1
|
Yu S, You Y, Liu L, Cai X, Huang C. Modulation of biomaterial-induced foreign body response by regulating the differentiation and migration of Treg cells through the CXCL12-CXCR4/7 axis. Biomater Sci 2025; 13:1529-1542. [PMID: 39932368 DOI: 10.1039/d4bm01474j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2025]
Abstract
Tissue exposure to implanted biomaterials triggers a foreign body response (FBR), which is a stepwise immunological process involving innate immune cells and tissue repair cells. Although the regulatory T (Treg) cells play a crucial role in inflammation and tissue repair, their function in the process of FBR has not been well investigated. In this study, as titanium (Ti) exhibits better biocompatibility and induces milder FBR than polymethyl methacrylate (PMMA), we analyzed the characteristics of Treg cells during FBR caused by the two types of biomaterials. In a rat femur implantation model, we found that the number of Treg cells around titanium implants was much more than that in the PMMA-implanted group. Meanwhile, the expression of CXCR4 in tissues around Ti implants was significantly higher, and the expression of CXCR7 was lower. When co-cultured with biomaterials and macrophages, the differentiation and migration of Treg cells in the Ti-implanted group were promoted, and this effect could be modulated by CXCR4/7 inhibitors. Moreover, targeting CXCR4/7 influenced the amount of Treg cells in vivo and then reversed the FBR induced by PMMA or Ti implants. In summary, our findings revealed the role of CXCR4/CXCR7 in regulating the migration and differentiation of Treg cells during FBR and suggested that the CXCL12-CXCR4/CXCR7 axis may serve as a potential therapeutic target for immunomodulating foreign body response.
Collapse
Affiliation(s)
- Siyi Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Yuan You
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Lan Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Xinjie Cai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Cui Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Wang C, Sun H, Wang R, Ma X, Sun Y. FGL2: A new target molecule for coagulation and immune regulation in infectious disease. Int Immunopharmacol 2024; 143:113505. [PMID: 39488038 DOI: 10.1016/j.intimp.2024.113505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
Infectious diseases are complex inflammatory-immunologic host responses caused by various pathogens, such as viruses, bacteria, parasites, and fungi. In the process of infectious disease development, immune cells are activated, and a substantial number of inflammatory factors are released within the endothelium, which results in coagulation activation and the formation of intravascular thrombi. Furthermore, infection-induced hypercoagulability amplifies the inflammatory response and immune dysregulation. Emerging evidence suggests that fibrinogen-like protein 2 (FGL2) has a crucial role in facilitating procoagulant, pro-inflammatory, and immune-regulatory responses in various infectious diseases. This review illustrates the complex procoagulation and immunoregulatory roles of FGL2, suggesting it could be a target for novel immune interventions in intractable infectious diseases.
Collapse
Affiliation(s)
- Chaoyang Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - He Sun
- Department of Hepatobiliary Surgery and Transplantation, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Rui Wang
- Department of Pediatrics, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaochun Ma
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yini Sun
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Upadhyay S, Kumar S, Singh VK, Tiwari R, Kumar A, Sundar S, Kumar R. Chemokines Signature and T Cell Dynamics in Leishmaniasis: Molecular insight and therapeutic application. Expert Rev Mol Med 2024; 27:1-55. [PMID: 39587036 PMCID: PMC11707835 DOI: 10.1017/erm.2024.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 09/04/2024] [Accepted: 10/28/2024] [Indexed: 11/27/2024]
Abstract
Leishmaniasis, caused by obligate intracellular Leishmania parasites, poses a significant global health burden. The control of Leishmania infection relies on an effective T cell-dependent immune response; however, various factors impede the host’s ability to mount a successful defence. Alterations in the chemokine profile, responsible for cell trafficking to the infection site, can disrupt optimal immune responses and influence the outcome of pathogenesis by facilitating parasite persistence. This review aims to emphasize the significance of the chemokine system in T cell responses and to summarize the current knowledge on the dysregulation of chemokines and their receptors associated with different subsets of T lymphocytes during Leishmaniasis. A comprehensive understanding of the dynamic nature of the chemokine system during Leishmaniasis is crucial for the development of successful immunotherapeutic approaches.
Collapse
Affiliation(s)
- Shreya Upadhyay
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shashi Kumar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Vishal Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rahul Tiwari
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Awnish Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
4
|
Fiorenza S, Zheng Y, Purushe J, Bock TJ, Sarthy J, Janssens DH, Sheih AS, Kimble EL, Kirchmeier D, Phi TD, Gauthier J, Hirayama AV, Riddell SR, Wu Q, Gottardo R, Maloney DG, Yang JYH, Henikoff S, Turtle CJ. Histone marks identify novel transcription factors that parse CAR-T subset-of-origin, clinical potential and expansion. Nat Commun 2024; 15:8309. [PMID: 39333103 PMCID: PMC11436946 DOI: 10.1038/s41467-024-52503-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024] Open
Abstract
Chimeric antigen receptor-modified T cell (CAR-T) immunotherapy has revolutionised blood cancer treatment. Parsing the genetic underpinnings of T cell quality and CAR-T efficacy is challenging. Transcriptomics inform CAR-T state, but the nature of dynamic transcription during activation hinders identification of transiently or minimally expressed genes, such as transcription factors, and over-emphasises effector and metabolism genes. Here we explore whether analyses of transcriptionally repressive and permissive histone methylation marks describe CAR-T cell functional states and therapeutic potential beyond transcriptomic analyses. Histone mark analyses improve identification of differences between naïve, central memory, and effector memory CD8 + T cell subsets of human origin, and CAR-T derived from these subsets. We find important differences between CAR-T manufactured from central memory cells of healthy donors and of patients. By examining CAR-T products from a clinical trial in lymphoma (NCT01865617), we find a novel association between the activity of the transcription factor KLF7 with in vivo CAR-T accumulation in patients and demonstrate that over-expression of KLF7 increases in vitro CAR-T proliferation and IL-2 production. In conclusion, histone marks provide a rich dataset for identification of functionally relevant genes not apparent by transcriptomics.
