1
|
Witzel DD, Bhat AC, Graham-Engeland JE, Almeida DM. Age and Inflammation: Insights on "Age Three Ways" from Midlife in the United States Study. Brain Behav Immun 2025; 127:72-80. [PMID: 40068792 DOI: 10.1016/j.bbi.2025.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 01/01/2025] [Accepted: 03/08/2025] [Indexed: 03/15/2025] Open
Abstract
INTRODUCTION Chronological age is a particularly well-known indicator of variability in systemic inflammation. Other pertinent aspects of age (or "age proxies") - subjective or epigenetic age - may offer nuanced information about age and inflammation associations. Using the Midlife in the United States Study, we explored how chronological, subjective, and epigenetic age were associated with inflammation. Further, we tested whether chronological age remained a unique predictor of inflammation after accounting for the variance of subjective and epigenetic age. Using an intersectionality framework, we also tested whether associations differed by race and gender. METHOD 1,307 (85.39% White, 52.99% men) participants reported on their chronological and subjective age and provided blood from which epigenetic DNA and inflammatory biomarkers (IL-6, IL-8, fibrinogen, TNF-α, and E-selectin) were determined. RESULTS Linear regressions showed that being chronologically older was related to higher levels of inflammation. Being biologically older (higher epigenetic age or pace of aging) was also related to higher levels of all but IL-8. Subjective age was related to inflammatory biomarkers but only for people who identified their racial identity as White. Gender differences emerged, primarily with biological and chronological age. With all age indicators in one model, chronological age remained a unique indicator of inflammation in the sample, as similar to or a better predictor than biological age. CONCLUSION The current study provides a better scientific understanding of the relative association of chronological age versus subjective and epigenetic age on inflammation with evidence suggesting that chronological age provides novel information above and beyond other proxies of age.
Collapse
Affiliation(s)
- Dakota D Witzel
- College of Education, Counseling, and Human Development, South Dakota State University, United States; Center for Healthy Aging, Penn State University, United States.
| | - Aarti C Bhat
- Center for Healthy Aging, Penn State University, United States; Human Development and Family Studies, Penn State University, United States; Population Research Institute, Penn State University, United States
| | - Jennifer E Graham-Engeland
- Center for Healthy Aging, Penn State University, United States; Biobehavioral Health, Penn State University, United States
| | - David M Almeida
- Center for Healthy Aging, Penn State University, United States; Human Development and Family Studies, Penn State University, United States; Population Research Institute, Penn State University, United States
| |
Collapse
|
2
|
Pérez-Castillo IM, Rueda R, Bouzamondo H, Aparicio-Pascual D, Valiño-Marques A, López-Chicharro J, Segura-Ortiz F. Does Lifelong Exercise Counteract Low-Grade Inflammation Associated with Aging? A Systematic Review and Meta-Analysis. Sports Med 2025; 55:675-696. [PMID: 39792347 PMCID: PMC11985631 DOI: 10.1007/s40279-024-02152-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Aging is associated with sustained low-grade inflammation, which has been linked to age-related diseases and mortality. Long-term exercise programs have been shown to be effective to for attenuating this process; however, subsequent detraining might negate some of these benefits. Master athletes, as a model of lifelong consistent exercise practice, have been suggested to present similar inflammatory profiles to untrained young adults. Nonetheless, it is unclear whether maintaining training habits throughout life can completely counteract low-grade inflammation associated with aging. OBJECTIVES We aimed to systematically evaluate comparisons of baseline inflammatory profiles in Master athletes, untrained middle-aged and older adults, and untrained young individuals to elucidate whether lifelong exercise can counteract low-grade inflammation associated with aging. METHODS A systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement, and a protocol was prospectively registered in PROSPERO (CRD42024521339). Studies reporting baseline systemic levels of proinflammatory and anti-inflammatory markers in Master athletes and untrained controls were eligible for inclusion. A total of six databases (PubMed [MEDLINE], Embase, Cochrane Central Register of Controlled Trials [CENTRAL], Scopus, SPORTDiscus, and Web of Science [WoS]) were searched in September 2024, and studies were independently screened by two reviewers. Risk of bias was assessed using an adapted version of the Joanna Briggs Institute Critical Appraisal tool for cross-sectional trials, and random-effect meta-analyses of standardized mean differences (SMDs) of inflammatory markers were conducted to evaluate comparisons between Master athletes and age-matched untrained middle-aged and older adults as well as Master athletes and young untrained subjects. Subgroup analyses were performed based on exercise intensity and type, and participants' sex. RESULTS A total of 17 studies (n = 649 participants) were included both in qualitative and quantitative synthesis. Lifelong exercise appears to attenuate increases in baseline C-reactive protein, and to elevate anti-inflammatory interleukin (IL)-10 levels compared with untrained middle-aged and older adults (C-reactive protein: SMD - 0.71, 95% confidence interval - 0.97, - 0.45, I2 0%, p = 0.78; IL-10: SMD 1.44, 95% confidence interval 0.55, 2.32, I2 87%, p < 0.00001). Statistical significance was maintained in C-reactive protein and IL-10 sub-analyses. No difference in tumor necrosis factor-α levels was observed between Master athletes and untrained middle-aged and older adults (SMD 0.40, 95% confidence interval - 0.15, 0.96, I2 72%, p = 0.0008). A trend towards decreased IL-6 levels in Master athletes was shown in pooled analyses comparing untrained middle-aged and older adults, and rendered statistically significant in sub-analyses. However, comparisons with young untrained adults indicated that Master athletes still present with elevated levels of tumor necrosis factor-α and IL-6, along with decreased IL-10. CONCLUSIONS Master athletes might exhibit a more anti-inflammatory profile denoted by decreased baseline circulating levels of C-reactive protein and, potentially, IL-6, along with increased IL-10 compared with healthy age-matched untrained peers. However, lifelong exercise might still be insufficient to completely counteract age-related changes in tumor necrosis factor-α, IL-6, and IL-10, as shown in comparisons with untrained young adults.
Collapse
Affiliation(s)
- Iñigo M Pérez-Castillo
- Research and Development, Abbott Nutrition, 68 Camino de Purchil, 18004, Granada, Spain.
