1
|
Krkoška M, Paruch K, Šošolíková T, Vázquez-Gómez G, Herůdková J, Novotný J, Ovesná P, Sova P, Hyršlová Vaculová A. Inhibition of Chk1 stimulates cytotoxic action of platinum-based drugs and TRAIL combination in human prostate cancer cells. Biol Chem 2024; 405:395-406. [PMID: 38452398 DOI: 10.1515/hsz-2023-0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
Checkpoint kinase 1 (Chk1) plays an important role in regulation of the cell cycle, DNA damage response and cell death, and represents an attractive target in anticancer therapy. Small-molecule inhibitors of Chk1 have been intensively investigated either as single agents or in combination with various chemotherapeutic drugs and they can enhance the chemosensitivity of numerous tumor types. Here we newly demonstrate that pharmacological inhibition of Chk1 using potent and selective inhibitor SCH900776, currently profiled in phase II clinical trials, significantly enhances cytotoxic effects of the combination of platinum-based drugs (cisplatin or LA-12) and TRAIL (tumor necrosis factor-related apoptosis inducing ligand) in human prostate cancer cells. The specific role of Chk1 in the drug combination-induced cytotoxicity was confirmed by siRNA-mediated silencing of this kinase. Using RNAi-based methods we also showed the importance of Bak-dependent mitochondrial apoptotic pathway in the combined anticancer action of SCH900776, cisplatin and TRAIL. The triple drug combination-induced cytotoxicity was partially enhanced by siRNA-mediated Mcl-1 silencing. Our findings suggest that targeting Chk1 may be used as an efficient strategy for sensitization of prostate cancer cells to killing action of platinum-based chemotherapeutic drugs and TRAIL.
Collapse
Affiliation(s)
- Martin Krkoška
- Department of Cytokinetics, 86853 Institute of Biophysics of the Czech Academy of Sciences , Královopolská 135, CZ-612 65 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, 117204 Masaryk University , Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Kamil Paruch
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 53, CZ-602 00 Brno, Czech Republic
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CaZ-625 00, Brno, Czech Republic
| | - Tereza Šošolíková
- Department of Cytokinetics, 86853 Institute of Biophysics of the Czech Academy of Sciences , Královopolská 135, CZ-612 65 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, 117204 Masaryk University , Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Gerardo Vázquez-Gómez
- Department of Cytokinetics, 86853 Institute of Biophysics of the Czech Academy of Sciences , Královopolská 135, CZ-612 65 Brno, Czech Republic
| | - Jarmila Herůdková
- Department of Cytokinetics, 86853 Institute of Biophysics of the Czech Academy of Sciences , Královopolská 135, CZ-612 65 Brno, Czech Republic
| | - Jan Novotný
- Department of Cytokinetics, 86853 Institute of Biophysics of the Czech Academy of Sciences , Královopolská 135, CZ-612 65 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, 117204 Masaryk University , Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Petra Ovesná
- Department of Experimental Biology, Faculty of Science, 117204 Masaryk University , Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Petr Sova
- Platinum Pharmaceuticals, a.s., CZ Brno, Czech Republic
| | - Alena Hyršlová Vaculová
- Department of Cytokinetics, 86853 Institute of Biophysics of the Czech Academy of Sciences , Královopolská 135, CZ-612 65 Brno, Czech Republic
| |
Collapse
|
2
|
Zhang J, Li H, Liu Y, Zhao K, Wei S, Sugarman ET, Liu L, Zhang G. Targeting HSP90 as a Novel Therapy for Cancer: Mechanistic Insights and Translational Relevance. Cells 2022; 11:cells11182778. [PMID: 36139353 PMCID: PMC9497295 DOI: 10.3390/cells11182778] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/27/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Heat shock protein (HSP90), a highly conserved molecular chaperon, is indispensable for the maturation of newly synthesized poly-peptides and provides a shelter for the turnover of misfolded or denatured proteins. In cancers, the client proteins of HSP90 extend to the entire process of oncogenesis that are associated with all hallmarks of cancer. Accumulating evidence has demonstrated that the client proteins are guided for proteasomal degradation when their complexes with HSP90 are disrupted. Accordingly, HSP90 and its co-chaperones have emerged as viable targets for the development of cancer therapeutics. Consequently, a number of natural products and their analogs targeting HSP90 have been identified. They have shown a strong inhibitory effect on various cancer types through different mechanisms. The inhibitors act by directly binding to either HSP90 or its co-chaperones/client proteins. Several HSP90 inhibitors—such as geldanamycin and its derivatives, gamitrinib and shepherdin—are under clinical evaluation with promising results. Here, we review the subcellular localization of HSP90, its corresponding mechanism of action in the malignant phenotypes, and the recent progress on the development of HSP90 inhibitors. Hopefully, this comprehensive review will shed light on the translational potential of HSP90 inhibitors as novel cancer therapeutics.
