1
|
He J, Liao JH. Potential Role of Hesperidin in Improving Experimental Pulmonary Arterial Hypertension in Rats via Modulation of the NF-κB Pathway. Chem Biol Drug Des 2025; 105:e70068. [PMID: 40110966 DOI: 10.1111/cbdd.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 01/24/2025] [Accepted: 02/04/2025] [Indexed: 03/22/2025]
Abstract
This study was designed to evaluate the therapeutic effects of hesperidin, an anti-inflammatory compound, on pulmonary arterial hypertension (PAH). A PAH rat model was established using monocrotaline (MCT, 60 mg/kg). Next, the experimental animals were assigned into the following four groups (n = 6 per group): Control group, MCT group, MCT + H20 group (20 mg/kg hesperidin), and MCT + H40 group (40 mg/kg hesperidin). According to the experimental outcomes, the PAH rat model was built successfully. In PAH animals, hesperidin significantly reduced right ventricular systolic pressure, Fulton index, and mean pulmonary arterial pressure. Concurrently, it improved pulmonary artery velocity-time integral and acceleration time, as well as alleviated pulmonary artery and right ventricular remodeling. On a molecular level, hesperidin inhibited the expression of vascular endothelial-cadherin, alpha-smooth muscle actin, matrix metalloproteinase-9, and transforming growth factor beta. Also, hesperidin downregulated pro-inflammatory cytokines such as interleukin (IL)-6, IL-1β, IL-18, chemokine C-C motif ligand 2, and C-X-C motif chemokine ligand 1 levels, and reduced the number of CD68+ cells in tissue samples. Further analysis revealed that hesperidin could inhibit the activation of p-IκB-α and p-p65 in samples induced by MCT. Collectively, these findings suggest that hesperidin may inhibit inflammation through the NF-κB pathway, thereby improving experimental PAH in rats induced by MCT.
Collapse
Affiliation(s)
- Jun He
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | | |
Collapse
|
2
|
McGee MY, Ogunsina O, Boshra SN, Gao X, Majetschak M. β-Adrenoceptor Agonists Attenuate Thrombin-Induced Impairment of Human Lung Endothelial Cell Barrier Function and Protect the Lung Vascular Barrier during Resuscitation from Hemorrhagic Shock. Biomedicines 2024; 12:1813. [PMID: 39200278 PMCID: PMC11352179 DOI: 10.3390/biomedicines12081813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
β-adrenoceptor (β-AR) agonists are known to antagonize thrombin-induced impairment (TII) of bovine and ovine lung endothelial barrier function. The effects of adrenoceptor agonists and other vasoactive agents on human lung microvascular endothelial cell (HULEC-5a) barrier function upon thrombin exposure have not been studied. Furthermore, it is unknown whether the in vitro effects of adrenoceptor agonists translate to lung protective effects in vivo. We observed that epinephrine, norepinephrine, and phenylephrine enhanced normal and prevented TII of HULEC-5a barrier function. Arginine vasopressin and angiotensin II were ineffective. α1B-, α2A/B-, and β1/2-ARs were detectable in HULEC-5a by RT-PCR. Propranolol but not doxazosin blocked the effects of all adrenoceptor agonists. Phenylephrine stimulated β2-AR-mediated Gαs activation with 13-fold lower potency than epinephrine. The EC50 to inhibit TII of HULEC-5a barrier function was 1.8 ± 1.9 nM for epinephrine and >100 nM for phenylephrine. After hemorrhagic shock and fluid resuscitation in rats, Evans blue extravasation into the lung increased threefold (p < 0.01 vs. sham). Single low-dose (1.8 μg/kg) epinephrine administration at the beginning of resuscitation had no effects on blood pressure and reduced Evans blue extravasation by 60% (p < 0.05 vs. vehicle). Our findings confirm the effects of β-adrenoceptor agonists in HULEC-5a and suggest that low-dose β-adrenoceptor agonist treatment protects lung vascular barrier function after traumatic hemorrhagic shock.
Collapse
Affiliation(s)
- Michelle Y. McGee
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; (M.Y.M.); (O.O.); (S.N.B.); (X.G.)
| | - Ololade Ogunsina
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; (M.Y.M.); (O.O.); (S.N.B.); (X.G.)
| | - Sadia N. Boshra
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; (M.Y.M.); (O.O.); (S.N.B.); (X.G.)
- Department of Chemistry, University of South Florida, Tampa, FL 33612, USA
| | - Xianlong Gao
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; (M.Y.M.); (O.O.); (S.N.B.); (X.G.)
| | - Matthias Majetschak
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; (M.Y.M.); (O.O.); (S.N.B.); (X.G.)