| | - Ricardo Rueda
- Research and Development, Abbott Nutrition, 68 Camino de Purchil, 18004, Granada, Spain
| | | | | | | | | | | |
Collapse
|
3
|
Crine V, Papenberg G, Johansson J, Boraxbekk CJ, Wåhlin A, Lindenberger U, Lövdén M, Riklund K, Bäckman L, Nyberg L, Karalija N. Associations between inflammation and striatal dopamine D2-receptor availability in aging. J Neuroinflammation 2025; 22:24. [PMID: 39885603 PMCID: PMC11783874 DOI: 10.1186/s12974-025-03355-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/23/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Normal brain aging is associated with dopamine decline, which has been linked to age-related cognitive decline. Factors underlying individual differences in dopamine integrity at older ages remain, however, unclear. Here we aimed at investigating: (i) whether inflammation is associated with levels and 5-year changes of in vivo dopamine D2-receptor (DRD2) availability, (ii) if DRD2-inflammation associations differ between men and women, and (iii) whether inflammation and cerebral small-vessel disease (white-matter lesions) serve as two independent predictors of DRD2 availability. METHODS Analyses were performed in a sample of healthy adults > 60 years assessed at two measurement occasions separated by 5 years. At both occasions, DRD2 availability was estimated by 11C-raclopride PET, and white-matter lesions by MRI. Inflammation was assessed by two C-reactive protein-associated DNA methylation scores at study baseline. RESULTS Individuals with higher DNA methylation scores at baseline showed reduced striatal DRD2 availability. An interaction was found between DNA methylation scores and sex in relation to striatal DRD2 availability, such that associations were found in men but not in women. DNA methylation scores at study entrance were not significantly associated with 5-year striatal DRD2 decline rates. No significant association was found between DNA methylation scores and white-matter lesions, but higher scores as well as higher lesion burden were independently associated with reduced striatal DRD2 availability in men. CONCLUSIONS These findings suggest negative associations between one proxy of inflammation and DRD2 availability in older adults, selectively for men who had higher DNA methylation scores. Future studies should investigate other inflammatory markers in relation to dopamine integrity.
Collapse
Affiliation(s)
- Vanessa Crine
- Department of Medical and Translational Biology, Umeå university, Umeå, 901 87, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Goran Papenberg
- Aging Research Center, Karolinska Institute and Stockholm University, Stockholm, Sweden
| | - Jarkko Johansson
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden
| | - Carl-Johan Boraxbekk
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden
- Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute of Sports Medicine Copenhagen (ISMC), Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Anders Wåhlin
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden
- Department of Applied Physics and Electronics, Umeå University, Umeå, Sweden
| | - Ulman Lindenberger
- Center for Lifeorgdivision Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany and London, UK
| | - Martin Lövdén
- Department of Psychology, University of Gothenburg, Gothenburg, Sweden
| | - Katrine Riklund
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden
| | - Lars Bäckman
- Aging Research Center, Karolinska Institute and Stockholm University, Stockholm, Sweden
| | - Lars Nyberg
- Department of Medical and Translational Biology, Umeå university, Umeå, 901 87, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden
| | - Nina Karalija
- Department of Medical and Translational Biology, Umeå university, Umeå, 901 87, Sweden.
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.
| |
Collapse
|
4
|
Zhao J, Li T, Wang J. Association between psoriasis and dementia: A systematic review. Neurologia 2024; 39:55-62. [PMID: 38161072 DOI: 10.1016/j.nrleng.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/14/2020] [Indexed: 01/03/2024] Open
Abstract
INTRODUCTION Risk factors for dementia include genetic factors, aging, environmental factors, certain diseases, and unhealthy lifestyle; most types of dementia share a common chronic systemic inflammatory phenotype. Psoriasis is also considered to be a chronic systemic inflammatory disease. It has been suggested that psoriasis may also contribute to the risk of dementia. The aim of this study was to systematically review the literature on the association between psoriasis and dementia. DEVELOPMENT Articles were selected according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We searched the PubMed and Web of Science databases to identify articles published in peer-reviewed journals and studying the association between psoriasis and dementia. Studies meeting the inclusion criteria were reviewed. We used the Newcastle-Ottawa Scale to assess the quality of each study. After applying the inclusion and exclusion criteria, we included 8 studies for review, 3 of which were found to present a higher risk of bias. Six of the 8 studies supported the hypothesis that prior diagnosis of psoriasis increases the risk of dementia; one study including only a few cases reported that psoriasis decreased the risk of dementia, and one study including relatively young patients found no significant association between psoriasis and the risk of dementia. CONCLUSION Most studies included in this review supported the hypothesis that psoriasis constitutes a risk factor for dementia. However, well-designed stratified cohort studies assessing both psoriasis severity and treatment status are still required to determine the real effect of psoriasis on the risk of dementia and its subtypes.
Collapse
Affiliation(s)
- J Zhao
- Academy of Life Sciences, School of Medicine, Xi'an International University, Xi'an, China.
| | - T Li
- Disease Prevention and Control Section, Shangcai People's Hospital, Shangcai, China
| | - J Wang
- Academy of Life Sciences, School of Medicine, Xi'an International University, Xi'an, China
| |
Collapse
|
5
|
Shchukina I, Bohacova P, Artyomov MN. T cell control of inflammaging. Semin Immunol 2023; 70:101818. [PMID: 37611324 DOI: 10.1016/j.smim.2023.101818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023]
Abstract
T cells are a critical component of the immune system, found in abundance in blood, secondary lymphoid organs, and peripheral tissues. As individuals age, T cells are particularly susceptible to changes, making them one of the most affected immune subsets. These changes can have significant implications for age-related dysregulations, including the development of low-grade inflammation - a hallmark of aging known as inflammaging. In this review, we first present age-related changes in the functionality of the T cell compartment, including dysregulation of cytokine and chemokine production and cytotoxicity. Next, we discuss how these changes can contribute to the development and maintenance of inflammaging. Furthermore, we will summarize the mechanisms through which age-related changes in T cells may drive abnormal physiological outcomes.
Collapse
Affiliation(s)
- Irina Shchukina
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Pavla Bohacova
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
| |
Collapse
|
6
|
Fountain WA, Naruse M, Claiborne A, Trappe S, Trappe TA. Controlling Inflammation Improves Aging Skeletal Muscle Health. Exerc Sport Sci Rev 2023; 51:51-56. [PMID: 36722844 PMCID: PMC10033374 DOI: 10.1249/jes.0000000000000313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Chronic inflammation is associated with a decline in aging skeletal muscle health. Inflammation also seems to interfere with the beneficial skeletal muscle adaptations conferred by exercise training in older individuals. We hypothesize that the cyclooxygenase pathway is partially responsible for this negative inflammatory influence on aging skeletal muscle health and plasticity.
Collapse
|
7
|
Fang C, Kang B, Zhao P, Ran J, Wang L, Zhao L, Luo H, Tao L. MCP-4 and Eotaxin-3 Are Novel Biomarkers for Chronic Obstructive Pulmonary Disease. Can Respir J 2023; 2023:8659293. [PMID: 37200921 PMCID: PMC10188265 DOI: 10.1155/2023/8659293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/28/2023] [Accepted: 04/24/2023] [Indexed: 05/20/2023] Open
Abstract
The aim of our study was to examine the production of monocyte chemoattractant protein (MCP-4) and eotaxin-3 during the onset and progression of COPD. The expression levels of MCP-4 and eotaxin-3 were evaluated in COPD samples and healthy controls using immunostaining and ELISA. The relationship between the clinic pathological features in the participants and the expression of MCP-4 and eotaxin-3 were evaluated. The association of MCP-4/eotaxin-3 production in COPD patients was also determined. The results revealed enhanced production of MCP-4 and eotaxin-3 in COPD patients especially the cases with AECOPD in both bronchial biopsies and bronchial washing fluid samples. Furthermore, the expression signatures of MCP-4/eotaxin-3 show high AUC values in distinguishing COPD patients and healthy volunteers and AECOPD and stable COPD cases, respectively. Additionally, the number of MCP-4/eotaxin-3 positive cases was notably increased in AECOPD patients compared to those with stable COPD. Moreover, the expression of MCP-4 and eotaxin-3 was positively correlated in COPD and AECOPD cases. In addition, the levels of MCP-4 and eotaxin-3 could be increased in HBEs stimulated with LPS, which is a risk factor of COPD. Moreover, MCP-4 and eotaxin-3 may exert their regulatory functions in COPD by regulating CCR2, 3, and 5. These data indicated that MCP-4 and eotaxin-3 were potential markers for the clinical course of COPD, which could provide guidance for accurate diagnosis and treatment for this disease in future clinical practice.
