1
|
Montgomery VA, Cain E, Styczynski MP, Prausnitz MR. Bacillus subtilis engineered for topical delivery of an antifungal agent. PLoS One 2023; 18:e0293664. [PMID: 38032939 PMCID: PMC10688720 DOI: 10.1371/journal.pone.0293664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/14/2023] [Indexed: 12/02/2023] Open
Abstract
Fungal skin infections are a common condition affecting 20-25 percent of the world population. While these conditions are treatable with regular application of an antifungal medication, we sought to develop a more convenient, longer-lasting topical antifungal platform that could increase patient adherence to treatment regimens by using Bacillus subtilis, a naturally antifungal bacteria found on the skin, for drug production and delivery. In this study, we engineered B. subtilis for increased production of the antifungal lipopeptide iturin A by overexpression of the pleiotropic regulator DegQ. The engineered strain had an over 200% increase in iturin A production as detected by HPLC, accompanied by slower growth but the same terminal cell density as determined by absorbance measurements of liquid culture. In an in vitro antifungal assay, we found that despite its higher iturin A production, the engineered strain was less effective at reducing the growth of a plug of the pathogenic fungus Trichophyton mentagrophytes on an agar plate compared to the parent strain. The reduced efficacy of the engineered strain may be explained by its reduced growth rate, which highlights the need to address trade-offs between titers (e.g. measured drug production) and other figures of merit (e.g. growth rate) during metabolic engineering.
Collapse
Affiliation(s)
- Veronica A. Montgomery
- Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Tech, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Ethan Cain
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Mark P. Styczynski
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Mark R. Prausnitz
- Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Tech, Georgia Institute of Technology, Atlanta, GA, United States of America
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
| |
Collapse
|
2
|
de Souza EMDC, de Oliveira MVD, Siqueira JEDS, Rocha DCDC, Marinho ADNR, Marinho AMDR, Marinho PSB, Lima AH. Molecular characterization and in silico evaluation of surfactins produced by endophytic bacteria from Phanera splendens. Front Chem 2023; 11:1240704. [PMID: 37608862 PMCID: PMC10441774 DOI: 10.3389/fchem.2023.1240704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/28/2023] [Indexed: 08/24/2023] Open
Abstract
The Phanera splendens (Kunth) Vaz. is a medicinal plant that is used in traditional medicine for the treatment of various diseases, such as malaria. This plant presents highly efficient endophytic bacterial isolates with biocontrol properties. Bacillus sp. is responsible for the production of a variety of non-ribosomal synthesized cyclic lipopeptides which highlight the surfactins. Surfactins have a wide range of antimicrobial activity, including antiplasmodial activity. There is scientific evidence that surfactin structure 2d-01 can be a potent inhibitor against a Plasmodium falciparum sirtuin (Sir2) by acting on the Sir2A protein as the target. The Pf genome encodes two known sirtuins, PfSir2A and PfSir2B, where PfSir2A is a regulator of asexual growth and var gene expression. Herein, we have identified six surfactins produced by endophytic bacteria and performed in silico analysis to elucidate the binding mode of surfactins at the active site of the PfSir2A enzyme. Among the characterized surfactins, 1d-02 showed the highest affinity for the PfSir2A enzyme, with binding energy values equal to -45.08 ± 6.0 and -11.95 ± 0.8 kcal/mol, using MM/GBSA and SIE methods, respectively. We hope that the information about the surfactin structures obtained in this work, as well as the potential binding affinity with an important enzyme from P. falciparum, could contribute to the design of new compounds with antimalarial activity.
Collapse
Affiliation(s)
| | - Maycon Vinicius Damasceno de Oliveira
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará, Brazil
| | - José Edson de Sousa Siqueira
- Laboratório de Bioensaios e Química de Microrganismos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará, Brazil
| | | | | | - Andrey Moacir do Rosario Marinho
- Laboratório de Bioensaios e Química de Microrganismos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Patrícia Santana Barbosa Marinho
- Laboratório de Bioensaios e Química de Microrganismos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Anderson H. Lima
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará, Brazil
| |
Collapse
|
3
|
Wu G, Zhou J, Zheng J, Abdalmegeed D, Tian J, Wang M, Sun S, Sedjoah RCAA, Shao Y, Sun S, Xin Z. Construction of lipopeptide mono-producing Bacillus strains and comparison of their antimicrobial activity. FOOD BIOSCI 2023; 53:102813. [DOI: 10.1016/j.fbio.2023.102813] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
|
4
|
Interdisciplinary Overview of Lipopeptide and Protein-Containing Biosurfactants. Genes (Basel) 2022; 14:genes14010076. [PMID: 36672817 PMCID: PMC9859011 DOI: 10.3390/genes14010076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Biosurfactants are amphipathic molecules capable of lowering interfacial and superficial tensions. Produced by living organisms, these compounds act the same as chemical surfactants but with a series of improvements, the most notable being biodegradability. Biosurfactants have a wide diversity of categories. Within these, lipopeptides are some of the more abundant and widely known. Protein-containing biosurfactants are much less studied and could be an interesting and valuable alternative. The harsh temperature, pH, and salinity conditions that target organisms can sustain need to be understood for better implementation. Here, we will explore biotechnological applications via lipopeptide and protein-containing biosurfactants. Also, we discuss their natural role and the organisms that produce them, taking a glimpse into the possibilities of research via meta-omics and machine learning.