- Department of Molecular Pharmacology & Physiology, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
3
|
Inan T, Flinko R, Lewis GK, MacKerell AD, Kurkcuoglu O. Identifying and Assessing Putative Allosteric Sites and Modulators for CXCR4 Predicted through Network Modeling and Site Identification by Ligand Competitive Saturation. J Phys Chem B 2024; 128:5157-5174. [PMID: 38647430 PMCID: PMC11139592 DOI: 10.1021/acs.jpcb.4c00925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
The chemokine receptor CXCR4 is a critical target for the treatment of several cancer types and HIV-1 infections. While orthosteric and allosteric modulators have been developed targeting its extracellular or transmembrane regions, the intramembrane region of CXCR4 may also include allosteric binding sites suitable for the development of allosteric drugs. To investigate this, we apply the Gaussian Network Model (GNM) to the monomeric and dimeric forms of CXCR4 to identify residues essential for its local and global motions located in the hinge regions of the protein. Residue interaction network (RIN) analysis suggests hub residues that participate in allosteric communication throughout the receptor. Mutual residues from the network models reside in regions with a high capacity to alter receptor dynamics upon ligand binding. We then investigate the druggability of these potential allosteric regions using the site identification by ligand competitive saturation (SILCS) approach, revealing two putative allosteric sites on the monomer and three on the homodimer. Two screening campaigns with Glide and SILCS-Monte Carlo docking using FDA-approved drugs suggest 20 putative hit compounds including antifungal drugs, anticancer agents, HIV protease inhibitors, and antimalarial drugs. In vitro assays considering mAB 12G5 and CXCL12 demonstrate both positive and negative allosteric activities of these compounds, supporting our computational approach. However, in vivo functional assays based on the recruitment of β-arrestin to CXCR4 do not show significant agonism and antagonism at a single compound concentration. The present computational pipeline brings a new perspective to computer-aided drug design by combining conformational dynamics based on network analysis and cosolvent analysis based on the SILCS technology to identify putative allosteric binding sites using CXCR4 as a showcase.
Collapse
Affiliation(s)
- Tugce Inan
- Department
of Chemical Engineering, Istanbul Technical
University, Istanbul 34469, Turkey
| | - Robin Flinko
- Institute
of Human Virology, University of Maryland
School of Medicine, Baltimore, Maryland 21201, United States
| | - George K. Lewis
- Institute
of Human Virology, University of Maryland
School of Medicine, Baltimore, Maryland 21201, United States
| | - Alexander D. MacKerell
- University
of Maryland Computer-Aided Drug Design Center, Department of Pharmaceutical
Sciences, School of Pharmacy, University
of Maryland, Baltimore, Maryland 21201, United States
| | - Ozge Kurkcuoglu
- Department
of Chemical Engineering, Istanbul Technical
University, Istanbul 34469, Turkey
| |
Collapse
|
4
|
Gao X, Enten GA, McGee MY, Weche M, Majetschak M. α 1-adrenoceptor ligands inhibit chemokine receptor heteromerization partners of α 1B/D-adrenoceptors via interference with heteromer formation. Pharmacol Res 2023; 190:106730. [PMID: 36925091 PMCID: PMC10108735 DOI: 10.1016/j.phrs.2023.106730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/15/2023]
Abstract
We reported previously that α1-adrenoceptor (α1-AR) ligands inhibit chemokine receptor (CR) heteromerization partners of α1B/D-AR. The underlying mechanisms are unknown and in vivo evidence for such effects is missing. Utilizing CCR2 and α1B-AR as prototypical partners, we observed in recombinant systems and THP-1 cells that α1B-AR enhanced whereas its absence inhibited Gαi signaling of CCR2. Phenylephrine and phentolamine reduced the CCR2:α1B-AR heteromerization propensity and inhibited Gαi signaling of CCR2. Phenylephrine cross-recruited β-arrestin-2 to CCR2, and reduced expression of α1B/D-AR, CR partners (CCR1/2, CXCR4) and corresponding heteromers. Phentolamine reduced CR:α1B/D-AR heteromers without affecting β-arrestin-2 recruitment or receptor expression. Phenylephrine/phentolamine prevented leukocyte infiltration mediated via CR heteromerization partners in a murine air pouch model. Our findings document that α1-AR ligands inhibit leukocyte migration mediated by CR heteromerization partners in vivo and suggest interference with α1B-AR:CR heteromerization as a mechanism by which CR partners are inhibited. These findings provide new insights into the pharmacology of GPCR heteromers and indicate that an agonist and antagonist at one GPCR can act as antagonists at heteromerization partners of their target receptors.
Collapse
Affiliation(s)
- Xianlong Gao
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Garrett A Enten
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Michelle Y McGee
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - McWayne Weche
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Matthias Majetschak
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
5
|
Elmansi AM, Eisa NH, Periyasamy-Thandavan S, Kondrikova G, Kondrikov D, Calkins MM, Aguilar-Pérez A, Chen J, Johnson M, Shi XM, Reitman C, McGee-Lawrence ME, Crawford KS, Dwinell MB, Volkman BF, Blumer JB, Luttrell LM, McCorvy JD, Hill WD. DPP4-Truncated CXCL12 Alters CXCR4/ACKR3 Signaling, Osteogenic Cell Differentiation, Migration, and Senescence. ACS Pharmacol Transl Sci 2023; 6:22-39. [PMID: 36659961 PMCID: PMC9844133 DOI: 10.1021/acsptsci.2c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Indexed: 12/15/2022]
Abstract
Bone marrow skeletal stem cells (SSCs) secrete many cytokines including stromal derived factor-1 or CXCL12, which influences cell proliferation, migration, and differentiation. All CXCL12 splice variants are rapidly truncated on their N-terminus by dipeptidyl peptidase 4 (DPP4). This includes the common variant CXCL12 alpha (1-68) releasing a much less studied metabolite CXCL12(3-68). Here, we found that CXCL12(3-68) significantly inhibited SSC osteogenic differentiation and RAW-264.7 cell osteoclastogenic differentiation and induced a senescent phenotype in SSCs. Importantly, pre-incubation of SSCs with CXCL12(3-68) significantly diminished their ability to migrate toward CXCL12(1-68) in transwell migration assays. Using a high-throughput G-protein-coupled receptor (GPCR) screen (GPCRome) and bioluminescent resonance energy transfer molecular interaction assays, we revealed that CXCL12(3-68) acts via the atypical cytokine receptor 3-mediated β-arrestin recruitment and as a competitive antagonist to CXCR4-mediated signaling. Finally, a reverse phase protein array assay revealed that DPP4-cleaved CXCL12 possesses a different downstream signaling profile from that of intact CXCL12 or controls. The data presented herein provides insights into regulation of CXCL12 signaling. Importantly, it demonstrates that DPP4 proteolysis of CXCL12 generates a metabolite with significantly different and previously overlooked bioactivity that helps explain discrepancies in the literature. This also contributes to an understanding of the molecular mechanisms of osteoporosis and bone fracture repair and could potentially significantly affect the interpretation of experimental outcomes with clinical consequences in other fields where CXCL12 is vital, including cancer biology, immunology, cardiovascular biology, neurobiology, and associated pathologies.