Collapse
Affiliation(s)
- Jian Zhang
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Houde Li
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Yu Liu
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, 34 Hospital Road, Sai Ying Pun, Hong Kong 999077, China
| | - Kejia Zhao
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Shiyou Wei
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Eric T. Sugarman
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Lunxu Liu
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Gao Zhang
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, 34 Hospital Road, Sai Ying Pun, Hong Kong 999077, China
- Correspondence:
| |
Collapse
|
3
|
Fedoros EI, Tyndyk ML, Popovich IG, Anikin IV, Yurova MN, Gubareva EA, Pigarev SE, Panchenko AV, Solovyev ND, Anisimov VN. Assessment of antitumor activity of BP-C1, a platinum-based anticancer agent with a lignin-derived polymeric ligand, in autochthonous induced and spontaneous carcinogenesis rodent models. J Trace Elem Med Biol 2022; 73:127013. [PMID: 35679766 DOI: 10.1016/j.jtemb.2022.127013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 04/18/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND A standard approach to study the anticancer activity of novel drugs is their testing in animals with inoculated tumors, which has some limitations. An alternative is the use of spontaneous or carcinogen-induced tumor models as they have better translation potential. The carcinogen-induced and transgenic tumor models were used to assess the antitumor activity of BP-C1, a platinum-containing drug with lignin-derived polymeric ligand. METHODS We used female Swiss-H-derived mice and Wistar female rats to induce autochthonous tumors via exposure to benzo[a]pyrene and 1,2-dimethylhydrazine, respectively. Additionally, transgenic HER-2/neu FVB/N female mice, prone to the development of spontaneous mammary carcinomas, were used. RESULTS Antitumor activity of BP-C1 was observed in soft tissue sarcomas, induced by benzo[a]pyrene. The animals treated with BP-C1 exhibited more stabilizations and therapy responses compared to placebo controls. The efficacy of BP-C1 was somewhat reduced compared to cyclophosphamide; however, their combination resulted in an enhanced antitumor effect. For the 1,2-dimethylhydrazine-induced rat colon cancer model, BP-C1 reduced tumor multiplicity by 21-41 %. For mammary adenocarcinomas in HER-2/neu FVB/N mice, short-termed complete responses were observed in the BP-C1 groups with a frequency of 12-13 %, while complete responses were absent in the placebo group. CONCLUSION The results acquired indicated a wide spectrum of antitumor activity of BP-C1.
Collapse
Affiliation(s)
- Elena I Fedoros
- Department of Carcinogenesis and Oncogerontology, N.N. Petrov National Medical Research Center of Oncology, 68, Leningradskaya Str., Pesochny, Saint Petersburg 197758, Russia; Nobel Ltd., of. 333, 271A, pr. Obukhovskoy Oborony, Saint Petersburg 192012, Russia
| | - Margarita L Tyndyk
- Department of Carcinogenesis and Oncogerontology, N.N. Petrov National Medical Research Center of Oncology, 68, Leningradskaya Str., Pesochny, Saint Petersburg 197758, Russia
| | - Irina G Popovich
- Department of Carcinogenesis and Oncogerontology, N.N. Petrov National Medical Research Center of Oncology, 68, Leningradskaya Str., Pesochny, Saint Petersburg 197758, Russia
| | - Ivan V Anikin
- Department of Carcinogenesis and Oncogerontology, N.N. Petrov National Medical Research Center of Oncology, 68, Leningradskaya Str., Pesochny, Saint Petersburg 197758, Russia
| | - Maria N Yurova
- Department of Carcinogenesis and Oncogerontology, N.N. Petrov National Medical Research Center of Oncology, 68, Leningradskaya Str., Pesochny, Saint Petersburg 197758, Russia
| | - Ekaterina A Gubareva
- Department of Carcinogenesis and Oncogerontology, N.N. Petrov National Medical Research Center of Oncology, 68, Leningradskaya Str., Pesochny, Saint Petersburg 197758, Russia
| | - Sergey E Pigarev
- Department of Carcinogenesis and Oncogerontology, N.N. Petrov National Medical Research Center of Oncology, 68, Leningradskaya Str., Pesochny, Saint Petersburg 197758, Russia; Nobel Ltd., of. 333, 271A, pr. Obukhovskoy Oborony, Saint Petersburg 192012, Russia
| | - Andrey V Panchenko
- Department of Carcinogenesis and Oncogerontology, N.N. Petrov National Medical Research Center of Oncology, 68, Leningradskaya Str., Pesochny, Saint Petersburg 197758, Russia
| | - Nikolay D Solovyev
- Atlantic Technological University, ATU Sligo, Ash Lane, Sligo F91 YW50, Ireland.