Collapse
Affiliation(s)
- S Fiorenza
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| | - Y Zheng
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Bioinformatics and Computational Biology Department, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - J Purushe
- Clinical Research Division, Fred Hutchinson Cancer Cente, Seattle, WA, USA
| | - T J Bock
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - J Sarthy
- Clinical Research Division, Fred Hutchinson Cancer Cente, Seattle, WA, USA
| | - D H Janssens
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - A S Sheih
- Clinical Research Division, Fred Hutchinson Cancer Cente, Seattle, WA, USA
| | - E L Kimble
- Clinical Research Division, Fred Hutchinson Cancer Cente, Seattle, WA, USA
| | - D Kirchmeier
- Clinical Research Division, Fred Hutchinson Cancer Cente, Seattle, WA, USA
| | - T D Phi
- Clinical Research Division, Fred Hutchinson Cancer Cente, Seattle, WA, USA
| | - J Gauthier
- Clinical Research Division, Fred Hutchinson Cancer Cente, Seattle, WA, USA
| | - A V Hirayama
- Clinical Research Division, Fred Hutchinson Cancer Cente, Seattle, WA, USA
| | - S R Riddell
- Clinical Research Division, Fred Hutchinson Cancer Cente, Seattle, WA, USA
| | - Q Wu
- Clinical Research Division, Fred Hutchinson Cancer Cente, Seattle, WA, USA
| | - R Gottardo
- Biomedical Data Sciences, Lausanne University Hospital, Lausanne, Switzerland
| | - D G Maloney
- Clinical Research Division, Fred Hutchinson Cancer Cente, Seattle, WA, USA
| | - J Y H Yang
- Sydney Precision Data Science Centre, The University of Sydney, Sydney, NSW, Australia
| | - S Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - C J Turtle
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Royal North Shore Hospital, St. Leonards, NSW, Australia
| |
Collapse
|
5
|
Lu K, Wang W, Liu Y, Xie C, Liu J, Xing L. Advancements in microenvironment-based therapies: transforming the landscape of multiple myeloma treatment. Front Oncol 2024; 14:1413494. [PMID: 39087026 PMCID: PMC11288838 DOI: 10.3389/fonc.2024.1413494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/20/2024] [Indexed: 08/02/2024] Open
Abstract
Multiple myeloma (MM) is the most prevalent malignant monoclonal disease of plasma cells. There is mounting evidence that interactions with the bone marrow (BM) niche are essential for the differentiation, proliferation, survival, migration, and treatment resistance of myeloma cells. For this reason, gaining a deeper comprehension of how BM microenvironment compartments interact with myeloma cells may inspire new therapeutic ideas that enhance patient outcomes. This review will concentrate on the most recent findings regarding the mechanisms of interaction between microenvironment and MM and highlight research on treatment targeting the BM niche.
Collapse
Affiliation(s)
- Ke Lu
- Department of Lymphoma, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wen Wang
- Department of Lymphoma, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yuntong Liu
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Chao Xie
- Department of Respiratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jiye Liu
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Lijie Xing
- Department of Lymphoma, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan, Shandong, China
| |
Collapse
|
6
|
Evans MO, Smith DM, Kress AT, Nadeau RJ, Selig DJ, Caridha D, Racharaks R, Langowski T, Madejczyk MS, Carbaugh C, Saunders D, Widder M, De Meese J, Lee PJ, DeLuca JP. Plerixafor for pathogen-agnostic treatment in murine thigh infection and zebrafish sepsis. Clin Transl Sci 2024; 17:e13876. [PMID: 38963161 PMCID: PMC11223064 DOI: 10.1111/cts.13876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/07/2024] [Accepted: 05/31/2024] [Indexed: 07/05/2024] Open
Abstract
Plerixafor is a CXCR4 antagonist approved in 2008 by the FDA for hematopoietic stem cell collection. Subsequently, plerixafor has shown promise as a potential pathogen-agnostic immunomodulator in a variety of preclinical animal models. Additionally, investigator-led studies demonstrated plerixafor prevents viral and bacterial infections in patients with WHIM syndrome, a rare immunodeficiency with aberrant CXCR4 signaling. Here, we investigated whether plerixafor could be repurposed to treat sepsis or severe wound infections, either alone or as an adjunct therapy. In a Pseudomonas aeruginosa lipopolysaccharide (LPS)-induced zebrafish sepsis model, plerixafor reduced sepsis mortality and morbidity assessed by tail edema. There was a U-shaped response curve with the greatest effect seen at 0.1 μM concentration. We used Acinetobacter baumannii infection in a neutropenic murine thigh infection model. Plerixafor did not show reduced bacterial growth at 24 h in the mouse thigh model, nor did it amplify the effects of a rifampin antibiotic therapy, in varying regimens. While plerixafor did not mitigate or treat bacterial wound infections in mice, it did reduce sepsis mortality in zebra fish. The observed mortality reduction in our LPS model of zebrafish was consistent with prior research demonstrating a mortality benefit in a murine model of sepsis. However, based on our results, plerixafor is unlikely to be successful as an adjunct therapy for wound infections. Further research is needed to better define the scope of plerixafor as a pathogen-agnostic therapy. Future directions may include the use of longer acting CXCR4 antagonists, biased CXCR4 signaling, and optimization of animal models.
Collapse
Affiliation(s)
- Martin O. Evans
- Experimental Therapeutics BranchCIDR, Walter Reed Army Institute of ResearchSilver SpringMarylandUSA
| | - Darren M. Smith
- Experimental Therapeutics BranchCIDR, Walter Reed Army Institute of ResearchSilver SpringMarylandUSA
| | - Adrian T. Kress
- Experimental Therapeutics BranchCIDR, Walter Reed Army Institute of ResearchSilver SpringMarylandUSA
| | - Robert J. Nadeau
- Experimental Therapeutics BranchCIDR, Walter Reed Army Institute of ResearchSilver SpringMarylandUSA
| | - Daniel J. Selig
- Experimental Therapeutics BranchCIDR, Walter Reed Army Institute of ResearchSilver SpringMarylandUSA
| | - Diana Caridha
- Experimental Therapeutics BranchCIDR, Walter Reed Army Institute of ResearchSilver SpringMarylandUSA
| | - Ratanachat Racharaks
- Experimental Therapeutics BranchCIDR, Walter Reed Army Institute of ResearchSilver SpringMarylandUSA
| | - Thomas Langowski
- Experimental Therapeutics BranchCIDR, Walter Reed Army Institute of ResearchSilver SpringMarylandUSA
| | - Michael S. Madejczyk
- Experimental Therapeutics BranchCIDR, Walter Reed Army Institute of ResearchSilver SpringMarylandUSA
| | - Chance Carbaugh
- Experimental Therapeutics BranchCIDR, Walter Reed Army Institute of ResearchSilver SpringMarylandUSA
| | - David Saunders
- Uniformed Services University School of MedicineBethesdaMarylandUSA
| | - Mark Widder
- Experimental Therapeutics BranchCIDR, Walter Reed Army Institute of ResearchSilver SpringMarylandUSA
| | - Jason De Meese
- Experimental Therapeutics BranchCIDR, Walter Reed Army Institute of ResearchSilver SpringMarylandUSA
| | - Patricia J. Lee
- Experimental Therapeutics BranchCIDR, Walter Reed Army Institute of ResearchSilver SpringMarylandUSA
| | - Jesse P. DeLuca
- Experimental Therapeutics BranchCIDR, Walter Reed Army Institute of ResearchSilver SpringMarylandUSA
| |
Collapse
|
7
|
Toya S, Struyf S, Huerta L, Morris P, Gavioli E, Minnella EM, Cesta MC, Allegretti M, Proost P. A narrative review of chemokine receptors CXCR1 and CXCR2 and their role in acute respiratory distress syndrome. Eur Respir Rev 2024; 33:230172. [PMID: 39048127 PMCID: PMC11267298 DOI: 10.1183/16000617.0172-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/15/2024] [Indexed: 07/27/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a severe form of acute respiratory failure characterised by extensive inflammatory injury to the alveolocapillary barrier leading to alveolar oedema, impaired gas exchange and, ultimately, hypoxaemia necessitating the use of supplemental oxygen combined with some degree of positive airway pressure. Although much heterogeneity exists regarding the aetiology, localisation and endotypic characterisation of ARDS, what remains largely undisputed is the role of the innate immune system, and in particular of neutrophils, in precipitating and propagating lung injury. Activated neutrophils, recruited to the lung through chemokine gradients, promote injury by releasing oxidants, proteases and neutrophil extracellular traps, which ultimately cause platelet aggregation, microvascular thrombosis and cellular death. Among various neutrophilic chemoattractants, interleukin-8/C-X-C motif ligand 8 and related chemokines, collectively called ELR+ chemokines, acting on neutrophils through the G protein-coupled receptors CXCR1 and CXCR2, are pivotal in orchestrating the neutrophil activation status and chemotaxis in the inflamed lung. This allows efficient elimination of infectious agents while at the same time minimising collateral damage to host tissue. Therefore, understanding how CXCR1 and CXCR2 receptors are regulated is important if we hope to effectively target them for therapeutic use in ARDS. In the following narrative review, we provide an overview of the role of ELR+ chemokines in acute lung injury (ALI) and ARDS, we summarise the relevant regulatory pathways of their cognisant receptors CXCR1/2 and highlight current preclinical and clinical evidence on the therapeutic role of CXCR1 and CXCR2 inhibition in animal models of ALI, as well as in ARDS patients.