Collapse
Affiliation(s)
- Ahmed M. Elmansi
- Department of Pathology and Laboratory Medicine,
Medical University of South Carolina, Charleston, South
Carolina 29403, United States
- Johnson Veterans Affairs Medical
Center, Charleston, South Carolina 29403, United
States
- Department of Pathology, University of
Michigan School of Medicine, Ann Arbor, Michigan 48109, United
States
| | - Nada H. Eisa
- Department of Pathology and Laboratory Medicine,
Medical University of South Carolina, Charleston, South
Carolina 29403, United States
- Johnson Veterans Affairs Medical
Center, Charleston, South Carolina 29403, United
States
- Department of Biochemistry, Faculty of Pharmacy,
Mansoura University, Mansoura 35516,
Egypt
| | | | - Galina Kondrikova
- Department of Pathology and Laboratory Medicine,
Medical University of South Carolina, Charleston, South
Carolina 29403, United States
- Johnson Veterans Affairs Medical
Center, Charleston, South Carolina 29403, United
States
| | - Dmitry Kondrikov
- Department of Pathology and Laboratory Medicine,
Medical University of South Carolina, Charleston, South
Carolina 29403, United States
- Johnson Veterans Affairs Medical
Center, Charleston, South Carolina 29403, United
States
| | - Maggie M. Calkins
- Department of Cell Biology, Neurobiology and Anatomy,
Medical College of Wisconsin, 8701 W. Watertown Plank Road,
Milwaukee, Wisconsin 53226, United States
| | - Alexandra Aguilar-Pérez
- Department of Anatomy and Cell Biology,
Indiana University School of Medicine in Indianapolis,
Indianapolis, Indiana 46202, United States
- Department of Cellular and Molecular Biology, School
of Medicine, Universidad Central Del Caribe, Bayamon, Puerto
Rico 00956, United States
- Cellular Biology and Anatomy, Medical College of
Georgia, Augusta University, Augusta, Georgia 30912,
United States
| | - Jie Chen
- Division of Biostatistics and Data Science,
Department of Population Health Science, Medical College of Georgia, Augusta
University, Augusta, Georgia 30912, United States
| | - Maribeth Johnson
- Division of Biostatistics and Data Science,
Department of Population Health Science, Medical College of Georgia, Augusta
University, Augusta, Georgia 30912, United States
| | - Xing-ming Shi
- Department of Orthopaedic Surgery, Medical
College of Georgia, Augusta University, Augusta, Georgia 30912,
United States
- Department of Neuroscience and Regenerative
Medicine, Medical College of Georgia, Augusta University,
Augusta, Georgia 30912, United States
| | - Charles Reitman
- Orthopaedics and Physical Medicine Department,
Medical University of South Carolina, Charleston, South
Carolina 29403, United States
| | - Meghan E. McGee-Lawrence
- Cellular Biology and Anatomy, Medical College of
Georgia, Augusta University, Augusta, Georgia 30912,
United States
- Department of Orthopaedic Surgery, Medical
College of Georgia, Augusta University, Augusta, Georgia 30912,
United States
- Center for Healthy Aging, Medical College of
Georgia, Augusta University, Augusta, Georgia 30912,
United States
| | - Kyler S. Crawford
- Department of Biochemistry,
Medical College of Wisconsin, Milwaukee, Wisconsin 53226,
United States
| | - Michael B. Dwinell
- Department of Microbiology and Immunology,
Medical College of Wisconsin, Milwaukee, Wisconsin 53226,
United States
| | - Brian F. Volkman
- Department of Biochemistry,
Medical College of Wisconsin, Milwaukee, Wisconsin 53226,
United States
| | - Joe B. Blumer
- Department of Cell and Molecular Pharmacology and
Experimental Therapeutics, Medical University of South
Carolina, Charleston, South Carolina 29425, United
States
| | - Louis M. Luttrell
- Division of Endocrinology, Diabetes and
Medical Genetics, Medical University of South Carolina,
Charleston, South Carolina 29403, United States
| | - John D. McCorvy
- Department of Cell Biology, Neurobiology and Anatomy,
Medical College of Wisconsin, 8701 W. Watertown Plank Road,
Milwaukee, Wisconsin 53226, United States
| | - William D. Hill
- Department of Pathology and Laboratory Medicine,
Medical University of South Carolina, Charleston, South
Carolina 29403, United States
- Johnson Veterans Affairs Medical
Center, Charleston, South Carolina 29403, United
States
- Cellular Biology and Anatomy, Medical College of
Georgia, Augusta University, Augusta, Georgia 30912,
United States
- Center for Healthy Aging, Medical College of
Georgia, Augusta University, Augusta, Georgia 30912,
United States
- Charlie Norwood Veterans Affairs
Medical Center, Augusta, Georgia 30904, United
States
| |
Collapse
|
6
|
Gao X, DeSantis AJ, Enten GA, Weche M, Marcet JE, Majetschak M. Heteromerization between α 1B -adrenoceptor and chemokine (C-C motif) receptor 2 biases α 1B -adrenoceptor signaling: Implications for vascular function. FEBS Lett 2022; 596:2706-2716. [PMID: 35920096 PMCID: PMC9830583 DOI: 10.1002/1873-3468.14463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 01/12/2023]
Abstract