Collapse
|
5
|
Feng Z, Xu M, Yang J, Zhang R, Geng Z, Mao T, Sheng Y, Wang L, Zhang J, Zhang H. Molecular characterization of a novel strain of Bacillus halotolerans protecting wheat from sheath blight disease caused by Rhizoctonia solani Kühn. FRONTIERS IN PLANT SCIENCE 2022; 13:1019512. [PMID: 36325560 PMCID: PMC9618607 DOI: 10.3389/fpls.2022.1019512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
UNLABELLED Rhizoctonia solani Kühn naturally infects and causes Sheath blight disease in cereal crops such as wheat, rice and maize, leading to severe reduction in grain yield and quality. In this work, a new bacterial strain Bacillus halotolerans LDFZ001 showing efficient antagonistic activity against the pathogenic strain Rhizoctonia solani Kühn sh-1 was isolated. Antagonistic, phylogenetic and whole genome sequencing analyses demonstrate that Bacillus halotolerans LDFZ001 strongly suppressed the growth of Rhizoctonia solani Kühn sh-1, showed a close evolutionary relationship with B. halotolerans F41-3, and possessed a 3,965,118 bp circular chromosome. Bioinformatic analysis demonstrated that the genome of Bacillus halotolerans LDFZ001 contained ten secondary metabolite biosynthetic gene clusters (BGCs) encoding five non-ribosomal peptide synthases, two polyketide synthase, two terpene synthases and one bacteriocin synthase, and a new kijanimicin biosynthetic gene cluster which might be responsible for the biosynthesis of novel compounds. Gene-editing experiments revealed that functional expression of phosphopantetheinyl transferase (SFP) and major facilitator superfamily (MFS) transporter genes in Bacillus halotolerans LDFZ001 was essential for its antifungal activity against R. solani Kühn sh-1. Moreover, the existence of two identical chitosanases may also make contribution to the antipathogen activity of Bacillus halotolerans LDFZ001. Our findings will provide fundamental information for the identification and isolation of new sheath blight resistant genes and bacterial strains which have a great potential to be used for the production of bacterial control agents. IMPORTANCE A new Bacillus halotolerans strain Bacillus halotolerans LDFZ001 resistant to sheath blight in wheat is isolated. Bacillus halotolerans LDFZ001 harbors a new kijanimicin biosynthetic gene cluster, and the functional expression of SFP and MFS contribute to its antipathogen ability.