| | - Vladimir N Anisimov
- Department of Carcinogenesis and Oncogerontology, N.N. Petrov National Medical Research Center of Oncology, 68, Leningradskaya Str., Pesochny, Saint Petersburg 197758, Russia
| |
Collapse
|
4
|
Lee MW, Kim DS, Eom JE, Lee JW, Sung KW, Koo HH, Hong YB, Yoo KH. Dual role of ERK2/NF-κB signaling in TRAIL sensitivity. Am J Cancer Res 2022; 12:3373-3389. [PMID: 35968322 PMCID: PMC9360224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023] Open
Abstract
Targeting tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling is a promising approach in cancer treatment. Although ERK and/or NF-κB signaling is involved in the expression of TRAIL receptors (TRAIL-R), the exact underlying mechanisms remain unknown. In this study, we evaluated the role of ERK2 and NF-κB in the cytotoxicity of TRAIL during cisplatin treatment. Cisplatin treatment of neuroepithelioma cells (SK-N-MC) significantly induced ERK2 activation and increased TRAIL cytotoxicity via the upregulation of death receptor 5 (DR5) expression. In partial ERK2 knockdown cell lines that maintained only basal levels of ERK2 activity, cisplatin treatment did not increase ERK2 activity or DR5 expression. These findings indicate that induced (rather than basal) ERK2 activity enhances TRAIL susceptibility via DR5 expression. In complete ERK2 knockdown cell lines with no basal ERK2 activity, DR4, DR5, and DcRs expression levels were increased, and additional treatment with cisplatin did not further increase TRAIL-R expression. Chemical inhibition of ERK2 also enhanced TRAIL cytotoxicity by upregulating DR4 and DR5 expression. These findings indicate that basal ERK2 activity suppresses TRAIL-R expression. Both basal and inducible ERK2 activities regulate TRAIL-R expression via the NF-κB signaling pathway. Overall, our findings suggest that the ERK2/NF-κB signaling pathway has a dual role in TRAIL susceptibility by differentially regulating TRAIL-R expression in the same cellular system.
Collapse
Affiliation(s)
- Myoung Woo Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoul, Korea
- Cell and Gene Therapy Institute, Samsung Medical CenterKorea
- CELLnLIFE Inc.Seoul, Korea
| | - Dae Seong Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoul, Korea
- Cell and Gene Therapy Institute, Samsung Medical CenterKorea
- CELLnLIFE Inc.Seoul, Korea
| | - Ji Eun Eom
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoul, Korea
| | - Ji Won Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoul, Korea
| | - Ki Woong Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoul, Korea
| | - Hong Hoe Koo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoul, Korea
- Cell and Gene Therapy Institute, Samsung Medical CenterKorea
| | - Young Bin Hong
- Department of Biochemistry, College of Medicine, Dong-A UniversityBusan 49201, Korea
- Department of Translational Biomedical Sciences, Graduate School of Dong-A UniversityBusan 49201, Korea
| | - Keon Hee Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoul, Korea
- Cell and Gene Therapy Institute, Samsung Medical CenterKorea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan UniversitySeoul, Korea
| |
Collapse
|
5
|
Cao J, Chan WC, Chow MSS. Use of conditional reprogramming cell, patient derived xenograft and organoid for drug screening for individualized prostate cancer therapy: Current and future perspectives (Review). Int J Oncol 2022; 60:52. [PMID: 35322860 DOI: 10.3892/ijo.2022.5342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/14/2022] [Indexed: 11/06/2022] Open
Abstract
Prostate cancer mortality is ranked second among all cancer mortalities in men worldwide. There is a great need for a method of efficient drug screening for precision therapy, especially for patients with existing drug‑resistant prostate cancer. Based on the concept of bacterial cell culture and drug sensitivity testing, the traditional approach of cancer drug screening is inadequate. The current and more innovative use of cancer cell culture and in vivo tumor models in drug screening for potential individualization of anti‑cancer therapy is reviewed and discussed in the present review. An ideal screening model would have the ability to identify drug activity for the targeted cells resembling what would have occurred in the in vivo environment. Based on this principle, three available cell culture/tumor screening models for prostate cancer are reviewed and considered. The culture conditions, advantages and disadvantages for each model together with ideas to best utilize these models are discussed. The first screening model uses conditional reprogramed cells derived from patient cancer cells. Although these cells are convenient to grow and use, they are likely to have different markers and characteristics from original tumor cells and thus not likely to be informative. The second model employs patient derived xenograft (PDX) which resembles an in vivo approach, but its main disadvantages are that it cannot be easily genetically modified and it is not suitable for high‑throughput drug screening. Finally, high‑throughput screening is more feasible with tumor organoids grown from patient cancer cells. The last system still needs a large number of tumor cells. It lacks in situ blood vessels, immune cells and the extracellular matrix. Based on these current models, future establishment of an organoid data bank would allow the selection of a specific organoid resembling that of an individual's prostate cancer and used for screening of suitable anticancer drugs. This can be further confirmed using the PDX model. Thus, this combined organoid‑PDX approach is expected to be able to provide the drug sensitivity testing approach for individualization of prostate cancer therapy in the near future.