Collapse
Affiliation(s)
- Chun Fang
- Department of Oncology, The First People's Hospital of Chongqing Liang Jiang New Area, Chongqing 401121, China
| | - Baoguo Kang
- Department of Oncology, The First People's Hospital of Chongqing Liang Jiang New Area, Chongqing 401121, China
| | - Pan Zhao
- Department of General Surgery, The First People's Hospital of Chongqing Liang Jiang New Area, Chongqing 401121, China
| | - Jing Ran
- Department of Pathology, The First People's Hospital of Chongqing Liang Jiang New Area, Chongqing 401121, China
| | - Lifang Wang
- Departments of Obstetrics and Gynecology, The First People's Hospital of Chongqing Liang Jiang New Area, Chongqing 401121, China
| | - Lingqiong Zhao
- Department of Oncology, Chongqing General Hospital, Chongqing 400010, China
| | - Hangyu Luo
- Department of Internal Medicine, The Chongqing Red Cross Hospital, Chongqing 400021, China
| | - Ling Tao
- Department of Oncology, The First People's Hospital of Chongqing Liang Jiang New Area, Chongqing 401121, China
| |
Collapse
|
8
|
Elisia I, Yeung M, Kowalski S, Wong J, Rafiei H, Dyer RA, Atkar-Khattra S, Lam S, Krystal G. Omega 3 supplementation reduces C-reactive protein, prostaglandin E 2 and the granulocyte/lymphocyte ratio in heavy smokers: An open-label randomized crossover trial. Front Nutr 2022; 9:1051418. [PMID: 36532545 PMCID: PMC9751896 DOI: 10.3389/fnut.2022.1051418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/17/2022] [Indexed: 01/19/2024] Open
Abstract
OBJECTIVES Given the current controversy concerning the efficacy of omega 3 supplements at reducing inflammation, we evaluated the safety and efficacy of omega 3 on reducing inflammation in people with a 6-year lung cancer risk >1.5% and a C reactive protein (CRP) level >2 mg/L in a phase IIa cross-over study. MATERIALS AND METHODS Forty-nine healthy participants ages 55 to 80, who were still smoking or had smoked in the past with ≥30 pack-years smoking history, living in British Columbia, Canada, were randomized in an open-label trial to receive 2.4 g eicosapentaenoic acid (EPA) + 1.2 g docosahexaenoic acid (DHA)/day for 6 months followed by observation for 6 months or observation for 6 months first and then active treatment for the next 6 months. Blood samples were collected over 1 year for measurement of plasma CRP, plasma and red blood cell (RBC) membrane levels of EPA, DHA and other fatty acids, Prostaglandin E2 (PGE2), Leukotriene B4 (LTB4) and an inflammatory marker panel. RESULTS Twenty one participants who began the trial within the active arm completed the trial while 20 participants who started in the control arm completed the study. Taking omega 3 resulted in a significant decrease in plasma CRP and PGE2 but not LTB4 levels. Importantly, the effect size for the primary outcome, CRP values, at the end of the intervention relative to baseline was medium (Cohen's d = 0.56). DHA, but not EPA levels in RBC membranes inversely correlated with PGE2 levels. Omega 3 also led to a significant reduction in granulocytes and an increase in lymphocytes. These high-dose omega 3 supplements were well tolerated, with only minor gastrointestinal symptoms in a subset of participants. CONCLUSION Omega 3 fatty acids taken at 3.6 g/day significantly reduce systemic inflammation with negligible adverse health effects in people who smoke or have smoked and are at high risk of lung cancer.ClinicalTrials.gov, NCT number: NCT03936621.
Collapse
Affiliation(s)
- Ingrid Elisia
- The Terry Fox Laboratory, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Michelle Yeung
- The Terry Fox Laboratory, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Sara Kowalski
- The Terry Fox Laboratory, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Jennifer Wong
- The Terry Fox Laboratory, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Hossein Rafiei
- The Terry Fox Laboratory, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Roger A. Dyer
- Analytical Core for Metabolomics and Nutrition, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Sukhinder Atkar-Khattra
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Stephen Lam
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Gerald Krystal
- The Terry Fox Laboratory, BC Cancer Research Centre, Vancouver, BC, Canada
| |
Collapse
|
9
|
Berner R, Sawicki J, Thiele M, Löser T, Schöll E. Critical Parameters in Dynamic Network Modeling of Sepsis. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:904480. [PMID: 36926088 PMCID: PMC10012967 DOI: 10.3389/fnetp.2022.904480] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022]
Abstract
In this work, we propose a dynamical systems perspective on the modeling of sepsis and its organ-damaging consequences. We develop a functional two-layer network model for sepsis based upon the interaction of parenchymal cells and immune cells via cytokines, and the coevolutionary dynamics of parenchymal, immune cells, and cytokines. By means of the simple paradigmatic model of phase oscillators in a two-layer system, we analyze the emergence of organ threatening interactions between the dysregulated immune system and the parenchyma. We demonstrate that the complex cellular cooperation between parenchyma and stroma (immune layer) either in the physiological or in the pathological case can be related to dynamical patterns of the network. In this way we explain sepsis by the dysregulation of the healthy homeostatic state (frequency synchronized) leading to a pathological state (desynchronized or multifrequency cluster) in the parenchyma. We provide insight into the complex stabilizing and destabilizing interplay of parenchyma and stroma by determining critical interaction parameters. The coupled dynamics of parenchymal cells (metabolism) and nonspecific immune cells (response of the innate immune system) is represented by nodes of a duplex layer. Cytokine interaction is modeled by adaptive coupling weights between nodes representing immune cells (with fast adaptation timescale) and parenchymal cells (slow adaptation timescale), and between pairs of parenchymal and immune cells in the duplex network (fixed bidirectional coupling). The proposed model allows for a functional description of organ dysfunction in sepsis and the recurrence risk in a plausible pathophysiological context.