Previously, we reported that chemokine (C-C motif) receptor 2 (CCR2) heteromerizes with α1B -adrenoceptor (α1B -AR) in leukocytes, through which α1B -AR controls CCR2. Whether such heteromers are expressed in human vascular smooth muscle cells (hVSMCs) is unknown. Bioluminescence resonance energy transfer confirmed formation of recombinant CCR2:α1b -AR heteromers. Proximity ligation assays detected CCR2:α1B -AR heteromers in hVSMCs and human mesenteric arteries. CCR2:α1B -AR heteromerization per se enhanced α1B -AR-mediated Gαq -coupling. Chemokine (C-C motif) ligand 2 (CCL2) binding to CCR2 inhibited Gαq activation via α1B -AR, cross-recruited β-arrestin to and induced internalization of α1B -AR in recombinant systems and in hVSMCs. Our findings suggest that CCR2 within CCR2:α1B -AR heteromers biases α1B -AR signaling and provide a mechanism for previous observations suggesting a role for CCL2/CCR2 in the regulation of cardiovascular function.
Collapse
Affiliation(s)
- Xianlong Gao
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Anthony J DeSantis
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Garrett A Enten
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - McWayne Weche
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jorge E Marcet
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Matthias Majetschak
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
7
|
Pouzol L, Sassi A, Baumlin N, Tunis M, Strasser DS, Lehembre F, Martinic MM. CXCR7 Antagonism Reduces Acute Lung Injury Pathogenesis. Front Pharmacol 2021; 12:748740. [PMID: 34803691 PMCID: PMC8602191 DOI: 10.3389/fphar.2021.748740] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/12/2021] [Indexed: 12/24/2022] Open
Abstract
Loss of control in the trafficking of immune cells to the inflamed lung tissue contributes to the pathogenesis of life-threatening acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS). Targeting CXCR7 has been proposed as a potential therapeutic approach to reduce pulmonary inflammation; however, its role and its crosstalk with the two chemokine receptors CXCR3 and CXCR4 via their shared ligands CXCL11 and CXCL12 is not yet completely understood. The present paper aimed to characterize the pathological role of the CXCR3/CXCR4/CXCR7 axis in a murine model of ALI. Lipopolysaccharide (LPS) inhalation in mice resulted in the development of key pathologic features of ALI/ARDS, including breathing dysfunctions, alteration in the alveolar capillary barrier, and lung inflammation. LPS inhalation induced immune cell infiltration into the bronchoalveolar space, including CXCR3+ and CXCR4+ cells, and enhanced the expression of the ligands of these two chemokine receptors. The first-in-class CXCR7 antagonist, ACT-1004-1239, increased levels of CXCL11 and CXCL12 in the plasma without affecting their levels in inflamed lung tissue, and consequently reduced CXCR3+ and CXCR4+ immune cell infiltrates into the bronchoalveolar space. In the early phase of lung inflammation, characterized by a massive influx of neutrophils, treatment with ACT-1004-1239 significantly reduced the LPS-induced breathing pattern alteration. Both preventive and therapeutic treatment with ACT-1004-1239 reduced lung vascular permeability and decreased inflammatory cell infiltrates. In conclusion, these results demonstrate a key pathological role of CXCR7 in ALI/ARDS and highlight the clinical potential of ACT-1004-1239 in ALI/ARDS pathogenesis.
Collapse
Affiliation(s)
| | - Anna Sassi
- Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | | | - Mélanie Tunis
- Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | | | | | | |
Collapse
|
8
|
Gao X, Enten GA, DeSantis AJ, Majetschak M. Class A G protein-coupled receptors assemble into functional higher-order hetero-oligomers. FEBS Lett 2021; 595:1863-1875. [PMID: 34032285 DOI: 10.1002/1873-3468.14135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/06/2021] [Accepted: 05/19/2021] [Indexed: 12/25/2022]
Abstract
Although class A seven-transmembrane helix (7TM) receptor hetero-oligomers have been proposed, information on the assembly and function of such higher-order hetero-oligomers is not available. Utilizing bioluminescence resonance energy transfer (BRET), bimolecular luminescence/fluorescence complementation (BiLC/BiFC), and BiLC/BiFC BRET in HEK293T cells, we provide evidence that chemokine (C-X-C motif) receptor 4, atypical chemokine receptor 3, α1a -adrenoceptor, and arginine vasopressin receptor 1A form hetero-oligomers composed of 2-4 different protomers. We show that hetero-oligomerization per se and ligand binding to individual protomers regulate agonist-induced coupling to the signaling transducers of interacting receptor partners. Our findings support the concept that receptor hetero-oligomers form supramolecular machineries with molecular signaling properties distinct from the individual protomers. These findings provide a mechanism for the phenomenon of context-dependent receptor function.