Collapse
Affiliation(s)
- Jessica Cao
- College of Osteopathic Medicine of The Pacific, Western University of Health Sciences, Pomona, CA 91766‑1854, USA
| | - Wing C Chan
- City of Hope Comprehensive Cancer Center, City of Hope Medical Center, Duarte, CA 91010‑3012, USA
| | - Moses S S Chow
- College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766‑1854, USA
| |
Collapse
|
6
|
Shi J, Wei L. Rho Kinases in Embryonic Development and Stem Cell Research. Arch Immunol Ther Exp (Warsz) 2022; 70:4. [PMID: 35043239 PMCID: PMC8766376 DOI: 10.1007/s00005-022-00642-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022]
Abstract
The Rho-associated coiled-coil containing kinases (ROCKs or Rho kinases) belong to the AGC (PKA/PKG/PKC) family of serine/threonine kinases and are major downstream effectors of small GTPase RhoA, a key regulator of actin-cytoskeleton reorganization. The ROCK family contains two members, ROCK1 and ROCK2, which share 65% overall identity and 92% identity in kinase domain. ROCK1 and ROCK2 were assumed to be functionally redundant, based largely on their major common activators, their high degree kinase domain homology, and study results from overexpression with kinase constructs or chemical inhibitors. ROCK signaling research has expanded to all areas of biology and medicine since its discovery in 1996. The rapid advance is befitting ROCK’s versatile functions in modulating various cell behavior, such as contraction, adhesion, migration, proliferation, polarity, cytokinesis, and differentiation. The rapid advance is noticeably driven by an extensive linking with clinical medicine, including cardiovascular abnormalities, aberrant immune responsive, and cancer development and metastasis. The rapid advance during the past decade is further powered by novel biotechnologies including CRISPR-Cas and single cell omics. Current consensus, derived mainly from gene targeting and RNA interference approaches, is that the two ROCK isoforms have overlapping and distinct cellular, physiological and pathophysiology roles. In this review, we present an overview of the milestone discoveries in ROCK research. We then focus on the current understanding of ROCK signaling in embryonic development, current research status using knockout and knockin mouse models, and stem cell research.
Collapse
Affiliation(s)
- Jianjian Shi
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, School of Medicine, Indiana University, 1044 West Walnut Street, R4-370, Indianapolis, IN, 46202-5225, USA.
| | - Lei Wei
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, School of Medicine, Indiana University, 1044 West Walnut Street, R4-370, Indianapolis, IN, 46202-5225, USA.
| |
Collapse
|
7
|
Sojka M, Chyba J, Paul SS, Wawrocka K, Hönigová K, Cuyacot BJR, Castro AC, Vaculovič T, Marek J, Repisky M, Masařík M, Novotný J, Marek R. Supramolecular Coronation of Platinum(II) Complexes by Macrocycles: Structure, Relativistic DFT Calculations, and Biological Effects. Inorg Chem 2021; 60:17911-17925. [PMID: 34738800 DOI: 10.1021/acs.inorgchem.1c02467] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Platinum-based anticancer drugs are actively developed utilizing lipophilic ligands or drug carriers for the efficient penetration of biomembranes, reduction of side effects, and tumor targeting. We report the development of a supramolecular host-guest system built on cationic platinum(II) compounds bearing ligands anchored in the cavity of the macrocyclic host. The host-guest binding and hydrolysis process on the platinum core were investigated in detail by using NMR, MS, X-ray diffraction, and relativistic DFT calculations. The encapsulation process in cucurbit[7]uril unequivocally promotes the stability of hydrolyzed dicationic cis-[PtII(NH3)2(H2O)(NH2-R)]2+ compared to its trans isomer. Biological screening on the ovarian cancer lines A2780 and A2780/CP shows time-dependent toxicity. Notably, the reported complex and its β-cyclodextrin (β-CD) assembly achieve the same cellular uptake as cisplatin and cisplatin@β-CD, respectively, while maintaining a significantly lower toxicity profile.
Collapse
Affiliation(s)
- Martin Sojka
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Jan Chyba
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Shib Shankar Paul
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Karolina Wawrocka
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Kateřina Hönigová
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Ben Joseph R Cuyacot
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Abril C Castro
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Tomáš Vaculovič
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Jaromír Marek
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Michal Repisky
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT - The Arctic University of Norway, 9037 Tromsø, Norway
| | - Michal Masařík
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Jan Novotný
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Radek Marek
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| |
Collapse
|
8
|
Alkhilaiwi F. Conditionally Reprogrammed Cells and Robotic High-Throughput Screening for Precision Cancer Therapy. Front Oncol 2021; 11:761986. [PMID: 34737964 PMCID: PMC8560709 DOI: 10.3389/fonc.2021.761986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/24/2021] [Indexed: 12/04/2022] Open
Abstract
Cancer is a devastating disease that takes the lives of millions of people globally every year. Precision cancer therapy is based on a patient's tumor histopathology, expression analyses, and/or tumor RNA or DNA analysis. Only 2%-20% of patients with solid tumors benefit from genomics-based precision oncology. Therefore, functional diagnostics and patient-derived cancer models are needed for precision cancer therapy. In this review, we will summarize the potential use of conditional cell reprogramming (CR) and robotic high-throughput screening in precision cancer medicine. Briefly, the CR method includes the co-culturing of irradiated Swiss-3T3-J2 mouse fibroblast cells alongside digested primary non-pathogenic or pathogenic cells with the existence of Rho-associated serine-threonine protein kinase inhibitor called Y-27632, creating an exterior culture environment, allowing the cells to have the ability to gain partial properties of stem cells. On the other hand, quantitative high-throughput screening (qHTS) assays screen thousands of compounds that use cells in a short period of time. The combination of both technologies has the potential to become a driving force for precision cancer therapy.
