwide with poor prognosis. Numerous studies have attempted to explore alternative regimens aimed at reducing cancer stem cells (CSCs) without compromising the efficacy of conventional chemoradiotherapy. The present study sought to assess the effect of a natural compound honokiol on the reduction of elevated cancer stemness, metastatic capacity, and chemoresistance of oral carcinoma stem cells (OCSCs). Our results demonstrated that honokiol attenuated the cell survival and self-renewal of OCSCs in a dose-dependent manner. Moreover, honokiol downregulated the expression of 2 selective markers of OCSCs, ALDH1, and CD44, as well as the migration and invasion abilities, indicating its potential to suppress cancer stemness. We showed that honokiol reduced the secretion of IL-6 and phosphorylation of STAT3, and the honokiol-inhibited self-renewal, invasion and colony formation were reversed by administration of IL-6. Most importantly, our data demonstrated that honokiol was able to potentiate the effect of Cisplatin, leading to a lower proportion of OCSCs and the decreased cancer stemness features. Taken together, this study demonstrated the benefits of utilizing honokiol as an adjunct therapy for OSCC treatment.
Collapse
Affiliation(s)
- Min-Te Chang
- Department of Oral and Maxillofacial Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Shiao-Pieng Lee
- School of Dentistry, National Defense Medical Center, Taipei, Taiwan
- Department of Dentistry, Tri-Service General Hospital, Taipei, Taiwan
| | - Chih-Yuan Fang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Pei-Ling Hsieh
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Wen Liao
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Yi Lu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Lo-Lin Tsai
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Chia Yu
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chia-Ming Liu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
24
|
ALDH1A1 expression is associated with poor differentiation, 'right-sidedness' and poor survival in human colorectal cancer. PLoS One 2018; 13:e0205536. [PMID: 30308036 PMCID: PMC6181398 DOI: 10.1371/journal.pone.0205536] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/26/2018] [Indexed: 12/22/2022] Open
Abstract
Background Aldehyde dehydrogenase 1A1 (ALDH1A1) encodes an enzyme that oxidizes aldehydes to their corresponding carboxylic acids. In colorectal cancer ALDH1A1 marks cancer stem cells and plays putative roles in tumor progression and drug resistance. However, the potential value of ALDH1A1 as a diagnostic marker or target for therapy remains unclear. Here, we have analyzed ALDH1A1 mRNA and protein levels in relation to clinical, histopathological and molecular tumor features in large series of human colorectal cancer. Methods ALDH1A1 protein levels were determined by immunohistochemistry in a series of primary colorectal tumors and their corresponding liver metastases (n = 158). ALDH1A1 mRNA levels were analyzed in several large patient cohorts of colorectal cancer. ALDH1A1 mRNA and protein levels were then related to overall survival and to clinical, histopathological and molecular tumor features. Results High levels of ALDH1A1 were associated with a poorly differentiated histology and a right-sided tumor location, but not to a mesenchymal-like molecular subtype. Liver metastases contained significantly higher levels of ALDH1A1 compared to the corresponding primary tumors. Radio- and/or chemotherapy prior to tumor resection was associated with increased ALDH1A1 levels regardless of the molecular subtype. Finally, ALDH1A1 protein expression in primary tumors and metastases correlated with shorter overall survival. Conclusions ALDH1A1 expression is associated with features of poor prognosis, including a poorly differentiated histology and ‘right-sidedness’ of the primary tumor, and with shorter overall survival. ALDH1A1 is also highly expressed in therapy-surviving tumors and in liver metastases. These results warrant further research into the potential value of targeting ALDH1A1 in order to improve the efficacy of standard treatment and thereby preventing tumor recurrence.
Collapse
|
25
|
Qian X, Nie X, Yao W, Klinghammer K, Sudhoff H, Kaufmann AM, Albers AE. Reactive oxygen species in cancer stem cells of head and neck squamous cancer. Semin Cancer Biol 2018; 53:248-257. [PMID: 29935313 DOI: 10.1016/j.semcancer.2018.06.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/08/2018] [Accepted: 06/17/2018] [Indexed: 12/12/2022]
Abstract
One of the greatest challenges in systemic treatment of head and neck squamous cell carcinoma (HNSCC) is a small tumor cell population, namely, cancer stem-like cells (CSC). CSC can regenerate and maintain a heterogenic tumor by their self-renewal capacity. Their potential ability to be more resistant to and survival after chemo- and radiation therapy was also identified. Further studies have shown that reactive oxygen species (ROS) contribute to this CSC-associated resistance. In this review, we focus on the current knowledge of HNSCC-CSC, with regard to ROS as a possible and novel therapeutic approach in targeting CSC.
Collapse
Affiliation(s)
- Xu Qian
- Department of Otorhinolaryngology, Head and Neck Surgery, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Berlin, Germany; Division of Molecular Diagnostics, Department of Laboratory Medicine, Zhejiang Cancer Hospital, Hangzhou, PR China; Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou, PR China
| | - Xiaobo Nie
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Kaifeng, PR China
| | - Wenhao Yao
- Department of Otorhinolaryngology, Head and Neck Surgery, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Konrad Klinghammer
- Department of Hematology and Oncology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Holger Sudhoff
- Department of Otorhinolaryngology, Head and Neck Surgery, Klinikum Bielefeld, Bielefeld, Germany
| | - Andreas M Kaufmann
- Clinic for Gynecology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Andreas E Albers
- Department of Otorhinolaryngology, Head and Neck Surgery, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Berlin, Germany.
| |
Collapse
|