Collapse
Affiliation(s)
- Rico Berner
- Institut für Physik, Humboldt-Universität zu Berlin, Berlin, Germany
- Institut für Theoretische Physik, Technische Universität Berlin, Berlin, Germany
| | - Jakub Sawicki
- Institut für Theoretische Physik, Technische Universität Berlin, Berlin, Germany
- Potsdam Institute for Climate Impact Research, Potsdam, Germany
- Fachhochschule Nordwestschweiz FHNW, Basel, Switzerland
| | - Max Thiele
- Institut für Theoretische Physik, Technische Universität Berlin, Berlin, Germany
| | | | - Eckehard Schöll
- Institut für Theoretische Physik, Technische Universität Berlin, Berlin, Germany
- Potsdam Institute for Climate Impact Research, Potsdam, Germany
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
10
|
Zhao J, Zhao D, Wang J, Luo X, Guo R. Inflammation—Cause or consequence of late onset Alzheimer’s disease or both? A review of the evidence. EUR J INFLAMM 2022. [DOI: 10.1177/1721727x221095383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Accumulating evidence suggests that inflammation is involved in the development of late onset Alzheimer’s disease (LOAD). However, it is not clear whether inflammation is a cause or consequence, or both. The aim of this paper is to review the relationship between inflammation and LOAD. We also review the effect of anti-inflammation on the risk of LOAD to further elucidate the relationship between inflammation and LOAD.
Collapse
Affiliation(s)
- Jinrong Zhao
- Academy of Life Science, School of Medicine, Xi’an International University, Xi’an, China
- Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation, Universities of Shaanxi Province, Xi’an, China
| | - Dong Zhao
- Academy of Life Science, School of Medicine, Xi’an International University, Xi’an, China
- Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation, Universities of Shaanxi Province, Xi’an, China
| | - Jinpei Wang
- Academy of Life Science, School of Medicine, Xi’an International University, Xi’an, China
- Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation, Universities of Shaanxi Province, Xi’an, China
| | - Xiaoe Luo
- Academy of Life Science, School of Medicine, Xi’an International University, Xi’an, China
- Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation, Universities of Shaanxi Province, Xi’an, China
| | - Rui Guo
- Academy of Life Science, School of Medicine, Xi’an International University, Xi’an, China
- Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation, Universities of Shaanxi Province, Xi’an, China
| |
Collapse
|
11
|
Zanchetta C, Vilanova D, Jarrin C, Scandolera A, Chapuis E, Auriol D, Robe P, Dupont J, Lapierre L, Reynaud R. Bacterial taxa predictive of hyperpigmented skins. Health Sci Rep 2022; 5:e609. [PMID: 35425869 PMCID: PMC8989272 DOI: 10.1002/hsr2.609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 11/18/2022] Open
Abstract
Background and Aims Dark spots, brown spots, or hyperpigmented spots (HPS) are oval or irregular brown areas of skin. Their emergence is associated with dysregulation of the immune system, and may also be caused by a deficiency in stromal cell‐derived factor‐1, leading to perturbed melanogenesis and accumulation of melanosomes within neighboring keratinocytes. The skin microbiota (living microorganisms present on the surface of the skin) is known to play essential roles in maintaining skin homeostasis and in regulating the immune system. Here, we investigated whether the microbiota could play a role in the emergence of HPS. Methods The clinical study involved 38 European women, selected from among 74 volunteers. Participants were divided into two groups depending on the spot areas measured on their faces. The study was designed to avoid conflicting factors: both groups presented similar skin pH, hydration, transepidermal water loss, and sebum levels. The two cohorts were also age‐matched, with a mean of 29‐years‐old for both. Results Alpha‐diversity of the microbiota was similar for the two groups. On skins with more HPS, seven bacterial genera were identified in significantly higher proportions and included opportunistic pathogens and inflammatory bacteria. Six bacterial genera, including bacteria showing antioxidant and anti‐UV properties, were identified in significantly higher proportions on less spotted skins. Cross‐domain association networks revealed distinct co‐occurrences of genera between the two groups, suggesting nonidentical community structures and exchanges, depending on the HPS status. Conclusion Our results reveal specific microbiota composition and networks on skins based on HPS status. Changes could alter communication with the immune system, leading to the emergence of dark spots. As an essential part of the overall skin ecosystem, and through its interaction with the skin matrix, the skin microbiota and its maintenance could be considered a new target for skincare applications.
Collapse
|
12
|
Sawicki J, Berner R, Löser T, Schöll E. Modeling Tumor Disease and Sepsis by Networks of Adaptively Coupled Phase Oscillators. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 1:730385. [PMID: 36925568 PMCID: PMC10013027 DOI: 10.3389/fnetp.2021.730385] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/19/2021] [Indexed: 06/18/2023]
Abstract
In this study, we provide a dynamical systems perspective to the modelling of pathological states induced by tumors or infection. A unified disease model is established using the innate immune system as the reference point. We propose a two-layer network model for carcinogenesis and sepsis based upon the interaction of parenchymal cells and immune cells via cytokines, and the co-evolutionary dynamics of parenchymal, immune cells, and cytokines. Our aim is to show that the complex cellular cooperation between parenchyma and stroma (immune layer) in the physiological and pathological case can be qualitatively and functionally described by a simple paradigmatic model of phase oscillators. By this, we explain carcinogenesis, tumor progression, and sepsis by destabilization of the healthy homeostatic state (frequency synchronized), and emergence of a pathological state (desynchronized or multifrequency cluster). The coupled dynamics of parenchymal cells (metabolism) and nonspecific immune cells (reaction of innate immune system) are represented by nodes of a duplex layer. The cytokine interaction is modeled by adaptive coupling weights between the nodes representing the immune cells (with fast adaptation time scale) and the parenchymal cells (slow adaptation time scale) and between the pairs of parenchymal and immune cells in the duplex network (fixed bidirectional coupling). Thereby, carcinogenesis, organ dysfunction in sepsis, and recurrence risk can be described in a correct functional context.