Collapse
Affiliation(s)
- Faris Alkhilaiwi
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
9
|
Research progress of azido-containing Pt(IV) antitumor compounds. Eur J Med Chem 2021; 227:113927. [PMID: 34695775 DOI: 10.1016/j.ejmech.2021.113927] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022]
Abstract
Cancer is a long-known incurable disease, and the medical use of cisplatin has been a significant discovery. However, the side-effects of cisplatin necessitate the development of new and improved drug. Therefore, in this study, we focused on the photoactivatable Pt(IV) compounds Pt[(X1)(X2)(Y1)(Y2)(N3)2], which have a completely novel mechanism of action. Pt(IV) can efficiently overcome the side-effects of cisplatin and other drugs. Here, we have demonstrated, summarized and discussed the effects and mechanism of these compounds. Compared to the relevant articles in the literature, we have provided a more detailed introduction and a made comprehensive classification of these compounds. We believe that our results can effectively provide a reference for the development of these drugs.
Collapse
|
10
|
Burmistrov V, Saxena R, Pitushkin D, Butov GM, Chung FL, Aggarwal M. Adamantyl Isothiocyanates as Mutant p53 Rescuing Agents and Their Structure-Activity Relationships. J Med Chem 2021; 64:6621-6633. [PMID: 33961435 PMCID: PMC9924099 DOI: 10.1021/acs.jmedchem.0c01971] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mutant p53 rescue by small molecules is a promising therapeutic strategy. In this structure-activity relationship study, we examined a series of adamantyl isothiocyanates (Ad-ITCs) to discover novel agents as therapeutics by targeting mutant p53. We demonstrated that the alkyl chain connecting adamantane and ITC is a crucial determinant for Ad-ITC inhibitory potency. Ad-ITC 6 with the longest chain between ITC and adamantane displayed the maximum growth inhibition in p53R280K, p53R273H, or p53R306Stop mutant cells. Ad-ITC 6 acted in a mutant p53-dependent manner. It rescued p53R280K and p53R273H mutants, thereby resulting in upregulating canonical wild-type (WT) p53 targets and phosphorylating ATM. Ad-ISeC 14 with selenium showed a significantly enhanced inhibitory potency, without affecting its ability to rescue mutant p53. Ad-ITCs selectively depleted mutant p53, but not the WT, and this activity correlates with their inhibitory potencies. These data suggest that Ad-ITCs may serve as novel promising leads for the p53-targeted drug development.
Collapse
Affiliation(s)
- Vladimir Burmistrov
- Volgograd State Technical University, Volgograd, 400005, Russia,Department of Chemistry, Technology and Equipment of Chemical Industry, Volzhsky Polytechnic Institute (branch) Volgograd State Technical University, Volzhsky, 404121, Russia
| | - Rahul Saxena
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC 20007, USA
| | | | - Gennady M. Butov
- Volgograd State Technical University, Volgograd, 400005, Russia,Department of Chemistry, Technology and Equipment of Chemical Industry, Volzhsky Polytechnic Institute (branch) Volgograd State Technical University, Volzhsky, 404121, Russia
| | - Fung-Lung Chung
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC 20007, USA
| | - Monika Aggarwal
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC 20007, USA,Correspondence: Monika Aggarwal, Ph.D, Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC 20007, USA, Phone: 202-687-3648; Fax: 202-687-1068;
| |
Collapse
|
11
|
Wu X, Wang S, Li M, Li J, Shen J, Zhao Y, Pang J, Wen Q, Chen M, Wei B, Kaboli PJ, Du F, Zhao Q, Cho CH, Wang Y, Xiao Z, Wu X. Conditional reprogramming: next generation cell culture. Acta Pharm Sin B 2020; 10:1360-1381. [PMID: 32963937 PMCID: PMC7488362 DOI: 10.1016/j.apsb.2020.01.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
Long-term primary culture of mammalian cells has been always difficult due to unavoidable senescence. Conventional methods for generating immortalized cell lines usually require manipulation of genome which leads to change of important biological and genetic characteristics. Recently, conditional reprogramming (CR) emerges as a novel next generation tool for long-term culture of primary epithelium cells derived from almost all origins without alteration of genetic background of primary cells. CR co-cultures primary cells with inactivated mouse 3T3-J2 fibroblasts in the presence of RHO-related protein kinase (ROCK) inhibitor Y-27632, enabling primary cells to acquire stem-like characteristics while retain their ability to fully differentiate. With only a few years' development, CR shows broad prospects in applications in varied areas including disease modeling, regenerative medicine, drug evaluation, drug discovery as well as precision medicine. This review is thus to comprehensively summarize and assess current progress in understanding mechanism of CR and its wide applications, highlighting the value of CR in both basic and translational researches and discussing the challenges faced with CR.