Collapse
Affiliation(s)
| | - Sofie Struyf
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Luis Huerta
- Keck School of Medicine of USC, Department of Medicine, Pulmonary and Critical Care Medicine, Los Angeles, CA, USA
| | - Peter Morris
- The University of Alabama at Birmingham, Department of Medicine, Pulmonary, Allergy, and Critical Care Medicine, Birmingham, AL, USA
| | | | | | | | | | - Paul Proost
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| |
Collapse
|
8
|
Fowler D, Barisa M, Southern A, Nattress C, Hawkins E, Vassalou E, Kanouta A, Counsell J, Rota E, Vlckova P, Draper B, De Mooij T, Farkas A, Brezovjakova H, Baker AT, Scotlandi K, Manara MC, Tape C, Chester K, Anderson J, Fisher J. Payload-delivering engineered γδ T cells display enhanced cytotoxicity, persistence, and efficacy in preclinical models of osteosarcoma. Sci Transl Med 2024; 16:eadg9814. [PMID: 38809963 DOI: 10.1126/scitranslmed.adg9814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/23/2024] [Indexed: 05/31/2024]
Abstract
T cell-based cancer immunotherapy has typically relied on membrane-bound cytotoxicity enhancers such as chimeric antigen receptors expressed in autologous αβ T cells. These approaches are limited by tonic signaling of synthetic constructs and costs associated with manufacturing. γδ T cells are an emerging alternative for cellular therapy, having innate antitumor activity, potent antibody-dependent cellular cytotoxicity, and minimal alloreactivity. We present an immunotherapeutic platform technology built around the innate properties of the Vγ9Vδ2 T cell, harnessing specific characteristics of this cell type and offering an allocompatible cellular therapy that recruits bystander immunity. We engineered γδ T cells to secrete synthetic tumor-targeting opsonins in the form of an scFv-Fc fusion protein and a mitogenic IL-15Rα-IL-15 fusion protein (stIL15). Using GD2 as a model antigen, we show that GD2-specific opsonin-secreting Vγ9Vδ2 T cells (stIL15-OPS-γδ T cells) have enhanced cytotoxicity and promote bystander activity of other lymphoid and myeloid cells. Secretion of stIL-15 abrogated the need for exogenous cytokine supplementation and further mediated activation of bystander natural killer cells. Compared with unmodified γδ T cells, stIL15-OPS-γδ T cells exhibited superior in vivo control of subcutaneous tumors and persistence in the blood. Moreover, stIL15-OPS-γδ T cells were efficacious against patient-derived osteosarcomas in animal models and in vitro, where efficacy could be boosted with the addition of zoledronic acid. Together, the data identify stIL15-OPS-γδ T cells as a candidate allogeneic cell therapy platform combining direct cytolysis with bystander activation to promote tumor control.
Collapse
Affiliation(s)
- Daniel Fowler
- UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research, 20 Guilford Street, WC1N 1DZ London, UK
| | - Marta Barisa
- UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research, 20 Guilford Street, WC1N 1DZ London, UK
| | - Alba Southern
- UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research, 20 Guilford Street, WC1N 1DZ London, UK
| | - Callum Nattress
- UCL Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, WC1E 6DD London, UK
| | - Elizabeth Hawkins
- UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research, 20 Guilford Street, WC1N 1DZ London, UK
| | - Eleni Vassalou
- UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research, 20 Guilford Street, WC1N 1DZ London, UK
| | - Angeliki Kanouta
- UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research, 20 Guilford Street, WC1N 1DZ London, UK
| | | | - Enrique Rota
- UCL Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, WC1E 6DD London, UK
| | - Petra Vlckova
- UCL Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, WC1E 6DD London, UK
| | - Benjamin Draper
- UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research, 20 Guilford Street, WC1N 1DZ London, UK
| | - Tessa De Mooij
- UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research, 20 Guilford Street, WC1N 1DZ London, UK
| | - Andrea Farkas
- UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research, 20 Guilford Street, WC1N 1DZ London, UK
| | - Helena Brezovjakova
- UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research, 20 Guilford Street, WC1N 1DZ London, UK
| | - Alfie T Baker
- UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research, 20 Guilford Street, WC1N 1DZ London, UK
| | - Katia Scotlandi
- IRCCS Istituto Ortopedico Rizzoli, Experimental Oncology Laboratory, Via di Barbiano 1/10, 40136 Bologna Italy
| | - Maria C Manara
- IRCCS Istituto Ortopedico Rizzoli, Experimental Oncology Laboratory, Via di Barbiano 1/10, 40136 Bologna Italy
| | - Chris Tape
- UCL Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, WC1E 6DD London, UK
| | - Kerry Chester
- UCL Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, WC1E 6DD London, UK
| | - John Anderson
- UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research, 20 Guilford Street, WC1N 1DZ London, UK
| | - Jonathan Fisher
- UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research, 20 Guilford Street, WC1N 1DZ London, UK
| |
Collapse
|
9
|
Lu L, Li J, Jiang X, Bai R. CXCR4/CXCL12 axis: "old" pathway as "novel" target for anti-inflammatory drug discovery. Med Res Rev 2024; 44:1189-1220. [PMID: 38178560 DOI: 10.1002/med.22011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/25/2023] [Accepted: 12/16/2023] [Indexed: 01/06/2024]
Abstract
Inflammation is the body's defense response to exogenous or endogenous stimuli, involving complex regulatory mechanisms. Discovering anti-inflammatory drugs with both effectiveness and long-term use safety is still the direction of researchers' efforts. The inflammatory pathway was initially identified to be involved in tumor metastasis and HIV infection. However, research in recent years has proved that the CXC chemokine receptor type 4 (CXCR4)/CXC motif chemokine ligand 12 (CXCL12) axis plays a critical role in the upstream of the inflammatory pathway due to its chemotaxis to inflammatory cells. Blocking the chemotaxis of inflammatory cells by CXCL12 at the inflammatory site may block and alleviate the inflammatory response. Therefore, developing CXCR4 antagonists has become a novel strategy for anti-inflammatory therapy. This review aimed to systematically summarize and analyze the mechanisms of action of the CXCR4/CXCL12 axis in more than 20 inflammatory diseases, highlighting its crucial role in inflammation. Additionally, the anti-inflammatory activities of CXCR4 antagonists were discussed. The findings might help generate new perspectives for developing anti-inflammatory drugs targeting the CXCR4/CXCL12 axis.