Collapse
Affiliation(s)
- Xianlong Gao
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Garrett A Enten
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Anthony J DeSantis
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Matthias Majetschak
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
9
|
Lee C, Viswanathan G, Choi I, Jassal C, Kohlmann T, Rajagopal S. Beta-Arrestins and Receptor Signaling in the Vascular Endothelium. Biomolecules 2020; 11:biom11010009. [PMID: 33374806 PMCID: PMC7824595 DOI: 10.3390/biom11010009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/13/2020] [Accepted: 12/19/2020] [Indexed: 12/17/2022] Open
Abstract
The vascular endothelium is the innermost layer of blood vessels and is a key regulator of vascular tone. Endothelial function is controlled by receptor signaling through G protein-coupled receptors, receptor tyrosine kinases and receptor serine-threonine kinases. The β-arrestins, multifunctional adapter proteins, have the potential to regulate all of these receptor families, although it is unclear as to whether they serve to integrate signaling across all of these different axes. Notably, the β-arrestins have been shown to regulate signaling by a number of receptors important in endothelial function, such as chemokine receptors and receptors for vasoactive substances such as angiotensin II, endothelin-1 and prostaglandins. β-arrestin-mediated signaling pathways have been shown to play central roles in pathways that control vasodilation, cell proliferation, migration, and immune function. At this time, the physiological impact of this signaling has not been studied in detail, but a deeper understanding of it could lead to the development of novel therapies for the treatment of vascular disease.
Collapse
Affiliation(s)
- Claudia Lee
- Department of Biochemistry, School of Medicine, Duke University, Durham, NC 27710, USA;
| | - Gayathri Viswanathan
- Medical Center, Department of Medicine, Division of Cardiology, Duke University, Durham, NC 27710, USA; (G.V.); (I.C.)
| | - Issac Choi
- Medical Center, Department of Medicine, Division of Cardiology, Duke University, Durham, NC 27710, USA; (G.V.); (I.C.)
| | - Chanpreet Jassal
- College of Arts and Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Taylor Kohlmann
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27708, USA;
| | - Sudarshan Rajagopal
- Department of Biochemistry, School of Medicine, Duke University, Durham, NC 27710, USA;
- Medical Center, Department of Medicine, Division of Cardiology, Duke University, Durham, NC 27710, USA; (G.V.); (I.C.)
- Correspondence:
| |
Collapse
|
10
|
The Signaling Duo CXCL12 and CXCR4: Chemokine Fuel for Breast Cancer Tumorigenesis. Cancers (Basel) 2020; 12:cancers12103071. [PMID: 33096815 PMCID: PMC7590182 DOI: 10.3390/cancers12103071] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/05/2020] [Accepted: 10/18/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Breast cancer remains the most common malignancy in women. In this review, we explore the role of the CXCL12/CXCR4 pathway in breast cancer. We show that the CXCL12/CXCR4 cascade is involved in nearly every aspect of breast cancer tumorigenesis including proliferation, cell motility and distant metastasis. Moreover, we summarize current knowledge about the CXCL12/CXCR4-targeted therapies. Due to the critical roles of this pathway in breast cancer and other malignancies, we believe that audiences in different fields will find this overview helpful. Abstract The CXCL12/CXCR4 signaling pathway has emerged in the recent years as a key player in breast cancer tumorigenesis. This pathway controls many aspects of breast cancer development including cancer cell proliferation, motility and metastasis to all target organs. Moreover, the CXCL12/CXCR4 cascade affects both immune and stromal cells, creating tumor-supporting microenvironment. In this review, we examine state-of-the-art knowledge about detrimental roles of the CXCL12/CXCR4 signaling, discuss its therapeutic potential and suggest further research directions beneficial both for basic research and personalized medicine in breast cancer.