Collapse
Affiliation(s)
- Zhibin Feng
- College of Life Science, Ludong University, Yantai, China
| | - Mingzhi Xu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- College of Agriculture, Ludong University, Yantai, China
| | - Jin Yang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- College of Agriculture, Ludong University, Yantai, China
| | - Renhong Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- College of Agriculture, Ludong University, Yantai, China
| | - Zigui Geng
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- College of Agriculture, Ludong University, Yantai, China
| | - Tingting Mao
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- College of Agriculture, Ludong University, Yantai, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, Yantai, China
| | - Yuting Sheng
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- College of Agriculture, Ludong University, Yantai, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, Yantai, China
| | - Limin Wang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- College of Agriculture, Ludong University, Yantai, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, Yantai, China
| | - Juan Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- College of Agriculture, Ludong University, Yantai, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, Yantai, China
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, Yantai, China
- Shandong Institute of Sericulture, Shandong Academy of Agricultural Sciences, Yantai, China
| |
Collapse
|
6
|
Mogaka JN, Owuor PM, Odhiambo S, Waterman C, McGuire MK, Fuchs GJ, Attia SL. Investigating the Impact of Moringa oleifera Supplemented to Kenyan Breastfeeding Mothers on Maternal and Infant Health: A Cluster Randomized Single-Blinded Controlled Pilot Trial Protocol. JPGN REPORTS 2022; 3:e237. [PMID: 37168619 PMCID: PMC10158460 DOI: 10.1097/pg9.0000000000000237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/22/2022] [Indexed: 05/13/2023]
Abstract
Undernutrition contributes to up to 45% of deaths globally in children <5 years, with an optimal time for intervention before 24 months of age. Breastmilk microbiome helps establish the infant intestinal microbiome and impacts infant intestinal and nutritional health. Inadequacies in breastmilk composition such as low vitamin A contribute to infant nutrient deficiencies. Changes in milk fatty acid composition (reduced saturated and increased unsaturated fatty acids) may reduce susceptibility to enteric infection and increase protective intestinal bacteria. Moringa oleifera leaves (moringa) provide high nutrient concentrations (including protein, iron, vitamin A) and increase milk production; this may enhance breastmilk quantity and quality and improve infant health. Objective To investigate the role of moringa supplementation to improve maternal and infant nutritional and intestinal health via changes in maternal milk quantity and quality. Methods Fifty mother-infant pairs exclusively breastfeeding will be enrolled in a single-blinded randomized controlled trial in Kombewa County Hospital and Chulaimbo SubCounty Hospital, Kisumu, Kenya. Intervention Dietary Supplementation of 20 g of Moringa oleifera leaf powder divided twice daily in corn porridge consumed daily for 3 months while control comparator will receive porridge daily for 3 months. Outcomes Change in infant growth and maternal milk output (primary); maternal and infant vitamin A and iron status, changes in infant and maternal intestinal health (secondary). Participating Centers Pamoja Community Based Organization, Kombewa Sub-County Hospital, and Chulaimbo Sub-County Hospital.
Collapse
Affiliation(s)
| | - Patrick Mbullo Owuor
- Pamoja Community Based Organization, Kisumu, Kenya
- Department of Anthropology, Weinberg College of Arts and Sciences, Northwestern University, Chicago, Illinois
| | | | - Carrie Waterman
- Institute of Global Nutrition, University of California, Davis, Davis, California
| | - Michelle K. McGuire
- College of Agricultural and Life Sciences, Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, Idaho
| | - George J. Fuchs
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, University of Kentucky College of Medicine, Lexington, Kentucky
- Department of Epidemiology and Department of Preventive Medicine and Environmental Health, University of Kentucky College of Public Health, Lexington, Kentucky
| | - Suzanna L. Attia
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, University of Kentucky College of Medicine, Lexington, Kentucky
| |
Collapse
|
7
|
Zhang B, Xu L, Ding J, Wang M, Ge R, Zhao H, Zhang B, Fan J. Natural antimicrobial lipopeptides secreted by Bacillus spp. and their application in food preservation, a critical review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
8
|
Huang BS, Liu D, Chen J, Yang H, Yousaf Z, Liu CY. Growth promotion effects of bacillus subtilis on bletilla striata seedlings. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2021. [DOI: 10.4103/2311-8571.317484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
9
|
Huang BS, Liu D, Chen J, Yang H, Yousaf Z, Liu CY. Growth promotion effects of bacillus subtilis on bletilla striata seedlings. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2021. [DOI: 10.4103/wjtcm.wjtcm_31_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
10
|
Kim YT, Kim SE, Lee WJ, Fumei Z, Cho MS, Moon JS, Oh HW, Park HY, Kim SU. Isolation and characterization of a high iturin yielding Bacillus velezensis UV mutant with improved antifungal activity. PLoS One 2020; 15:e0234177. [PMID: 33270634 PMCID: PMC7714226 DOI: 10.1371/journal.pone.0234177] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 05/14/2020] [Indexed: 11/19/2022] Open
Abstract
To isolate Bacillus velezensis mutants with improved antifungal activity for use in the biological control of phytopathogenic fungi, wild-type Bacillus velezensis KRF-001 producing iturin, surfactin, and fengycin was irradiated by ultraviolet (UV) rays. The in vitro and in vivo antifungal activities of UV mutants and characterization of the cyclic lipopeptides produced by a selected mutant were examined. A mutant strain yielding high levels of iturin showed over 2-fold higher antifungal activity than the wild-type against Fusarium oxysporum. A potent suppressive effect of the mutant was also observed on spore germination of Botrytis cinerea, the causative agent of cucumber gray mold, at different butanol extract concentrations. Further analysis of the mutant by real-time PCR and high-performance liquid chromatography revealed increased expression of iturin and surfactin biosynthesis genes as well as enhanced production of iturin and surfactin metabolites. However, the amounts of fengycin obtained from the mutant strain BSM54 were significantly lesser than those of iturin and surfactin. Particularly, iturin A production by the mutant was 3.5-fold higher than that of the wild-type, suggesting that the higher antifungal activity of the mutant against F. oxysporum resulted from the increased expression of biosynthesis genes associated with iturin production. The commercial greenhouse experiment using soil naturally infested with Sclerotinia sclerotiorum (sclerotinia rot) and F. oxysporum (fusarium wilt) showed that the mutant strain reduced sclerotinia rot and fusarium wilt diseases (P = 0.05) more effectively than the wild-type and commercially available product Cillus® in Korea. These results suggest that the mutant with high iturin yield is a potential candidate for the development of a biological control agent in agriculture.