Collapse
Affiliation(s)
- Jakub Sawicki
- Potsdam Institute for Climate Impact Research, Potsdam, Germany
| | - Rico Berner
- Institut für Mathematik, Technische Universität Berlin, Berlin, Germany
- Institut für Theoretische Physik, Technische Universität Berlin, Berlin, Germany
| | | | - Eckehard Schöll
- Potsdam Institute for Climate Impact Research, Potsdam, Germany
- Institut für Theoretische Physik, Technische Universität Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität, Berlin, Germany
| |
Collapse
|
13
|
Abstract
Innate and adaptive immune responses decline with age, leading to greater susceptibility to infectious diseases and reduced responses to vaccines. Diseases are more severe in old than in young individuals and have a greater impact on health outcomes such as morbidity, disability, and mortality. Aging is characterized by increased low-grade chronic inflammation, so-called inflammaging, that represents a link between changes in immune cells and a number of diseases and syndromes typical of old age. In this review we summarize current knowledge on age-associated changes in immune cells with special emphasis on B cells, which are more inflammatory and less responsive to infections and vaccines in the elderly. We highlight recent findings on factors and pathways contributing to inflammaging and how these lead to dysfunctional immune responses. We summarize recent published studies showing that adipose tissue, which increases in size with aging, contributes to inflammaging and dysregulated B cell function.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA; .,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA.,Miami Integrative Metabolomics Research Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Alain Diaz
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA;
| | - Maria Romero
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA;
| | - Denisse Garcia
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA;
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA; .,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| |
Collapse
|
14
|
Zhao J, Li T, Wang J. Association between psoriasis and dementia: A systematic review. Neurologia 2021; 39:S0213-4853(21)00027-X. [PMID: 33771384 DOI: 10.1016/j.nrl.2020.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION Risk factors for dementia include genetic factors, aging, environmental factors, certain diseases, and unhealthy lifestyle; most types of dementia share a common chronic systemic inflammatory phenotype. Psoriasis is also considered to be a chronic systemic inflammatory disease. It has been suggested that psoriasis may also contribute to the risk of dementia. The aim of this study was to systematically review the literature on the association between psoriasis and dementia. DEVELOPMENT Articles were selected according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We searched the PubMed and Web of Science databases to identify articles published in peer-reviewed journals and studying the association between psoriasis and dementia. Studies meeting the inclusion criteria were reviewed. We used the Newcastle-Ottawa Scale to assess the quality of each study. After applying the inclusion and exclusion criteria, we included 8 studies for review, 3 of which were found to present a higher risk of bias. Six of the 8 studies supported the hypothesis that prior diagnosis of psoriasis increases the risk of dementia; one study including only a few cases reported that psoriasis decreased the risk of dementia, and one study including relatively young patients found no significant association between psoriasis and the risk of dementia. CONCLUSION Most studies included in this review supported the hypothesis that psoriasis constitutes a risk factor for dementia. However, well-designed stratified cohort studies assessing both psoriasis severity and treatment status are still required to determine the real effect of psoriasis on the risk of dementia and its subtypes.
Collapse
Affiliation(s)
- J Zhao
- Academy of Life Sciences, School of Medicine, Xi'an International University, Xi'an, China.
| | - T Li
- Disease Prevention and Control Section, Shangcai People's Hospital, Shangcai, China
| | - J Wang
- Academy of Life Sciences, School of Medicine, Xi'an International University, Xi'an, China
| |
Collapse
|
15
|
The effect of smoking on chronic inflammation, immune function and blood cell composition. Sci Rep 2020; 10:19480. [PMID: 33173057 PMCID: PMC7655856 DOI: 10.1038/s41598-020-76556-7] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/28/2020] [Indexed: 01/08/2023] Open
Abstract
Smoking is the number one risk factor for cancer mortality but only 15-20% of heavy smokers develop lung cancer. It would, therefore, be of great benefit to identify those at high risk early on so that preventative measures can be initiated. To investigate this, we evaluated the effects of smoking on inflammatory markers, innate and adaptive immune responses to bacterial and viral challenges and blood cell composition. We found that plasma samples from 30 heavy smokers (16 men and 14 women) had significantly higher CRP, fibrinogen, IL-6 and CEA levels than 36 non-smoking controls. Whole blood samples from smokers, incubated for 7 h at 37 °C in the absence of any exogenous stimuli, secreted significantly higher levels of IL-8 and a number of other cytokines/chemokines than non-smokers. When challenged for 7 h with E. coli, whole blood samples from smokers secreted significantly lower levels of many inflammatory cytokines/chemokines. However, when stimulated with HSV-1, significantly higher levels of both PGE2 and many cytokines/chemokines were secreted from smokers' blood samples than from controls. In terms of blood cell composition, red blood cells, hematocrits, hemoglobin levels, MCV, MCH, MCHC, Pct and RDW levels were all elevated in smokers, in keeping with their compromised lung capacity. As well, total leukocytes were significantly higher, driven by increases in granulocytes and monocytes. In addition, smokers had lower NK cells and higher Tregs than controls, suggesting that smoking may reduce the ability to kill nascent tumor cells. Importantly, there was substantial person-to person variation amongst smokers with some showing markedly different values from controls and others showing normal levels of many parameters measured, indicating the former may be at significantly higher risk of developing lung cancer.
Collapse
|
16
|
Chen YJ, Liao YJ, Tram VTN, Lin CH, Liao KC, Liu CL. Alterations of Specific Lymphocytic Subsets with Aging and Age-Related Metabolic and Cardiovascular Diseases. Life (Basel) 2020; 10:life10100246. [PMID: 33080827 PMCID: PMC7603042 DOI: 10.3390/life10100246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 02/08/2023] Open
Abstract
To investigate the association of immunosenescence with aged-related morbidity in the elderly, a clinical study was conducted to analyze and compare the alterations in peripheral blood (PB) T-cell subsets among young healthy (YH) controls, elderly healthy (EH) controls, and age-matched elderly patients with metabolic diseases (E-MDs), with cardiovascular diseases (E-CVDs) or with both (E-MDs/E-CVDs). The frequencies of CD3T, CD8T and invariant natural killer T (iNKT) cells were decreased in the EH, E-MD and E-CVD cohorts, indicating a decline in defense function. Although CD4T and regulatory T (Treg) cell frequencies tended to increase with aging, they were lower in patients with E-MDs and E-CVDs. Subset analyses of T-cells consistently showed the accumulation of senescent T-cell in aging and in patients with E-MDs and E-CVDs, compared with YH volunteers. These accumulated senescent T-cells were undergoing apoptosis upon stimulation due to the replicative senescence stage of T-cells. In addition, serum levels of cytokines, including interferon (IF)-γ, transforming growth factor (TGF)-β and growth differentiation factor (GDF)-15, consistently reflected alterations in T-cell subsets. This study demonstrated that T-cell subset changes with paralleled alterations in cytokines were associated with aging and age-related pathogenesis. These altered T-cell subsets and/or cytokines can potentially serve as biomarkers for the prevention, diagnosis and treatment of age-related morbidities.
Collapse
Affiliation(s)
- Ying Jen Chen
- Division of General Internal Medicine and Geriatrics, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (Y.J.C.); (C.H.L.); (K.C.L.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Yi Jen Liao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (Y.J.L.); (V.T.N.T.)
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Van Thi Ngoc Tram
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (Y.J.L.); (V.T.N.T.)
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Chung Hao Lin
- Division of General Internal Medicine and Geriatrics, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (Y.J.C.); (C.H.L.); (K.C.L.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Kuo Chen Liao
- Division of General Internal Medicine and Geriatrics, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (Y.J.C.); (C.H.L.); (K.C.L.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Chao Lien Liu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (Y.J.L.); (V.T.N.T.)