Collapse
|
11
|
Gao X, Cheng YH, Enten GA, DeSantis AJ, Gaponenko V, Majetschak M. Regulation of the thrombin/protease-activated receptor 1 axis by chemokine (C XC motif) receptor 4. J Biol Chem 2020; 295:14893-14905. [PMID: 32839271 DOI: 10.1074/jbc.ra120.015355] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/20/2020] [Indexed: 12/17/2022] Open
Abstract
The chemokine receptor CXCR4, a G protein-coupled receptor (GPCR) capable of heteromerizing with other GPCRs, is involved in many processes, including immune responses, hematopoiesis, and organogenesis. Evidence suggests that CXCR4 activation reduces thrombin/protease-activated receptor 1 (PAR1)-induced impairment of endothelial barrier function. However, the mechanisms underlying cross-talk between CXCR4 and PAR1 are not well-understood. Using intermolecular bioluminescence resonance energy transfer and proximity ligation assays, we found that CXCR4 heteromerizes with PAR1 in the HEK293T expression system and in human primary pulmonary endothelial cells (hPPECs). A peptide analog of transmembrane domain 2 (TM2) of CXCR4 interfered with PAR1:CXCR4 heteromerization. In HTLA cells, the presence of CXCR4 reduced the efficacy of thrombin to induce β-arrestin-2 recruitment to recombinant PAR1 and enhanced thrombin-induced Ca2+ mobilization. Whereas thrombin-induced extracellular signal-regulated protein kinase 1/2 (ERK1/2) phosphorylation occurred more transiently in the presence of CXCR4, peak ERK1/2 phosphorylation was increased when compared with HTLA cells expressing PAR1 alone. CXCR4-associated effects on thrombin-induced β-arrestin-2 recruitment to and signaling of PAR1 could be reversed by TM2. In hPPECs, TM2 inhibited thrombin-induced ERK1/2 phosphorylation and activation of Ras homolog gene family member A. CXCR4 siRNA knockdown inhibited thrombin-induced ERK1/2 phosphorylation. Whereas thrombin stimulation reduced surface expression of PAR1, CXCR4, and PAR1:CXCR4 heteromers, chemokine (CXC motif) ligand 12 stimulation reduced surface expression of CXCR4 and PAR1:CXCR4 heteromers, but not of PAR1. Finally, TM2 dose-dependently inhibited thrombin-induced impairment of hPPEC monolayer permeability. Our findings suggest that CXCR4:PAR1 heteromerization enhances thrombin-induced G protein signaling of PAR1 and PAR1-mediated endothelial barrier disruption.
Collapse
Affiliation(s)
- Xianlong Gao
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - You-Hong Cheng
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, USA
| | - Garrett A Enten
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA; Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Anthony J DeSantis
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, Illinois, USA
| | - Matthias Majetschak
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA; Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA.
| |
Collapse
|
12
|
Natural and engineered chemokine (C-X-C motif) receptor 4 agonists prevent acute respiratory distress syndrome after lung ischemia-reperfusion injury and hemorrhage. Sci Rep 2020; 10:11359. [PMID: 32647374 PMCID: PMC7347544 DOI: 10.1038/s41598-020-68425-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 06/24/2020] [Indexed: 12/31/2022] Open
Abstract
We compared therapeutic properties of natural and engineered chemokine (C-X-C motif) receptor 4 (CXCR4) agonists in a rat acute respiratory distress syndrome (ARDS) model utilizing the PaO2/FiO2-ratio as a clinically relevant primary outcome criterion. Ventilated rats underwent unilateral lung ischemia from t = 0–70 min plus hemorrhage to a mean arterial blood pressure (MAP) of 30 mmHg from t = 40–70 min, followed by reperfusion/fluid resuscitation until t = 300 min. Natural CXCR4 agonists (CXCL12, ubiquitin) and engineered CXCL12 variants (CXCL121, CXCL22, CXCL12K27A/R41A/R47A, CXCL12 (3–68)) were administered within 5 min of fluid resuscitation. Animals treated with vehicle or CXCL12 (3–68) reached criteria for mild and moderate ARDS between t = 90–120 min and t = 120–180 min, respectively, and remained in moderate ARDS until t = 300 min. Ubiquitin, CXCL12, CXCL121 and CXCL122 prevented ARDS development. Potencies of CXCL12/CXCL121/CXCL122 were higher than the potency of ubiquitin. CXCL12K27A/R41A/R47A was inefficacious. CXCL121 > CXCL12 stabilized MAP and reduced fluid requirements. CXCR4 agonists at doses that preserved lung function reduced histological injury of the post-ischemic lung and reduced mortality from 55 to 9%. Our findings suggest that CXCR4 protein agonists prevent development of ARDS and reduce mortality in a rat model, and that development of new engineered protein therapeutics with improved pharmacological properties for ARDS is possible.
Collapse
|
13
|
Mamazhakypov A, Viswanathan G, Lawrie A, Schermuly RT, Rajagopal S. The role of chemokines and chemokine receptors in pulmonary arterial hypertension. Br J Pharmacol 2019; 178:72-89. [PMID: 31399998 DOI: 10.1111/bph.14826] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/11/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by progressive pulmonary artery remodelling leading to increased right ventricular pressure overload, which results in right heart failure and premature death. Inflammation plays a central role in the development of PAH, and the recruitment and function of immune cells are tightly regulated by chemotactic cytokines called chemokines. A number of studies have shown that the development and progression of PAH are associated with the dysregulated expression of several chemokines and chemokine receptors in the pulmonary vasculature. Moreover, some chemokines are differentially regulated in the pressure-overloaded right ventricle. Recent studies have tested the efficacy of pharmacological agents targeting several chemokines and chemokine receptors for their effects on the development of PAH, suggesting that these receptors could serve as useful therapeutic targets. In this review, we provide recent insights into the role of chemokines and chemokine receptors in PAH and RV remodelling and the opportunities and roadblocks in targeting them. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.1/issuetoc.