Collapse
Key Words
- 3T3-J2 fibroblast
- AACR, American Association for Cancer Research
- ACC, adenoid cystic carcinoma
- AR, androgen receptor
- CFTR, cystic fibrosis transmembrane conductance regulators
- CR, conditional reprogramming
- CYPs, cytochrome P450 enzymes
- Conditional reprogramming
- DCIS, ductal carcinoma in situ
- ECM, extracellular matrix
- ESC, embryonic stem cell
- HCMI, human cancer model initiatives
- HGF, hepatocyte growth factor
- HNE, human nasal epithelial
- HPV, human papillomaviruses
- ICD, intracellular domain
- LECs, limbal epithelial cells
- NCI, National Cancer Institute
- NGFR, nerve growth factor receptor
- NSCLC, non-small cell lung cancer
- NSG, NOD/SCID/gamma
- PDAC, pancreatic ductal adenocarcinoma
- PDX, patient derived xenograft
- PP2A, protein phosphatase 2A
- RB, retinoblastoma-associated protein
- ROCK
- ROCK, Rho kinase
- SV40, simian virus 40 large tumor antigen
- Senescence
- UVB, ultraviolet radiation b
- Y-27632
- dECM, decellularized extracellular matrix
- hASC, human adipose stem cells
- hTERT, human telomerase reverse transcriptase
- iPSCs, induction of pluripotent stem cells
- ΔNP63α, N-terminal truncated form of P63α
Collapse
Affiliation(s)
- Xiaoxiao Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Jing Li
- Department of Oncology and Hematology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Jun Pang
- Center of Radiation Oncology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou 646000, China
| | - Qinglian Wen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou 646000, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Bin Wei
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Parham Jabbarzadeh Kaboli
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Qijie Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| |
Collapse
|
12
|
Kukushkin ME, Skvortsov DA, Kalinina MA, Tafeenko VA, Burmistrov VV, Butov GM, Zyk NV, Majouga AG, Beloglazkina EK. Synthesis and cytotoxicity of oxindoles dispiro derivatives with thiohydantoin and adamantane fragments. PHOSPHORUS SULFUR 2020. [DOI: 10.1080/10426507.2020.1723590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Dmitriy A. Skvortsov
- Department of Chemistry, Moscow State University (MSU), Moscow, Russia
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow, Russia
| | | | | | - Vladimir V. Burmistrov
- Volzhsky Polytechnic Institute (Branch), Volgograd State Technical University, Volgograd oblast, Russia
| | - Gennady M. Butov
- Volzhsky Polytechnic Institute (Branch), Volgograd State Technical University, Volgograd oblast, Russia
| | - Nikolai V. Zyk
- Department of Chemistry, Moscow State University (MSU), Moscow, Russia
| | - Alexander G. Majouga
- Department of Chemistry, Moscow State University (MSU), Moscow, Russia
- Chemistry Department, Dmitry Mendeleev University of Chemical Technology of Russia, Moscow, Russia
- National University of Science and Technology MISiS, Moscow, Russia
| | | |
Collapse
|
13
|
Activation of Piezo1 sensitizes cells to TRAIL-mediated apoptosis through mitochondrial outer membrane permeability. Cell Death Dis 2019; 10:837. [PMID: 31685811 PMCID: PMC6828775 DOI: 10.1038/s41419-019-2063-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/18/2019] [Accepted: 10/02/2019] [Indexed: 01/25/2023]
Abstract
TRAIL specifically induces apoptosis in cancer cells without affecting healthy cells. However, TRAIL’s cancer cytotoxicity was insufficient in clinical trials. Circulatory-shear stress is known to sensitize cancer cells to TRAIL. In this study, we examine the mechanism of this TRAIL sensitization with the goal of translating it to static conditions. GsMTx-4, a Piezo1 inhibitor, was found to reduce shear stress-related TRAIL sensitization, implicating Piezo1 activation as a potential TRAIL-sensitizer. The Piezo1 agonist Yoda1 recreated shear stress-induced TRAIL sensitization under static conditions. A significant increase in apoptosis occurred when PC3, COLO 205, or MDA-MB-231 cells were treated with Yoda1 and TRAIL in combination, but not in Bax-deficient DU145 cells. Calpastatin inhibited apoptosis in Yoda1-TRAIL treated cells, indicating that calpain activation is necessary for apoptosis by Yoda1 and TRAIL. Yoda1 and TRAIL treated PC3 cells showed increased mitochondrial outer membrane permeability (MOMP), mitochondrial depolarization, and activated Bax. This implies that Piezo1 activation sensitizes cancer cells to TRAIL through a calcium influx that activates calpains. The Calpains then induce MOMP by enhancing Bax activation. From these experiments a computational model was developed to simulate apoptosis for cells treated with TRAIL and increased calcium. The computational model elucidated the proapoptotic or antiapoptotic roles of Bax, Bcl-2, XIAP, and other proteins important in the mitochondrial-apoptotic signaling pathway.