Collapse
Affiliation(s)
- Liuxin Lu
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Junjie Li
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiaoying Jiang
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Renren Bai
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Liu D, Xiao M, Zhou J, Wang P, Peng J, Mao W, Hu Y, Liu Y, Yin J, Ke L, Li W. PFKFB3 promotes sepsis-induced acute lung injury by enhancing NET formation by CXCR4 hi neutrophils. Int Immunopharmacol 2023; 123:110737. [PMID: 37543012 DOI: 10.1016/j.intimp.2023.110737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023]
Abstract
CXCR4hi neutrophils, which are a subset of neutrophils with high CXCR4 expression, are important contributors to sepsis-induced acute lung injury (ALI). PFKFB3, a key glycolysis gene, plays an essential role in neutrophil inflammatory activation. However, the specific involvement of PFKFB3 in sepsis-induced ALI remains unclear. Here, we observed that PFKFB3 was upregulated in CXCR4hi neutrophils and facilitated sepsis-induced ALI. Mechanistically, we observed that PFKFB3 promoted sepsis-induced ALI by enhancing neutrophil extracellular trap (NET) formation by CXCR4hi neutrophils. Further study indicated that PFKFB3 promoted NET formation by upregulating glycolytic metabolism in CXCR4hi neutrophils. In summary, our study uncovered a new mechanism by which CXCR4hi neutrophils trigger sepsis-induced ALI by promoting NET formation, which is supported by PFKFB3-mediated glycolytic metabolism.
Collapse
Affiliation(s)
- Dadong Liu
- Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Min Xiao
- Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Zhou
- Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Peng Wang
- Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingwen Peng
- Center of Severe Acute Pancreatitis (CSAP), Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Wenjian Mao
- Center of Severe Acute Pancreatitis (CSAP), Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yuepeng Hu
- Center of Severe Acute Pancreatitis (CSAP), Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yuxiu Liu
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiangtao Yin
- Department of Critical Care Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China; Digestive Disease Institute, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Lu Ke
- Center of Severe Acute Pancreatitis (CSAP), Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China.
| | - Weiqin Li
- Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
11
|
Williams JC, Ford ML, Coopersmith CM. Cancer and sepsis. Clin Sci (Lond) 2023; 137:881-893. [PMID: 37314016 PMCID: PMC10635282 DOI: 10.1042/cs20220713] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/15/2023]
Abstract
Sepsis is one of the leading causes of death worldwide. While mortality is high regardless of inciting infection or comorbidities, mortality in patients with cancer and sepsis is significantly higher than mortality in patients with sepsis without cancer. Cancer patients are also significantly more likely to develop sepsis than the general population. The mechanisms underlying increased mortality in cancer and sepsis patients are multifactorial. Cancer treatment alters the host immune response and can increase susceptibility to infection. Preclinical data also suggests that cancer, in and of itself, increases mortality from sepsis with dysregulation of the adaptive immune system playing a key role. Further, preclinical data demonstrate that sepsis can alter subsequent tumor growth while tumoral immunity impacts survival from sepsis. Checkpoint inhibition is a well-accepted treatment for many types of cancer, and there is increasing evidence suggesting this may be a useful strategy in sepsis as well. However, preclinical studies of checkpoint inhibition in cancer and sepsis demonstrate results that could not have been predicted by examining either variable in isolation. As sepsis management transitions from a 'one size fits all' model to a more individualized approach, understanding the mechanistic impact of cancer on outcomes from sepsis represents an important strategy towards delivering on the promise of precision medicine in the intensive care unit.
Collapse
Affiliation(s)
- Jeroson C. Williams
- Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322, U.S.A
- Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA 30322, U.S.A
| | - Mandy L. Ford
- Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322, U.S.A
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA 30322, U.S.A
| | - Craig M. Coopersmith
- Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322, U.S.A
- Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA 30322, U.S.A
| |
Collapse
|
12
|
Antoni AC, Pylaeva E, Budeus B, Jablonska J, Klein-Hitpaß L, Dudda M, Flohé SB. TLR2-induced CD8+ T-cell deactivation shapes dendritic cell differentiation in the bone marrow during sepsis. Front Immunol 2022; 13:945409. [PMID: 36148245 PMCID: PMC9488929 DOI: 10.3389/fimmu.2022.945409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022] Open
Abstract
Sepsis is associated with profound immune dysregulation that increases the risk for life-threatening secondary infections: Dendritic cells (DCs) undergo functional reprogramming due to yet unknown changes during differentiation in the bone marrow (BM). In parallel, lymphopenia and exhaustion of T lymphocytes interfere with antigen-specific adaptive immunity. We hypothesized that there exists a link between T cells and the modulation of DC differentiation in the BM during murine polymicrobial sepsis. Sepsis was induced by cecal ligation and puncture (CLP), a model for human bacterial sepsis. At different time points after CLP, the BM and spleen were analyzed in terms of T-cell subpopulations, activation, and Interferon (IFN)-γ synthesis as well as the number of pre-DCs. BM-derived DCs were generated in vitro. We observed that naïve and virtual memory CD8+ T cells, but not CD4+ T cells, were activated in an antigen-independent manner and accumulated in the BM early after CLP, whereas lymphopenia was evident in the spleen. The number of pre-DCs strongly declined during acute sepsis in the BM and almost recovered by day 4 after CLP, which required the presence of CD8+ T cells. Adoptive transfer experiments and in vitro studies with purified T cells revealed that Toll-like receptor 2 (TLR2) signaling in CD8+ T cells suppressed their capacity to secrete IFN-γ and was sufficient to change the transcriptome of the BM during sepsis. Moreover, the diminished IFN-γ production of CD8+ T cells favored the differentiation of DCs with increased production of the immune-activating cytokine Interleukin (IL)-12. These data identify a novel role of CD8+ T cells in the BM during sepsis as they sense TLR2 ligands and control the number and function of de novo differentiating DCs.