Collapse
Affiliation(s)
- Argen Mamazhakypov
- Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Giessen, Germany
| | - Gayathri Viswanathan
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Allan Lawrie
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Ralph Theo Schermuly
- Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Giessen, Germany
| | - Sudarshan Rajagopal
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
14
|
Gilbert W, Bragg R, Elmansi AM, McGee-Lawrence ME, Isales CM, Hamrick MW, Hill WD, Fulzele S. Stromal cell-derived factor-1 (CXCL12) and its role in bone and muscle biology. Cytokine 2019; 123:154783. [PMID: 31336263 PMCID: PMC6948927 DOI: 10.1016/j.cyto.2019.154783] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/08/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023]
Abstract
Musculoskeletal disorders are the leading cause of disability worldwide; two of the most prevalent of which are osteoporosis and sarcopenia. Each affect millions in the aging population across the world and the associated morbidity and mortality contributes to billions of dollars in annual healthcare cost. Thus, it is important to better understand the underlying pathologic mechanisms of the disease process. Regulatory chemokine, CXCL12, and its receptor, CXCR4, are recognized to be essential in the recruitment, localization, maintenance, development and differentiation of progenitor stem cells of the musculoskeletal system. CXCL12 signaling results in the development and functional ability of osteoblasts, osteoclasts, satellite cells and myoblasts critical to maintaining musculoskeletal homeostasis. Interestingly, one suggested pathologic mechanism of osteoporosis and sarcopenia is a decline in the regenerative capacity of musculoskeletal progenitor stem cells. Thus, because CXCL12 is critical to progenitor function, a disruption in the CXCL12 signaling axis might play a distinct role in these pathological processes. Therefore, in this article, we perform a review of CXCL12, its physiologic and pathologic function in bone and muscle, and potential targets for therapeutic development.
Collapse
Affiliation(s)
- William Gilbert
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States
| | - Robert Bragg
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States
| | - Ahmed M Elmansi
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States
| | - Meghan E McGee-Lawrence
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States; Cell Biology and Anatomy, Augusta University, Augusta, GA 30912, United States
| | - Carlos M Isales
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States; Department of Medicine, Augusta University, Augusta, GA 30912, United States
| | - Mark W Hamrick
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States; Cell Biology and Anatomy, Augusta University, Augusta, GA 30912, United States
| | - William D Hill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States; Ralph H Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States
| | - Sadanand Fulzele
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States; Cell Biology and Anatomy, Augusta University, Augusta, GA 30912, United States.
| |
Collapse
|
15
|
Babu FS, LaPorte HM, Nassoiy SP, Majetschak M. Chemokine (C-X-C motif) receptor 4 regulates lung endothelial barrier permeability during resuscitation from hemorrhagic shock. Physiol Res 2019; 68:675-679. [PMID: 31177801 DOI: 10.33549/physiolres.934105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chemokine (C-X-C motif) receptor 4 (CXCR4) agonists have been shown to protect lung endothelial barrier function in vitro. In vivo effects of CXCR4 modulation on lung endothelial permeability are unknown. Here we tested the effects of the CXCR4 agonist ubiquitin and the antagonist AMD3100 on lung vascular permeability and cytokine concentrations in a rat hemorrhage model. Animals were hemorrhaged (mean arterial blood pressure 30 mmHg for 30 min), treated with vehicle, ubiquitin (0.7 and 3.5 µmol/kg) or AMD3100 (3.5 µmol/kg), and resuscitated with crystalloids. Evans blue extravasation was employed to quantify lung vascular permeability. Ubiquitin dose-dependently reduced Evans blue extravasation into the lung. AMD3100 increased Evans blue extravasation. With AMD3100, TNFalpha levels in lung homogenates were increased; while TNFalpha levels were lower with ubiquitin, these differences did not reach statistical significance. Our findings suggest that CXCR4 regulates lung vascular permeability and further point towards CXCR4 as a drug target to confer lung protection during resuscitation from traumatic-hemorrhagic shock.
Collapse
Affiliation(s)
- F S Babu
- Department of Surgery, Burn and Shock Trauma Research Institute, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, USA, and Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA,
| | | | | | | |
Collapse
|
16
|
Elmansi AM, Awad ME, Eisa NH, Kondrikov D, Hussein KA, Aguilar-Pérez A, Herberg S, Periyasamy-Thandavan S, Fulzele S, Hamrick MW, McGee-Lawrence ME, Isales CM, Volkman BF, Hill WD. What doesn't kill you makes you stranger: Dipeptidyl peptidase-4 (CD26) proteolysis differentially modulates the activity of many peptide hormones and cytokines generating novel cryptic bioactive ligands. Pharmacol Ther 2019; 198:90-108. [PMID: 30759373 PMCID: PMC7883480 DOI: 10.1016/j.pharmthera.2019.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dipeptidyl peptidase 4 (DPP4) is an exopeptidase found either on cell surfaces where it is highly regulated in terms of its expression and surface availability (CD26) or in a free/circulating soluble constitutively available and intrinsically active form. It is responsible for proteolytic cleavage of many peptide substrates. In this review we discuss the idea that DPP4-cleaved peptides are not necessarily inactivated, but rather can possess either a modified receptor selectivity, modified bioactivity, new antagonistic activity, or even a novel activity relative to the intact parent ligand. We examine in detail five different major DPP4 substrates: glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), peptide tyrosine-tyrosine (PYY), and neuropeptide Y (NPY), and stromal derived factor 1 (SDF-1 aka CXCL12). We note that discussion of the cleaved forms of these five peptides are underrepresented in the research literature, and are both poorly investigated and poorly understood, representing a serious research literature gap. We believe they are understudied and misinterpreted as inactive due to several factors. This includes lack of accurate and specific quantification methods, sample collection techniques that are inherently inaccurate and inappropriate, and a general perception that DPP4 cleavage inactivates its ligand substrates. Increasing evidence points towards many DPP4-cleaved ligands having their own bioactivity. For example, GLP-1 can work through a different receptor than GLP-1R, DPP4-cleaved GIP can function as a GIP receptor antagonist at high doses, and DPP4-cleaved PYY, NPY, and CXCL12 can have different receptor selectivity, or can bind novel, previously unrecognized receptors to their intact ligands, resulting in altered signaling and functionality. We believe that more rigorous research in this area could lead to a better understanding of DPP4's role and the biological importance of the generation of novel cryptic ligands. This will also significantly impact our understanding of the clinical effects and side effects of DPP4-inhibitors as a class of anti-diabetic drugs that potentially have an expanding clinical relevance. This will be specifically relevant in targeting DPP4 substrate ligands involved in a variety of other major clinical acute and chronic injury/disease areas including inflammation, immunology, cardiology, stroke, musculoskeletal disease and injury, as well as cancer biology and tissue maintenance in aging.