Collapse
|
14
|
Palechor-Ceron N, Krawczyk E, Dakic A, Simic V, Yuan H, Blancato J, Wang W, Hubbard F, Zheng YL, Dan H, Strome S, Cullen K, Davidson B, Deeken JF, Choudhury S, Ahn PH, Agarwal S, Zhou X, Schlegel R, Furth PA, Pan CX, Liu X. Conditional Reprogramming for Patient-Derived Cancer Models and Next-Generation Living Biobanks. Cells 2019; 8:E1327. [PMID: 31717887 PMCID: PMC6912808 DOI: 10.3390/cells8111327] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/14/2019] [Accepted: 10/25/2019] [Indexed: 12/21/2022] Open
Abstract
Traditional cancer models including cell lines and animal models have limited applications in both basic and clinical cancer research. Genomics-based precision oncology only help 2-20% patients with solid cancer. Functional diagnostics and patient-derived cancer models are needed for precision cancer biology. In this review, we will summarize applications of conditional cell reprogramming (CR) in cancer research and next generation living biobanks (NGLB). Together with organoids, CR has been cited in two NCI (National Cancer Institute, USA) programs (PDMR: patient-derived cancer model repository; HCMI: human cancer model initiatives. HCMI will be distributed through ATCC). Briefly, the CR method is a simple co-culture technology with a Rho kinase inhibitor, Y-27632, in combination with fibroblast feeder cells, which allows us to rapidly expand both normal and malignant epithelial cells from diverse anatomic sites and mammalian species and does not require transfection with exogenous viral or cellular genes. Establishment of CR cells from both normal and tumor tissue is highly efficient. The robust nature of the technique is exemplified by the ability to produce 2 × 106 cells in five days from a core biopsy of tumor tissue. Normal CR cell cultures retain a normal karyotype and differentiation potential and CR cells derived from tumors retain their tumorigenic phenotype. CR also allows us to enrich cancer cells from urine (for bladder cancer), blood (for prostate cancer), and pleural effusion (for non-small cell lung carcinoma). The ability to produce inexhaustible cell populations using CR technology from small biopsies and cryopreserved specimens has the potential to transform biobanking repositories (NGLB: next-generation living biobank) and current pathology practice by enabling genetic, biochemical, metabolomic, proteomic, and biological assays, including chemosensitivity testing as a functional diagnostics tool for precision cancer medicine. We discussed analyses of patient-derived matched normal and tumor models using a case with tongue squamous cell carcinoma as an example. Last, we summarized applications in cancer research, disease modeling, drug discovery, and regenerative medicine of CR-based NGLB.
Collapse
Affiliation(s)
- Nancy Palechor-Ceron
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA; (N.P.-C.); (E.K.); (A.D.); (V.S.); (H.Y.); (S.C.); (S.A.); (R.S.)
| | - Ewa Krawczyk
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA; (N.P.-C.); (E.K.); (A.D.); (V.S.); (H.Y.); (S.C.); (S.A.); (R.S.)
| | - Aleksandra Dakic
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA; (N.P.-C.); (E.K.); (A.D.); (V.S.); (H.Y.); (S.C.); (S.A.); (R.S.)
| | - Vera Simic
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA; (N.P.-C.); (E.K.); (A.D.); (V.S.); (H.Y.); (S.C.); (S.A.); (R.S.)
| | - Hang Yuan
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA; (N.P.-C.); (E.K.); (A.D.); (V.S.); (H.Y.); (S.C.); (S.A.); (R.S.)
| | - Jan Blancato
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (J.B.); (W.W.); (Y.-L.Z.); (P.A.F.)
| | - Weisheng Wang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (J.B.); (W.W.); (Y.-L.Z.); (P.A.F.)
| | - Fleesie Hubbard
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland, Baltimore, MD 21201, USA; (F.H.); (H.D.); (S.S.); (K.C.)
| | - Yun-Ling Zheng
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (J.B.); (W.W.); (Y.-L.Z.); (P.A.F.)
| | - Hancai Dan
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland, Baltimore, MD 21201, USA; (F.H.); (H.D.); (S.S.); (K.C.)
| | - Scott Strome
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland, Baltimore, MD 21201, USA; (F.H.); (H.D.); (S.S.); (K.C.)
| | - Kevin Cullen
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland, Baltimore, MD 21201, USA; (F.H.); (H.D.); (S.S.); (K.C.)
| | - Bruce Davidson
- Department of Otorhinolaryngology-Head and Neck Surgery, Georgetown University Medical Center, Washington, DC 20057, USA;
| | - John F. Deeken
- Inova Translational Medicine Institute, Inova Health System, Fairfax, VA 22031, USA;
| | - Sujata Choudhury
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA; (N.P.-C.); (E.K.); (A.D.); (V.S.); (H.Y.); (S.C.); (S.A.); (R.S.)
| | - Peter H. Ahn
- Department of Radiation Medicine, Georgetown University Medical Center, Washington, DC 20057, USA;
| | - Seema Agarwal
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA; (N.P.-C.); (E.K.); (A.D.); (V.S.); (H.Y.); (S.C.); (S.A.); (R.S.)
| | - Xuexun Zhou
- iCryobiol and iFuture Technologies, Shanghai 200127, China;
| | - Richard Schlegel
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA; (N.P.-C.); (E.K.); (A.D.); (V.S.); (H.Y.); (S.C.); (S.A.); (R.S.)
| | - Priscilla A. Furth
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (J.B.); (W.W.); (Y.-L.Z.); (P.A.F.)
| | - Chong-Xian Pan
- University of California at Davis, Sacramento, CA 95817, USA;
| | - Xuefeng Liu
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA; (N.P.-C.); (E.K.); (A.D.); (V.S.); (H.Y.); (S.C.); (S.A.); (R.S.)