Collapse
Affiliation(s)
- Anne-Charlotte Antoni
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ekaterina Pylaeva
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Bettina Budeus
- Institute of Cell Biology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Jadwiga Jablonska
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ludger Klein-Hitpaß
- Institute of Cell Biology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Marcel Dudda
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Stefanie B. Flohé
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- *Correspondence: Stefanie B. Flohé,
| |
Collapse
|
13
|
Liu Q, Xue M, Song Q, Xie J, Yang Y, Liu S. Expression of PD-1 on Memory T Lymphocytes Predicts 28-Day Mortality of Patients with Sepsis: A Prospective Observational Study. J Inflamm Res 2022; 15:5043-5052. [PMID: 36072779 PMCID: PMC9444038 DOI: 10.2147/jir.s376897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/24/2022] [Indexed: 11/23/2022] Open
Abstract
Background Methods Results Conclusion
Collapse
Affiliation(s)
- Qingxiang Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Ming Xue
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Qianwen Song
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Jianfeng Xie
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Yi Yang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
- Correspondence: Yi Yang; Songqiao Liu, Email ;
| | - Songqiao Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
- Department of Critical Care Medicine, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Nanjing, People’s Republic of China
| |
Collapse
|
14
|
Pathophysiology of Sepsis and Genesis of Septic Shock: The Critical Role of Mesenchymal Stem Cells (MSCs). Int J Mol Sci 2022; 23:ijms23169274. [PMID: 36012544 PMCID: PMC9409099 DOI: 10.3390/ijms23169274] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
The treatment of sepsis and septic shock remains a major public health issue due to the associated morbidity and mortality. Despite an improvement in the understanding of the physiological and pathological mechanisms underlying its genesis and a growing number of studies exploring an even higher range of targeted therapies, no significant clinical progress has emerged in the past decade. In this context, mesenchymal stem cells (MSCs) appear more and more as an attractive approach for cell therapy both in experimental and clinical models. Pre-clinical data suggest a cornerstone role of these cells and their secretome in the control of the host immune response. Host-derived factors released from infected cells (i.e., alarmins, HMGB1, ATP, DNA) as well as pathogen-associated molecular patterns (e.g., LPS, peptidoglycans) can activate MSCs located in the parenchyma and around vessels to upregulate the expression of cytokines/chemokines and growth factors that influence, respectively, immune cell recruitment and stem cell mobilization. However, the way in which MSCs exert their beneficial effects in terms of survival and control of inflammation in septic states remains unclear. This review presents the interactions identified between MSCs and mediators of immunity and tissue repair in sepsis. We also propose paradigms related to the plausible roles of MSCs in the process of sepsis and septic shock. Finally, we offer a presentation of experimental and clinical studies and open the way to innovative avenues of research involving MSCs from a prognostic, diagnostic, and therapeutic point of view in sepsis.
Collapse
|
15
|
Nishioka R, Nishi Y, Choudhury ME, Miyaike R, Shinnishi A, Umakoshi K, Takada Y, Sato N, Aibiki M, Yano H, Tanaka J. Surgical stress quickly affects the numbers of circulating B-cells and neutrophils in murine septic and aseptic models through a β 2 adrenergic receptor. J Immunotoxicol 2022; 19:8-16. [PMID: 35232327 DOI: 10.1080/1547691x.2022.2029630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Sepsis is a pathology accompanied by increases in myeloid cells and decreases in lymphoid cells in circulation. In a murine sepsis model induced by cecum ligation and puncture (CLP), increasing numbers of neutrophils and decreasing levels of B-cells in circulation are among the earliest changes in the immune system. However, to date, the mechanisms for these changes remain to be elucidated. The study here sought to elucidate mechanisms underlying the changes in the leukocyte levels after CLP and also to determine what, if any, role for an involvement of the sympathetic nervous system (SNS). Here, male C57/BL6 mice were subjected to CLP or sham-CLP (abdominal wall incised, but cecum was not punctured). The changes in the number of circulating leukocytes over time were then investigated using flow cytometry. The results showed that a sham-CLP led to increased polymorphonuclear cells (PMN; most of which are neutrophils) and decreased B-cells in the circulation to an extent similar to that induced by CLP. Effects of adrenergic agonists and antagonists, as well as of adrenalectomy, were also examined in mice that underwent CLP or sham-CLP. Administering adrenaline or a β2 adrenergic receptor agonist (clenbuterol) to mice 3 h before sacrifice produced almost identical changes to as what was seen 2 h after performing a sham-CLP. In contrast, giving a β2 adrenergic receptor antagonist ICI118,551 1 h before a CLP or sham-CLP suppressed the expected changes 2 h after the operations. Noradrenaline and an α1 adrenergic receptor agonist phenylephrine did not exert significant effects. Adrenalectomy 24 h before a sham-CLP significantly abolished the expected sham-CLP-induced changes seen earlier. Clenbuterol increased splenocyte expression of Cxcr4 (a chemokine receptor gene); adrenalectomy abolished sham-CLP-induced Cxcr4 expression. A CXCR4 antagonist AMD3100 repressed the sham-CLP-induced changes. From these results, it may be concluded that sepsis-induced activation of the SNS may be one cause for immune dysfunction in sepsis - regardless of the pathogenetic processes.
Collapse
Affiliation(s)
- Ryutaro Nishioka
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Japan.,Department of Emergency and Critical Medicine, Graduate School of Medicine, Ehime University, Toon, Japan
| | - Yusuke Nishi
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Japan.,Department of Hepato-biliary Pancreatic Surgery and Breast Surgery, Graduate School of Medicine, Ehime University, Toon, Japan
| | - Mohammed E Choudhury
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Japan
| | - Riko Miyaike
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Japan
| | - Ayataka Shinnishi
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Japan
| | - Kensuke Umakoshi
- Department of Emergency and Critical Medicine, Graduate School of Medicine, Ehime University, Toon, Japan.,Advanced Emergency and Critical Care Center, Ehime Prefectural Central Hospital, Matsuyama, Japan
| | - Yasutsugu Takada
- Department of Hepato-biliary Pancreatic Surgery and Breast Surgery, Graduate School of Medicine, Ehime University, Toon, Japan
| | - Norio Sato
- Department of Emergency and Critical Medicine, Graduate School of Medicine, Ehime University, Toon, Japan
| | - Mayuki Aibiki
- Department of Emergency and Critical Medicine, Graduate School of Medicine, Ehime University, Toon, Japan
| | - Hajime Yano
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Japan
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Japan
| |
Collapse
|
16
|
Zhu Z, Zhang G, Li D, Yin X, Wang T. Silencing of specificity protein 1 protects H9c2 cells against lipopolysaccharide-induced injury via binding to the promoter of chemokine CXC receptor 4 and suppressing NF-κB signaling. Bioengineered 2022; 13:3395-3409. [PMID: 35048778 PMCID: PMC8973921 DOI: 10.1080/21655979.2022.2026548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G protein-coupled protein receptor CXC chemokine receptor 4 (CXCR4) has been shown to be involved in the development of sepsis; however, it remains unclear whether CXCR4 participates in the septic myocardial injury. In our study, treatment with lipopolysaccharide (LPS) increased the expression of specificity protein 1 (SP1) and CXCR4 in H9c2 cells. Notably, a positive association between SP1 and CXCR4 expression was observed in LPS-treated H9c2 cells, and SP1 positively regulated CXCR4 expression in H9c2 cells. Moreover, silencing of SP1 or CXCR4 suppressed LPS-induced inflammation and cell apoptosis in H9c2 cells, as evidenced by the increase in cell viability and decrease in lactate dehydrogenase release, interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α levels, and caspase-3 activity. Additionally, overexpression of CXCR4 abolished the protective effects of SP1 silencing on LPS-induced injury in H9c2 cells. SP1 was also shown to enhance the promoter activity of CXCR4 by directly binding with the binding motif site – 109/–100 in CXCR4 promoter. Besides, downregulation of SP1 or CXCR4 blocked LPS-induced activation of the NF-кB signaling in H9c2 cells. Furthermore, inhibition of NF-кB signaling by DHMEQ abolished LPS-induced myocardial inflammation and apoptosis. In conclusion, silencing of SP1 protected H9c2 cells against LPS-induced injury by binding to the promoter of CXCR4 and suppressing the NF-κB signaling pathway. Hence, our findings provide evidence that manipulation of SP1 or CXCR4 may be an effective approach to promote prevention or recovery of septic myocardial injury, and thereby, may serve as a potential therapeutic strategy for sepsis.