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence:
| |
Collapse
|
17
|
Abstract
A model is introduced here that for the first time describes carcinogenesis in the context of and interacting with associated inflammatory processes. Central to the model are the control of cytokine production by the innate immune system and its disturbance by additional uncontrolled cytokine sources. The model aims to answer the following questions: Why don't tumors form more often? What drives tumor recurrence after an R0 surgery even in UICC I cases, and what causes tumor progression? Which are the host-tumor-host interactions that ultimately lead to lethal outcome in the disease? The model describes the innate immune system under normal conditions as in a dynamic equilibrium, which is shifted toward pro-inflammation when a tumor forms. That in turn causes tumor-associated symptoms, metastasis, and tumor relapse. The recurrence of the tumor from R0/N0/M0-conditions results from the activation of a memory function of the innate immune system, which is conditioned during the initial tumor growth and survives the tumor removal. If activated, this memory function reestablishes, often irreversibly, the shift of the innate immune system away from dynamic equilibrium toward a pro-inflammatory state characterized by nonspecific symptoms originating from the tumor and by activation of dissemination of tumor cells. Once disseminated, these cells can proliferate and form new metastatic structures. Although elements of the memory function are unclear, some properties can be derived from the relapse behavior of tumors. A therapeutic path to influence the innate immune system could be an element in oncologic therapy: Reducing the deviation from the dynamic equilibrium would diminish the clinical effects of such a disturbance and decouple the presence of tumor cells from the influence they have on the organism, and thus build a resilience to tumor growth. The model presented here could also influence sepsis and SIRS therapy and possibly other diseases for which the innate immune system is disturbed.
Collapse
Affiliation(s)
- Thomas Löser
- Institut LOESER, Wettiner Straße 6, D 04105 Leipzig, Germany.
| |
Collapse
|
18
|
Exploratory examination of inflammation state, immune response and blood cell composition in a human obese cohort to identify potential markers predicting cancer risk. PLoS One 2020; 15:e0228633. [PMID: 32027700 PMCID: PMC7004330 DOI: 10.1371/journal.pone.0228633] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 01/21/2020] [Indexed: 01/12/2023] Open
Abstract
Obesity has reached epidemic proportions and is often accompanied by elevated levels of pro-inflammatory cytokines that promote many chronic diseases, including cancer. However, not all obese people develop these diseases and it would be very helpful to identify those at high risk early on so that preventative measures can be instituted. We performed an extensive evaluation of the effects of obesity on inflammatory markers, on innate and adaptive immune responses, and on blood cell composition to identify markers that might be useful in distinguishing those at elevated risk of cancer. Plasma samples from 42 volunteers with a BMI>35 had significantly higher CRP, PGE2, IL-1RA, IL-6 and IL-17 levels than 34 volunteers with normal BMIs. Of the cytokines and chemokines tested, only IL-17 was significantly higher in men with a BMI>35 than women with a BMI>35. As well, only IL-17 was significantly higher in those with a BMI>35 that had type 2 diabetes versus those without type 2 diabetes. Whole blood samples from participants with a BMI>35, when challenged with E. coli, produced significantly higher levels of IL-1RA while HSV-1 challenge resulted in significantly elevated IL-1RA and VEGF, and a non-significant increase in G-CSF and IL-8 levels. T cell activation of PBMCs, via anti-CD3 plus anti-CD28, resulted in significantly higher IFNγ production from volunteers with a BMI>35. In terms of blood cells, red blood cell distribution width (RDW), monocytes, granulocytes, CD4+T cells and Tregs were all significantly higher while, natural killer (NK) and CD8+ T cells were all significantly lower in the BMI>35 cohort, suggesting that obesity may reduce the ability to kill nascent tumor cells. Importantly, however, there was considerable person-to-person variation amongst participants with a BMI>35, with some volunteers showing markedly different values from controls and others showing normal levels of many parameters measured. These person-to-person variations may prove useful in identifying those at high risk of developing cancer.
Collapse
|
19
|
Meester I, Rivera-Silva GF, González-Salazar F. Immune System Sex Differences May Bridge the Gap Between Sex and Gender in Fibromyalgia. Front Neurosci 2020; 13:1414. [PMID: 32009888 PMCID: PMC6978848 DOI: 10.3389/fnins.2019.01414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 12/16/2019] [Indexed: 12/19/2022] Open
Abstract
The fibromyalgia syndrome (FMS) is characterized by chronic widespread pain, sleep disturbances, fatigue, and cognitive alterations. A limited efficacy of targeted treatment and a high FMS prevalence (2–5% of the adult population) sums up to high morbidity. Although, altered nociception has been explained with the central sensitization hypothesis, which may occur after neuropathy, its molecular mechanism is not understood. The marked female predominance among FMS patients is often attributed to a psychosocial predisposition of the female gender, but here we will focus on sex differences in neurobiological processes, specifically those of the immune system, as various immunological biomarkers are altered in FMS. The activation of innate immune sensors is compatible with a neuropathy or virus-induced autoimmune diseases. Considering sex differences in the immune system and the clustering of FMS with autoimmune diseases, we hypothesize that the female predominance in FMS is due to a neuropathy-induced autoimmune pathophysiology. We invite the scientific community to verify the autoimmune hypothesis for FMS.
Collapse
Affiliation(s)
- Irene Meester
- Laboratory of Tissue Engineering and Regenerative Medicine, Basic Sciences Department, University of Monterrey, San Pedro Garza García, Mexico
| | - Gerardo Francisco Rivera-Silva
- Laboratory of Tissue Engineering and Regenerative Medicine, Basic Sciences Department, University of Monterrey, San Pedro Garza García, Mexico
| | - Francisco González-Salazar
- Laboratory of Tissue Engineering and Regenerative Medicine, Basic Sciences Department, University of Monterrey, San Pedro Garza García, Mexico.,Laboratory of Cellular Physiology, Northeast Center of Research, Mexican Institute of Social Security, Monterrey, Mexico
| |
Collapse
|
20
|
Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, Ferrucci L, Gilroy DW, Fasano A, Miller GW, Miller AH, Mantovani A, Weyand CM, Barzilai N, Goronzy JJ, Rando TA, Effros RB, Lucia A, Kleinstreuer N, Slavich GM. Chronic inflammation in the etiology of disease across the life span. Nat Med 2019; 25:1822-1832. [PMID: 31806905 DOI: 10.1038/s41591-019-0675-0] [Citation(s) in RCA: 2617] [Impact Index Per Article: 436.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 10/31/2019] [Indexed: 02/06/2023]
Abstract
Although intermittent increases in inflammation are critical for survival during physical injury and infection, recent research has revealed that certain social, environmental and lifestyle factors can promote systemic chronic inflammation (SCI) that can, in turn, lead to several diseases that collectively represent the leading causes of disability and mortality worldwide, such as cardiovascular disease, cancer, diabetes mellitus, chronic kidney disease, non-alcoholic fatty liver disease and autoimmune and neurodegenerative disorders. In the present Perspective we describe the multi-level mechanisms underlying SCI and several risk factors that promote this health-damaging phenotype, including infections, physical inactivity, poor diet, environmental and industrial toxicants and psychological stress. Furthermore, we suggest potential strategies for advancing the early diagnosis, prevention and treatment of SCI.
Collapse
Affiliation(s)
- David Furman
- Buck Institute for Research on Aging, Novato, CA, USA. .,Stanford 1000 Immunomes Project, Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA. .,Institute for Research in Translational Medicine, Universidad Austral, CONICET, Pilar, Buenos Aires, Argentina. .,Iuve Inc., San Mateo, CA, USA.