Collapse
Affiliation(s)
- Young Tae Kim
- Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Sung Eun Kim
- Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Won Jung Lee
- Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Zhao Fumei
- Molecular Biofarming Research Center, KRIBB, Daejeon, Republic of Korea
| | | | - Jae Sun Moon
- Molecular Biofarming Research Center, KRIBB, Daejeon, Republic of Korea
| | - Hyun-Woo Oh
- Core Facility Management Center, KRIBB, Daejeon, Republic of Korea
| | - Ho-Yong Park
- Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Sung Uk Kim
- Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- * E-mail:
| |
Collapse
|
11
|
Albarracín Orio AG, Petras D, Tobares RA, Aksenov AA, Wang M, Juncosa F, Sayago P, Moyano AJ, Dorrestein PC, Smania AM. Fungal-bacterial interaction selects for quorum sensing mutants with increased production of natural antifungal compounds. Commun Biol 2020; 3:670. [PMID: 33184402 PMCID: PMC7661731 DOI: 10.1038/s42003-020-01342-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/07/2020] [Indexed: 01/05/2023] Open
Abstract
Soil microorganisms coexist and interact showing antagonistic or mutualistic behaviors. Here, we show that an environmental strain of Bacillus subtilis undergoes heritable phenotypic variation upon interaction with the soil fungal pathogen Setophoma terrestris (ST). Metabolomics analysis revealed differential profiles in B. subtilis before (pre-ST) and after (post-ST) interacting with the fungus, which paradoxically involved the absence of lipopeptides surfactin and plipastatin and yet acquisition of antifungal activity in post-ST variants. The profile of volatile compounds showed that 2-heptanone and 2-octanone were the most discriminating metabolites present at higher concentrations in post-ST during the interaction process. Both ketones showed strong antifungal activity, which was lost with the addition of exogenous surfactin. Whole-genome analyses indicate that mutations in ComQPXA quorum-sensing system, constituted the genetic bases of post-ST conversion, which rewired B. subtilis metabolism towards the depletion of surfactins and the production of antifungal compounds during its antagonistic interaction with S. terrestris.
Collapse
Affiliation(s)
- Andrea G Albarracín Orio
- IRNASUS, Universidad Católica de Córdoba, CONICET, Facultad de Ciencias Agropecuarias, Córdoba, Argentina.
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina.
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina.
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Daniel Petras
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, 92093, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Romina A Tobares
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Alexander A Aksenov
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Mingxun Wang
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Florencia Juncosa
- IRNASUS, Universidad Católica de Córdoba, CONICET, Facultad de Ciencias Agropecuarias, Córdoba, Argentina
| | - Pamela Sayago
- IRNASUS, Universidad Católica de Córdoba, CONICET, Facultad de Ciencias Agropecuarias, Córdoba, Argentina
| | - Alejandro J Moyano
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, 92093, USA.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA.
| | - Andrea M Smania
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina.