Collapse
Affiliation(s)
- Zhao Zhu
- Department of Emergency, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003 China
| | - Guoxiu Zhang
- Department of Emergency, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003 China
| | - Dahuan Li
- Department of Emergency, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003 China
| | - Xiaojun Yin
- Department of Emergency, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003 China
| | - Tianzhong Wang
- Department of Emergency, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003 China
| |
Collapse
|
17
|
Guilhem A, Portalès P, Dupuis-Girod S, Rivière S, Vincent T. Altered expressions of CXCR4 and CD26 on T-helper lymphocytes in hereditary hemorrhagic telangiectasia. Orphanet J Rare Dis 2021; 16:511. [PMID: 34906163 PMCID: PMC8670161 DOI: 10.1186/s13023-021-02139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/28/2021] [Indexed: 11/10/2022] Open
Abstract
Background Hereditary hemorrhagic telangiectasia (HHT) is a rare genetic disease characterized by a deregulated neo-angiogenesis. Besides a mainly vascular phenotype (muco-cutaneous telangiectases, arteriovenous malformations), a specific risk of infection is suggested by case series of severe and atypical infections as well as by reports of decreased T and natural killer (NK) lymphocyte counts. As some evidence supports a dysregulation of the CXCR4/CXCL12 chemotactic axis of HHT endothelial cells, we hypothesized that a similar phenomenon could occur on lymphocytes. Methods Eighteen HHT patients with history of severe infection (HSI) were matched in age and sex with 18 HHT without HSI and 18 healthy control subjects (HC). We assessed the cell count and the surface expression of CXCR4 and CD26 (CXCL12 inactivating peptidase) of circulating T-helper and T-cytotoxic lymphocytes (including naive, memory and activated subsets) and NK cells. Results The overall HHT group of 36 patients exhibited a reduction of circulating T-helper lymphocytes compared to HC (median: 517 vs. 1026 cells/mm3, p < 0.0001), correlated with age (r = − 0.46, p = 0.005), requirement of intravenous iron or blood transfusions (median: 291 vs. 627 cells/mm3, p = 0.03) and CXCR4 surface expression (r = 0.353, p = 0.0345). CXCR4 and CD26 membrane expression were both decreased on HHT T-helper lymphocytes (median MFI ratio: 4.49 vs. 5.74 for CXCR4 and 3.21 vs. 4.33 for CD26, p = 0.03 and 0.0018 respectively) with an unchanged CXCR4/CD26 ratio. The HHT group with HSI had a higher CXCR4/CD26 ratio on the total T-lymphocyte population, as well as on the T-helper population and its naive subset (median on naive T-helper cells: 2.34 vs. 1.32, p = 0.0002). Conclusions Our findings support a dysregulation of the CXCL12/CXCR4 chemotaxis of T-helper lymphocytes in HHT patients, potentially linked to their T-helper lymphopenia and susceptibility to infection. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-02139-y.
Collapse
Affiliation(s)
- Alexandre Guilhem
- CHU de Montpellier, Médecine interne et maladies multi-organiques de l'adulte, Hôpital Saint Eloi, Montpellier, France.
| | - Pierre Portalès
- CHU de Montpellier, Laboratoire d'immunologie, Hôpital Saint Eloi, Montpellier, France
| | - Sophie Dupuis-Girod
- Centre National de référence Maladie de Rendu-Osler, Service de génétique Hôpital Mère-Enfant, Hospices Civils de Lyon, Bron, France
| | - Sophie Rivière
- CHU de Montpellier, Médecine interne et maladies multi-organiques de l'adulte, Hôpital Saint Eloi, Montpellier, France
| | - Thierry Vincent
- CHU de Montpellier, Laboratoire d'immunologie, Hôpital Saint Eloi, Montpellier, France
| |
Collapse
|
18
|
Zhang L, Zhang JP, Liu Y, Wang H, Cheng Y, Wang JH, Zhang WJ, Li ZZ, Guo JR. Plasma Transfusion Promoted Reprogramming CD4 + T Lymphocytes Immune Response in Severe Sepsis Mice Model Through Modulating the Exosome Protein Galectin 9. Cell Transplant 2021; 29:963689720947347. [PMID: 32907380 PMCID: PMC7784505 DOI: 10.1177/0963689720947347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sepsis is a life-threatening disease that results in excessive stimulation of the host's immune cells. In the animal study, the purpose was to investigate the roles of fresh frozen plasma (FFP) transfusion in shaping the CD4+ T lymphocytes immune response through modulating the secreted exosome protein Galectin-9 in mice with severe sepsis. By using Western blot analysis, we first identified that the protein Galectin-9 is highly accumulated in the blood plasma of severe sepsis mice, and with transmission electron microscopy (TEM) and protein analysis, we found that Galectin-9 is a secreted exosome protein. Thereafter, we treated the severe sepsis mice with the antibiotic Cefuroxime Axetil; one group of mice received FFP transfusion and the other group of mice received normal saline. Surprisingly, the FFP transfusion reduced the secretion of exosome protein Galectin-9 and there was crosstalking between the exosome protein Galectin-9 and CD4+ T lymphocytes in mice with severe sepsis. Results showed that the proliferation of T helper (Th) cells (Th1 and Th17) was promoted, and regulatory T (Treg) cells' maintenance was inhibited in the sepsis mice after receiving FFP transfusion. Correspondingly, this immune reprogrammed activity shaped the inflammatory cytokine secretion with an increase in the interleukin (IL)-1β, IL-6, and interferon-gamma levels, while it decreased IL-10 levels. Taken together, it was suggested that FFP transfusion promoted reprogramming of CD4+ T lymphocytes' immune response through inhibiting the secretion of exosome protein Galectin-9 in mice with severe sepsis to relieve immunosuppression.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Burn Surgery, First Hospital, Jilin University, Changchun, Jilin, P. R. China
| | - Jian-Ping Zhang
- Division of Life Sciences and Medicine, Department of Anesthesiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Yang Liu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Huan Wang
- Department of Anesthesiology, Shanghai Gongli Hospital, the Second Military Medical University, Shanghai, P. R. China
| | - Yong Cheng
- Department of Anesthesiology, Shanghai Gongli Hospital, the Second Military Medical University, Shanghai, P. R. China
| | - Jin-Huo Wang
- Department of Anesthesiology, Shanghai Gongli Hospital, the Second Military Medical University, Shanghai, P. R. China
| | - Wen-Jie Zhang
- Department of Anesthesiology, Shanghai Gongli Hospital, the Second Military Medical University, Shanghai, P. R. China