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA, USA.,Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Pedro Carrera-Bastos
- Center for Primary Health Care Research, Lund University/Region Skåne, Skåne University Hospital, Malmö, Sweden
| | - Sasha Targ
- Iuve Inc., San Mateo, CA, USA.,Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA
| | - Claudio Franceschi
- IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy.,Department of Applied Mathematics and Laboratory of Systems Biology of Aging, Lobachevsky University, Nizhny Novgorod, Russia
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Derek W Gilroy
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, University College London, London, UK
| | - Alessio Fasano
- MassGeneral Hospital for Children, Harvard Medical School, Boston, MA, USA
| | - Gary W Miller
- Department of Environmental Health Sciences, School of Public Health, Columbia University Medical Center, New York, NY, USA
| | - Andrew H Miller
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Alberto Mantovani
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University, London, UK
| | - Cornelia M Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Nir Barzilai
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Jorg J Goronzy
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas A Rando
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA.,Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.,Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Rita B Effros
- Department of Pathology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain.,Research Institute of the Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Nicole Kleinstreuer
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA.,NTP Interagency Center for the Evaluation of Alternative Toxicological Methods, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - George M Slavich
- Cousins Center for Psychoneuroimmunology and Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
21
|
Zhang AJX, Zhu H, Chen Y, Li C, Li C, Chu H, Gozali L, Lee ACY, To KKW, Hung IFN, Yuen KY. Prostaglandin E2-Mediated Impairment of Innate Immune Response to A(H1N1)pdm09 Infection in Diet-Induced Obese Mice Could Be Restored by Paracetamol. J Infect Dis 2019; 219:795-807. [PMID: 30202973 DOI: 10.1093/infdis/jiy527] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/31/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Obesity is associated with increased severity of influenza infection. However, the underlying mechanism is largely unknown. METHODS We employed a mouse model with diet-induced obesity (DIO) to study the innate immune responses induced by influenza virus. RESULTS The lungs of DIO mice were heavily affected by obesity-associated chronic systemic inflammation with a significant increase in inflammatory cytokines/chemokines. Concurrently, lipid immune mediator prostaglandin E2 (PGE2) was also significantly elevated in DIO mice. However, the DIO mice mounted a blunted and delayed upregulation of mRNA and protein concentrations of interferon-β and inflammatory cytokines/chemokines upon A(H1N1)pdm09 virus (H1N1/415742Md) challenge compared with those of lean mice. PGE2 concentrations were significantly higher in the lungs of DIO mice compared to that of lean mice postchallenge. Treatment with paracetamol in challenged DIO mice significantly enhanced the expression of interferon-α/β and cytokine genes at days 1 and 3 postinfection compared with that of untreated DIO mice. Furthermore, paracetamol treatment alone started 3 days before virus challenge and continued until 6 days postchallenge ameliorated the severity of a lethal H1N1/415742Md infection in DIO mice with improved survival. CONCLUSIONS Impaired innate response to influenza in DIO mice is associated with elevated PGE2, which could be restored to some degree by paracetamol treatment.
Collapse
Affiliation(s)
- Anna J X Zhang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
| | - Houshun Zhu
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yanxia Chen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chuangen Li
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Can Li
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hin Chu
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
| | - Leonardi Gozali
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Andrew C Y Lee
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kelvin K W To
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
| | - Ivan F N Hung
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kwok-Yung Yuen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
22
|
Chen G, Yung R. Meta-inflammaging at the crossroad of geroscience. Aging Med (Milton) 2019; 2:157-161. [PMID: 31942529 PMCID: PMC6880720 DOI: 10.1002/agm2.12078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 08/19/2019] [Indexed: 12/28/2022] Open
Abstract
Geroscience posits that selected fundamental biological processes are the foundation of age-related chronic diseases and are responsible for the decline in physical and mental function in old age. Late-life chronic low-grade inflammation ("inflammaging") and altered signal transduction pathways in metabolism have been identified as two of the key themes in the aging process. Age-related changes in the immune and metabolic responses are also recognized as playing a critical pathogenic role in most common chronic medical conditions that plague the elderly. Emerging investigations emphasize the interconnectedness of the immune and metabolic responses in aging, an area of gerontological research that can be termed "meta-inflammaging."
Collapse
Affiliation(s)
- Guobing Chen
- Institute of Geriatric ImmunologySchool of MedicineJinan UniversityGuangzhouChina
- Department of Microbiology and ImmunologySchool of MedicineJinan UniversityGuangzhouChina
| | - Raymond Yung
- Geriatrics Center and Institute of GerontologyUniversity of MichiganAnn ArborMIUSA
- VA Ann Arbor Geriatrics Research, Education and Clinical CenterAnn ArborMIUSA
- Department of Internal MedicineDivision of Geriatric and Palliative MedicineUniversity of MichiganAnn ArborMIUSA
| |
Collapse
|
23
|
Thyagarajan B, Shippee N, Parsons H, Vivek S, Crimmins E, Faul J, Shippee T. How Does Subjective Age Get "Under the Skin"? The Association Between Biomarkers and Feeling Older or Younger Than One's Age: The Health and Retirement Study. Innov Aging 2019; 3:igz035. [PMID: 31528718 PMCID: PMC6736363 DOI: 10.1093/geroni/igz035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Though subjective age is a well-recognized risk factor for several chronic diseases, the biological basis for these associations remains poorly understood. RESEARCH DESIGN AND METHODS We used new comprehensive biomarker data from the 2016 wave of the nationally representative Health and Retirement Study (HRS) to evaluate the association between biomarker levels and self-reported subjective age in a subset of 3,740 HRS participants who provided a blood sample. We measured biomarkers in seven biological domains associated with aging: inflammation, glycemia, lipids, liver function, endocrine function, renal function, and cardiac function. The primary outcome was the age discrepancy score (subjective age - chronological age) categorized as those who felt younger, older, or the same as their chronological age (reference group). Analyses adjusted for comprehensive psychosocial factors (chronic stress index, depression score), demographic factors (race, sex, body mass index, marital status, physical activity), and prevalence of chronic health conditions (comorbidity index). RESULTS The prevalence of clinically relevant reduced levels of albumin concentrations was lower in those who felt younger (8.8% vs. 16.0%; p = .006) and higher in those who felt older (20.4% vs. 16.0%; p = .03) when compared with the reference category. The prevalence of clinically significant elevation in liver enzymes such as alanine aminotransferase was also significantly lower among those who felt younger (7.1% vs. 8.6%; p = .04) when compared with the reference category. Prevalence of clinically elevated levels in cystatin C was also lower among those who felt younger when compared with the reference category (50.0% vs. 59.1%; p = .04). There was no association between lipids, glucose, or C-reactive protein (inflammatory marker) and subjective age categories. DISCUSSION AND IMPLICATIONS These results suggest that people who feel younger may have favorable biomarker profiles and as a result may have lower prevalence of age-related diseases when compared with those who feel older or those who feel the same as their chronological age.