Collapse
Affiliation(s)
- Ahmed M Elmansi
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States
| | - Mohamed E Awad
- Department of Oral Biology, School of Dentistry, Augusta University, Augusta, GA 30912, United States
| | - Nada H Eisa
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, United States; Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Dmitry Kondrikov
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States
| | - Khaled A Hussein
- Department of Surgery and Medicine, National Research Centre, Cairo, Egypt
| | - Alexandra Aguilar-Pérez
- Department of Anatomy and Cell Biology, Indiana University School of Medicine in Indianapolis, IN, United States; Department of Cellular and Molecular Biology, School of Medicine, Universidad Central del Caribe, Bayamon, 00956, Puerto Rico; Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Samuel Herberg
- Departments of Ophthalmology & Cell and Dev. Bio., SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | | | - Sadanand Fulzele
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States
| | - Mark W Hamrick
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States
| | - Meghan E McGee-Lawrence
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States
| | - Carlos M Isales
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States; Division of Endocrinology, Diabetes and Metabolism, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Brian F Volkman
- Biochemistry Department, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - William D Hill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States; Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States.
| |
Collapse
|
17
|
Gao X, Abdelkarim H, Albee LJ, Volkman BF, Gaponenko V, Majetschak M. Partial agonist activity of α1-adrenergic receptor antagonists for chemokine (C-X-C motif) receptor 4 and atypical chemokine receptor 3. PLoS One 2018; 13:e0204041. [PMID: 30248140 PMCID: PMC6152952 DOI: 10.1371/journal.pone.0204041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 09/01/2018] [Indexed: 12/15/2022] Open
Abstract
We observed in PRESTO-Tango β-arrestin recruitment assays that the α1-adrenergic receptor (AR) antagonist prazosin activates chemokine (C-X-C motif) receptor (CXCR)4. This prompted us to further examine this unexpected pharmacological behavior. We screened a panel of 14 α1/2- and β1/2/3-AR antagonists for CXCR4 and atypical chemokine receptor (ACKR)3 agonist activity in PRESTO-Tango assays against the cognate agonist CXCL12. We observed that multiple α1-AR antagonists activate CXCR4 (CXCL12 = prazosin = cyclazosin > doxazosin) and ACKR3 (CXCL12 = prazosin = cyclazosin > alfuzosin = doxazosin = phentolamine > terazosin = silodosin = tamsulosin). The two strongest CXCR4/ACKR3 activators, prazosin and cyclazosin, were selected for a more detailed evaluation. We found that the drugs dose-dependently activate both receptors in β-arrestin recruitment assays, stimulate ERK1/2 phosphorylation in HEK293 cells overexpressing each receptor, and that their effects on CXCR4 could be inhibited with AMD3100. Both α1-AR antagonists induced significant chemical shift changes in the 1H-13C-heteronuclear single quantum correlation spectrum of CXCR4 and ACKR3 in membranes, suggesting receptor binding. Furthermore, prazosin and cyclazosin induced internalization of endogenous CXCR4/ACKR3 in human vascular smooth muscle cells (hVSMC). While these drugs did not in induce chemotaxis in hVSMC, they inhibited CXCL12-induced chemotaxis with high efficacy and potency (IC50: prazosin—4.5 nM, cyclazosin 11.6 pM). Our findings reveal unexpected pharmacological properties of prazosin, cyclazosin, and likely other α1-AR antagonists. The results of the present study imply that prazosin and cyclazosin are biased or partial CXCR4/ACKR3 agonists, which function as potent CXCL12 antagonists. Our findings could provide a mechanistic basis for previously observed anti-cancer properties of α1-AR antagonists and support the concept that prazosin could be re-purposed for the treatment of disease processes in which CXCR4 and ACKR3 are thought to play significant pathophysiological roles, such as cancer metastases or various autoimmune pathologies.
Collapse
Affiliation(s)
- Xianlong Gao
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Hazem Abdelkarim
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Lauren J. Albee
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, IL, United States of America
| | - Brian F. Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Matthias Majetschak
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|