| | - Zhen-Zhou Li
- Ningxia Medical University, Gongli Hospital of Shanghai Pudong New Area Training Base, Shanghai, P. R. China
| | - Jian-Rong Guo
- Department of Anesthesiology, Shanghai Gongli Hospital, the Second Military Medical University, Shanghai, P. R. China.,Ningxia Medical University, Gongli Hospital of Shanghai Pudong New Area Training Base, Shanghai, P. R. China
| |
Collapse
|
19
|
Zhang W, Anyalebechi JC, Ramonell KM, Chen CW, Xie J, Liang Z, Chihade DB, Otani S, Coopersmith CM, Ford ML. TIGIT modulates sepsis-induced immune dysregulation in mice with preexisting malignancy. JCI Insight 2021; 6:e139823. [PMID: 34100383 PMCID: PMC8262279 DOI: 10.1172/jci.insight.139823] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/05/2021] [Indexed: 12/29/2022] Open
Abstract
TIGIT is a recently identified coinhibitory receptor that is upregulated in the setting of cancer and functionally contributes to the impairment of antitumor immunity. However, its role during sepsis is unknown. Because patients with cancer are 10 times more likely to die of sepsis than previously healthy (PH) patients with sepsis, we interrogated the role of TIGIT during sepsis in the context of preexistent malignancy. PH mice or cancer (CA) mice inoculated with lung carcinoma cells were made septic by cecal ligation and puncture (CLP). We found that sepsis induced TIGIT upregulation predominantly on Tregs and NK cells in both PH and CA mice. Anti-TIGIT Ab improved the 7-d survival of CA septic mice but not PH mice after CLP. Treatment of CA septic animals but not PH septic animals with anti-TIGIT mAb significantly reversed sepsis-induced loss of CD4+ T cells, CD8+ T cells, Foxp3+ Treg, and CD19+ B cells in the spleen, which was the result of decreased caspase-3+ apoptotic cells. In sum, we found that anti-TIGIT Ab reversed sepsis-induced T cell apoptosis in CA septic mice and led to a significant survival benefit, suggesting its use as a potential immunotherapy to improve outcomes in septic patients with cancer.
Collapse
Affiliation(s)
- Wenxiao Zhang
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA.,Department of Critical Care Medicine, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou, China
| | - Jerome C Anyalebechi
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kimberly M Ramonell
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ching-Wen Chen
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jianfeng Xie
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA.,Department of Critical Care Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Zhe Liang
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Deena B Chihade
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Shunsuke Otani
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA.,Department of General Medical Science, Chiba University Graduate School of Medicine, Chiba, Japan.,Department of Emergency and Critical Care Medicine, Eastern Chiba Medical Center, Togane, Japan
| | - Craig M Coopersmith
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA.,Emory Critical Care Center and
| | - Mandy L Ford
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA.,Emory Transplant Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
20
|
Morrow KN, Liang Z, Xue M, Chihade DB, Sun Y, Chen CW, Coopersmith CM, Ford ML. The IL-27 receptor regulates TIGIT on memory CD4 + T cells during sepsis. iScience 2021; 24:102093. [PMID: 33615199 PMCID: PMC7881227 DOI: 10.1016/j.isci.2021.102093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/19/2020] [Accepted: 01/18/2021] [Indexed: 12/19/2022] Open
Abstract
Sepsis is a leading cause of morbidity and mortality associated with significant impairment in memory T cells. These changes include the upregulation of co-inhibitory markers, a decrease in functionality, and an increase in apoptosis. Due to recent studies describing IL-27 regulation of TIGIT and PD-1, we assessed whether IL-27 impacts these co-inhibitory molecules in sepsis. Based on these data, we hypothesized that IL-27 was responsible for T cell dysfunction during sepsis. Using the cecal ligation and puncture (CLP) sepsis model, we found that IL-27Rα was associated with the upregulation of TIGIT on memory CD4+ T cells following CLP. However, IL-27 was not associated with sepsis mortality. Numbers of IL-27Rα+ memory T cells are decreased following cecal ligation and puncture TIGIT is expressed on more IL-27Rα+ versus IL-27Rα− memory CD4+ T cells during sepsis Il27ra−/− and WT T cells exhibit similar effector function and apoptosis during sepsis IL-27 signaling does not impact sepsis mortality
Collapse
Affiliation(s)
- Kristen N Morrow
- Immunology and Molecular Pathogenesis Program, Laney Graduate School, Emory University, Atlanta, GA 30324, USA.,Department of Surgery, Emory University School of Medicine, Atlanta, GA 30324, USA
| | - Zhe Liang
- Department of Surgery, Emory University School of Medicine, Atlanta, GA 30324, USA
| | - Ming Xue
- Department of Surgery, Emory University School of Medicine, Atlanta, GA 30324, USA.,Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Deena B Chihade
- Department of Surgery, Emory University School of Medicine, Atlanta, GA 30324, USA
| | - Yini Sun
- Department of Surgery, Emory University School of Medicine, Atlanta, GA 30324, USA.,Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang 110000, China
| | - Ching-Wen Chen
- Immunology and Molecular Pathogenesis Program, Laney Graduate School, Emory University, Atlanta, GA 30324, USA.,Department of Surgery, Emory University School of Medicine, Atlanta, GA 30324, USA
| | - Craig M Coopersmith
- Department of Surgery, Emory University School of Medicine, Atlanta, GA 30324, USA.,Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA 30324, USA
| | - Mandy L Ford
- Department of Surgery, Emory University School of Medicine, Atlanta, GA 30324, USA.,Emory Transplant Center, Emory University School of Medicine, Atlanta, GA 30324, USA
| |
Collapse
|
21
|
Chen J, Chen R, Huang S, Zu B, Zhang S. Atezolizumab alleviates the immunosuppression induced by PD‑L1‑positive neutrophils and improves the survival of mice during sepsis. Mol Med Rep 2020; 23:144. [PMID: 33655320 PMCID: PMC7751480 DOI: 10.3892/mmr.2020.11783] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/11/2020] [Indexed: 12/24/2022] Open
Abstract