Collapse
Affiliation(s)
- Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis
| | - Nathan Shippee
- Division of Health Policy and Management, University of Minnesota School of Public Health, Minneapolis
| | - Helen Parsons
- Division of Health Policy and Management, University of Minnesota School of Public Health, Minneapolis
| | - Sithara Vivek
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis
| | - Eileen Crimmins
- Davis School of Gerontology, University of Southern California–Davis, Los Angeles
| | - Jessica Faul
- Institute for Social Research, Survey Research Center, University of Michigan, Ann Arbor
| | - Tetyana Shippee
- Division of Health Policy and Management, University of Minnesota School of Public Health, Minneapolis
| |
Collapse
|
24
|
Wicks K, Stretton C, Popple A, Beresford L, Williams J, Maxwell G, Gosling JP, Kimber I, Dearman RJ. T lymphocyte phenotype of contact-allergic patients: experience with nickel and p-phenylenediamine. Contact Dermatitis 2019; 81:43-53. [PMID: 30779159 DOI: 10.1111/cod.13246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/11/2019] [Accepted: 02/14/2019] [Indexed: 11/08/2023]
Abstract
BACKGROUND There is considerable interest in understanding the immunological variables that have the greatest influence on the effectiveness of sensitization by contact allergens, particularly in the context of developing new paradigms for risk assessment of novel compounds. OBJECTIVES To examine the relationship between patch test score for three different contact allergens and the characteristics of T cell responses. METHODS A total of 192 patients with confirmed nickel, p-phenylenediamine (PPD) or methylisothiazolinone (MI) allergy were recruited from the Contact Dermatitis Investigation Unit at Salford Royal Hospital. Severity of allergy was scored by the use of patch testing, peripheral blood lymphocytes were characterized for T cell phenotype by flow cytometry, and proliferative activity was characterized by radiolabelled thymidine incorporation. Comparisons were drawn with buffy coat samples from healthy volunteers. RESULTS Patch test positivity for nickel, PPD and MI was associated with changes in the phenotype of peripheral blood T cells: increases in naïve cells, decreases in regulatory T cell frequency and the CD4+ /CD8hi ratio, and increased expression of the skin-homing marker cutaneous lymphocyte antigen (CLA), particularly for those patients with a +++ patch test score. CONCLUSIONS This increased understanding of the characteristics of the T cell responses to contact allergens may provide parameters with which to better measure health risks associated with skin sensitization.
Collapse
Affiliation(s)
- Kate Wicks
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Clare Stretton
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Amy Popple
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Lorna Beresford
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jason Williams
- Contact Dermatitis Investigation Unit, Salford Royal NHS Foundation Trust, Salford, UK
| | - Gavin Maxwell
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, UK
| | | | - Ian Kimber
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Rebecca J Dearman
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
25
|
Gao XP, Liu YH, Liu ZY, Wang LJ, Jing CX, Zhu S, Zeng FF. Pretreatment lymphocyte-to-monocyte ratio as a predictor of survival among patients with ovarian cancer: a meta-analysis. Cancer Manag Res 2019; 11:1907-1920. [PMID: 30881117 PMCID: PMC6398401 DOI: 10.2147/cmar.s184970] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Introduction In this meta-analysis, we analyzed retrospective cohort studies that assessed the prognostic potential of the pretreatment lymphocyte-to-monocyte ratio (LMR) among patients with ovarian cancer (OC). Materials and methods We comprehensively searched electronic databases, including PubMed and Embase, from inception through October 2018. A random-effects model was used to calculate pooled HRs and their 95% CIs for overall survival (OS) and progression-free survival (PFS). The low LMR group was treated as the reference group. Results Twelve studies, including 3,346 OC cases at baseline, were included. Overall, our results indicated that LMR was positively associated with both OS (HR: 1.85, 95% CI: 1.50–2.28, P<0.001; I2=76.5%) and PFS (HR: 1.70, 95% CI: 1.49–1.94, P<0.001; I2=24.4%) among OC patients. Stratified analyses indicated that, for OS, the LMR’s protective effect was more evident in studies conducted among younger patients (<55 years) than in those conducted among older patients (≥55 years; P for interaction =0.017), which was confirmed by meta-regression analysis (P=0.004). Conclusion This study suggested that a higher pretreatment LMR level was associated with a favorable prognosis among OC patients. Future large-scale prospective clinical trials are needed to confirm the prognostic value of LMR among OC patients.
Collapse
Affiliation(s)
- Xu-Ping Gao
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China,
| | - Yan-Hua Liu
- Department of Nutrition, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Ze-Ying Liu
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China,
| | - Li-Jun Wang
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Chun-Xia Jing
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China,
| | - Sui Zhu
- Department of Medical Statistics, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China,
| | - Fang-Fang Zeng
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China,
| |
Collapse
|
26
|
Ozen M, Zhao H, Kalish F, Yang Y, Folkins A, Burd I, Wong RJ, Stevenson DK. Heme oxygenase-1 deficiency results in splenic T-cell dysregulation in offspring of mothers exposed to late gestational inflammation. Am J Reprod Immunol 2018; 79:e12829. [PMID: 29484761 DOI: 10.1111/aji.12829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 01/31/2018] [Indexed: 12/28/2022] Open
Abstract
PROBLEM Infection during pregnancy can disrupt regulatory/effector immune system balance, resulting in adverse pregnancy and fetal-neonatal outcomes. Heme oxygenase-1 (HO-1) is a major regulatory enzyme in the immune system. We observed maternal immune response dysregulation during late gestational inflammation (LGI), which may be mediated by HO-1. Here, we extend these studies to examine the immune response of offspring. METHOD OF STUDY Pregnant wild-type (Wt) and HO-1 heterozygote (Het) dams were treated with lipopolysaccharide (LPS) or vehicle at E15.5. Pups' splenic immune cells were characterized using flow cytometry. RESULTS CD3+ CD4+ CD25+ (Tregs) and CD3+ CD8+ (Teffs) T cells in Wt and Het were similar in control neonates and increased with age. We showed not only age- but also genotype-specific and long-lasting T-cell dysregulation in pups after maternal LGI. The persistent immune dysregulation, mediated by HO-1 deficiency, was reflected as a decrease in Treg FoxP3 and CD3+ CD8+ T cells, and an increase in CD4+ /CD8+ T-cell and Treg/Teff ratios in Hets compared with Wt juvenile mice after maternal exposure to LGI. CONCLUSION Maternal exposure to LGI can result in dysregulation of splenic T cells in offspring, especially in those with HO-1 deficiency. We speculate that these immune alterations are the basis of adverse outcomes in neonates from mothers exposed to low-grade (subclinical) infections.
Collapse
Affiliation(s)
- Maide Ozen
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Department of Pediatrics, Johns Hopkins University, Baltimore, MD, USA
| | - Hui Zhao
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Flora Kalish
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Yang Yang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ann Folkins
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Irina Burd
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ronald J Wong
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - David K Stevenson
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
27
|
Liebers V, Kendzia B, Stubel H, Borowitzki G, Gering V, Monsé C, Hagemeyer O, Merget R, Brüning T, Raulf M. Cell Activation and Cytokine Release Ex Vivo: Estimation of Reproducibility of the Whole-Blood Assay with Fresh Human Blood. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1108:25-36. [DOI: 10.1007/5584_2018_225] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|