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina.
| |
Collapse
|
12
|
Key elements and regulation strategies of NRPSs for biosynthesis of lipopeptides by Bacillus. Appl Microbiol Biotechnol 2020; 104:8077-8087. [DOI: 10.1007/s00253-020-10801-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/08/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
|
13
|
Hazarika DJ, Goswami G, Gautom T, Parveen A, Das P, Barooah M, Boro RC. Lipopeptide mediated biocontrol activity of endophytic Bacillus subtilis against fungal phytopathogens. BMC Microbiol 2019; 19:71. [PMID: 30940070 PMCID: PMC6444643 DOI: 10.1186/s12866-019-1440-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 03/22/2019] [Indexed: 01/20/2023] Open
Abstract
Background The use of chemical fungicides against fungal pathogens adversely affects soil and plant health thereby resulting in overall environmental hazards. Therefore, biological source for obtaining antifungal agents is considered as an environment-friendly alternative for controlling fungal pathogens. Results In this study, seven endophytic bacteria were isolated from sugarcane leaves and screened for its antifungal activity against 10 fungal isolates belonging to the genera Alternaria, Cochliobolus, Curvularia, Fusarium, Neodeightonia, Phomopsis and Saccharicola isolated from diseased leaves of sugarcane. Among the seven bacterial isolates, SCB-1 showed potent antagonistic activity against the tested fungi. Based on the phenotypic data, Fatty Acid Methyl Esters (FAME) and 16S rRNA gene sequence analysis, the isolate SCB-1 was identified as Bacillus subtilis. The bacterial isolate was screened negative for chitinase production; however, chloroform and methanol extracts of the bacterial culture caused significant inhibition in the growth of the fungal isolates on semisolid media. Volatile component assay showed highest inhibitory activity against Saccharicola bicolor (SC1.4). A PCR based study detected the presence of the genes involved in biosynthesis of surfactin, bacillaene, difficidin, macrolactins and fengycin. Mass spectrometric analysis of the bacterial extract detected the presence of antifungal lipopeptide surfactin, but other metabolites were not detected. The biocontrol activity of the bacterial isolate was established when bacterial pretreated mung bean seeds were able to resist Fusarium infection, however, the untreated seeds failed to germinate. Conclusion The antifungal potential of isolate Bacillus subtilis SCB-1 was established against taxonomically diverse fungal pathogens including the genera Saccharicola, Cochliobolus, Alternaria and Fusarium. The potent antifungal compound surfactin as well as volatiles produced by the bacterial isolate could be responsible for its bio-control activity against fungal infections. Electronic supplementary material The online version of this article (10.1186/s12866-019-1440-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dibya Jyoti Hazarika
- Department of Agricultural Biotechnology, Assam Agricultural University, 785013, Jorhat, India
| | - Gunajit Goswami
- Department of Agricultural Biotechnology, Assam Agricultural University, 785013, Jorhat, India
| | - Trishnamoni Gautom
- Department of Agricultural Biotechnology, Assam Agricultural University, 785013, Jorhat, India
| | - Assma Parveen
- Department of Agricultural Biotechnology, Assam Agricultural University, 785013, Jorhat, India
| | - Pompi Das
- Department of Agricultural Biotechnology, Assam Agricultural University, 785013, Jorhat, India
| | - Madhumita Barooah
- Department of Agricultural Biotechnology, Assam Agricultural University, 785013, Jorhat, India
| | - Robin Chandra Boro
- Department of Agricultural Biotechnology, Assam Agricultural University, 785013, Jorhat, India.
| |
Collapse
|
14
|
Characterization of Antifungal Lipopeptide Biosurfactants Produced by Marine Bacterium Bacillus sp. CS30. Mar Drugs 2019; 17:md17040199. [PMID: 30934847 PMCID: PMC6520760 DOI: 10.3390/md17040199] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 11/23/2022] Open
Abstract
This study was initiated to screen for marine bacterial agents to biocontrol Magnaporthe grisea, a serious fungal pathogen of cereal crops. A bacterial strain, isolated from the cold seep in deep sea, exhibited strong growth inhibition against M. grisea, and the strain was identified and designated as Bacillus sp. CS30. The corresponding antifungal agents were purified by acidic precipitation, sequential methanol extraction, Sephadex LH-20 chromatography, and reversed phase high-performance liquid chromatography (RP-HPLC), and two antifungal peaks were obtained at the final purification step. After analysis by mass spectrometry (MS) and tandem MS, two purified antifungal agents were deduced to belong to the surfactin family, and designated as surfactin CS30-1 and surfactin CS30-2. Further investigation showed that although the antifungal activity of surfactin CS30-1 is higher than that of surfactin CS30-2, both of them induced the increased generation of reactive oxygen species (ROS) and caused serious damage to the cell wall and cytoplasm, thus leading to the cell death of M. grisea. Our results also show the differences of the antifungal activity and antifungal mechanism of the different surfactin homologs surfactin CS30-1 and surfactin CS30-2, and highlight them as potential promising agents to biocontrol plant diseases caused by M. grisea.
Collapse
|