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (J.B.); (W.W.); (Y.-L.Z.); (P.A.F.)
| |
Collapse
|
15
|
Cao Z, Xu L, Zhao S. Exosome-derived miR-27a produced by PSC-27 cells contributes to prostate cancer chemoresistance through p53. Biochem Biophys Res Commun 2019; 515:345-351. [DOI: 10.1016/j.bbrc.2019.05.120] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 05/18/2019] [Indexed: 12/31/2022]
|
16
|
Human Embryonic Stem Cells Acquire Responsiveness to TRAIL upon Exposure to Cisplatin. Stem Cells Int 2019; 2019:4279481. [PMID: 30805008 PMCID: PMC6360567 DOI: 10.1155/2019/4279481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/19/2018] [Accepted: 11/29/2018] [Indexed: 12/21/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand-TRAIL-is a protein operating as a ligand capable of inducing apoptosis particularly in cancerously transformed cells, while normal healthy cells are typically nonresponsive. We have previously demonstrated that pluripotent human embryonic stem cells (hESC) are also refractory to TRAIL, even though they express all canonical components of the death receptor-induced apoptosis pathway. In this study, we have examined a capacity of DNA damage to provoke sensitivity of hESC to TRAIL. The extent of DNA damage, behavior of molecules involved in apoptosis, and response of hESC to TRAIL were investigated. The exposure of hESC to 1 μM and 2 μM concentrations of cisplatin have led to the formation of 53BP1 and γH2AX foci, indicating the presence of double-strand breaks in DNA, without affecting the expression of proteins contributing to mitochondrial membrane integrity. Interestingly, cisplatin upregulated critical components of the extrinsic apoptotic pathway-initiator caspase 8, effector caspase 3, and the cell death receptors. The observed increase of expression of the extrinsic apoptotic pathway components was sufficient to sensitize hESC to TRAIL-induced apoptosis; immense cell dying accompanied by enhanced PARP cleavage, processing of caspase 8, and full activation of caspase 3 were all observed after the treatment combining cisplatin and TRAIL. Finally, we have demonstrated the central role of caspase 8 in this process, since its downregulation abrogated the sensitizing effect of cisplatin.
Collapse
|
17
|
Lin H, Wang Y, Lai H, Li X, Chen T. Iron(II)-Polypyridyl Complexes Inhibit the Growth of Glioblastoma Tumor and Enhance TRAIL-Induced Cell Apoptosis. Chem Asian J 2018; 13:2730-2738. [PMID: 29963768 DOI: 10.1002/asia.201800862] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/26/2018] [Indexed: 12/14/2022]
Abstract
A promising cancer-targeting agent for the induction of apoptosis in tumor necrosis factor (TNF) proteins, the TNF-related apoptosis-inducing ligand (TRAIL) ligand, has found limited applications in the treatment of cancer cells, owing to its resistance by cancer cell lines. Therefore, the rational design of anticancer agents that could sensitize cancer cells towards TRAIL is of great significance. Herein, we report that synthetic iron(II)-polypyridyl complexes are capable of inhibiting the proliferation of glioblastoma cancer cells and efficiently enhancing TRAIL-induced cell apoptosis. Mechanistic studies demonstrated that the synthesized complexes induced cancer-cell apoptosis through triggering the activation of p38 and p53 and inhibiting the activation of ERK. Moreover, uPA and MMP-2/MMP-9, among the most important metastatic regulatory proteins, were also found to be significantly alerted after the treatment. Furthermore, we also found that tumor growth in nude mice was significantly inhibited by iron complex Fe2 through the induction of apoptosis without clear systematic toxicity, as indicated by histological analysis. Taken together, this study provides evidence for the further development of metal-based anticancer agents and chemosensitizers of TRAIL for the treatment of human glioblastoma cancer cells.
Collapse
Affiliation(s)
- Hao Lin
- The First Affiliated Hospital, and, Department of Chemistry, Jinan University, Guangzhou, 510632, P. R. China
| | - Yifan Wang
- The First Affiliated Hospital, and, Department of Chemistry, Jinan University, Guangzhou, 510632, P. R. China
| | - Haoqiang Lai
- The First Affiliated Hospital, and, Department of Chemistry, Jinan University, Guangzhou, 510632, P. R. China
| | - Xiaoling Li
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, 510632, P. R. China
| | - Tianfeng Chen
- The First Affiliated Hospital, and, Department of Chemistry, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|