Atezolizumab can reduce immunosuppression caused by T lymphocyte apoptosis in various cancer types. The current study aimed to investigate whether this drug can also alleviate immunosuppression during sepsis. For that purpose, a C57BL/6 mouse sepsis model was generated. Mice were randomly assigned to three groups: Sham, cecal ligation and puncture (CLP) and atezolizumab groups. Atezolizumab was administered <em>in vivo</em> by intraperitoneal injection. The expression of programmed death ligand‑1 (PD‑L1) on neutrophils and programmed death‑1 (PD‑1) on T lymphocytes was evaluated, and endotoxin concentration, intestinal permeability, ileum histopathological score and tight junction protein expression were assessed to determine the extent of disease in each group. The rate of T lymphocyte apoptosis was determined to assess the effects of atezolizumab on T lymphocyte apoptosis <em>in vivo</em> and <em>in vitro</em>. Survival times were also recorded to compare mouse prognosis during sepsis. In the CLP group, the proportion of PD‑L1+ neutrophils was significantly higher at 48, 72 and 96 h in blood, and at 24, 48, 72 and 96 h in bone marrow, compared with those of the sham group (P<0.05). The proportion of PD‑1+ T lymphocytes was also upregulated at 72 h in blood. In the atezolizumab group, endotoxin concentration, intestinal permeability and ileum histopathological score were lower compared with those in the CLP group (P<0.05), whereas the expression of claudin‑1 and occludin proteins on ileum was higher compared with that in the CLP group (P<0.05). Both <em>in vivo</em> and <em>in vitro</em> experiments indicated that the rate of T lymphocyte apoptosis following atezolizumab treatment was lower compared with that in the CLP group (P<0.05). Survival analysis demonstrated that mice in the atezolizumab group survived longer compared with those in the CLP group (P<0.05). The current study demonstrated that treatment with atezolizumab may be an effective method for treating immunosuppression induced by sepsis.
Collapse
Affiliation(s)
- Jianxin Chen
- The First Department of Gastrointestinal Surgery, Affiliated Hospital of Putian University, Putian, Fujian 351100, P.R. China
| | - Ruiyuan Chen
- Department of Colorectal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Shaoxiong Huang
- The First Department of Gastrointestinal Surgery, Affiliated Hospital of Putian University, Putian, Fujian 351100, P.R. China
| | - Bin Zu
- The First Department of Gastrointestinal Surgery, Affiliated Hospital of Putian University, Putian, Fujian 351100, P.R. China
| | - Sen Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
22
|
Guo Y, Wang YL, Su WH, Yang PT, Chen J, Luo H. Three Genes Predict Prognosis in Microenvironment of Ovarian Cancer. Front Genet 2020; 11:990. [PMID: 32983229 PMCID: PMC7492617 DOI: 10.3389/fgene.2020.00990] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/05/2020] [Indexed: 12/16/2022] Open
Abstract
Ovarian cancer (OC) is the deadliest gynecological cancer in women. Immune cell infiltration has a critical role in regulating carcinogenesis and prognosis in OC. To identify prognostic genes relevant to the tumor microenvironment in OC, we investigated the association between OC and gene expression profiles. Results obtained with the ESTIMATE R tool showed that immune score and stromal score were correlated with lymphatic invasion, and high immune score predicted a favorable prognosis. A total of 342 common differentially expressed genes were identified according to the two scores; these genes were mainly involved in immune response, extracellular region, and serine-type endopeptidase activity. Three immune-related prognostic genes were selected by univariate and multivariate Cox regression analysis. We further established a prognostic model and validated the prognostic value of three hub genes in different databases; our results showed that this model could accurately predict survival and evaluate prognosis independent of clinical characteristics. Three hub genes have prognostic value in OC. TIMER analysis revealed that the three genes were correlated with different immune cells. Low levels of macrophage infiltration and high levels of CD4+ T cell infiltration were associated with favorable survival outcomes. Arm-level gain of GYPC was correlated with neutrophils and dendritic cells. These findings indicate that CXCR4, GYPC, and MMP12 modulate prognosis via effects on the infiltration of immune cells. Thus, these genes represent potential targets for immune therapy in OC.
Collapse
Affiliation(s)
- Ya Guo
- Department of Radiation Oncology, The Second Affiliated Hospital, Xi'anjiao Tong University, Xi'an, China
| | - Ya Li Wang
- Department of Radiation Oncology, The Second Affiliated Hospital, Xi'anjiao Tong University, Xi'an, China
| | - Wang Hui Su
- Department of Radiation Oncology, The Second Affiliated Hospital, Xi'anjiao Tong University, Xi'an, China
| | - Peng Tao Yang
- Department of Radiation Oncology, The Second Affiliated Hospital, Xi'anjiao Tong University, Xi'an, China
| | - Jing Chen
- Department of Radiation Oncology, The Second Affiliated Hospital, Xi'anjiao Tong University, Xi'an, China
| | - Heng Luo
- Department of Radiation Oncology, The Second Affiliated Hospital, Xi'anjiao Tong University, Xi'an, China
| |
Collapse
|
23
|
Ngamsri KC, Jans C, Putri RA, Schindler K, Gamper-Tsigaras J, Eggstein C, Köhler D, Konrad FM. Inhibition of CXCR4 and CXCR7 Is Protective in Acute Peritoneal Inflammation. Front Immunol 2020; 11:407. [PMID: 32210974 PMCID: PMC7076176 DOI: 10.3389/fimmu.2020.00407] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/20/2020] [Indexed: 12/11/2022] Open
Abstract
Our previous studies revealed a pivotal role of the chemokine stromal cell-derived factor (SDF)-1 and its receptors CXCR4 and CXCR7 on migratory behavior of polymorphonuclear granulocytes (PMNs) in pulmonary inflammation. Thereby, the SDF-1-CXCR4/CXCR7-axis was linked with adenosine signaling. However, the role of the SDF-1 receptors CXCR4 and CXCR7 in acute inflammatory peritonitis and peritonitis-related sepsis still remained unknown. The presented study provides new insight on the mechanism of a selective inhibition of CXCR4 (AMD3100) and CXCR7 (CCX771) in two models of peritonitis and peritonitis-related sepsis by injection of zymosan and fecal solution. We observed an increased expression of SDF-1, CXCR4, and CXCR7 in peritoneal tissue and various organs during acute inflammatory peritonitis. Selective inhibition of CXCR4 and CXCR7 reduced PMN accumulation in the peritoneal fluid and infiltration of neutrophils in lung and liver tissue in both models. Both inhibitors had no anti-inflammatory effects in A2B knockout animals (A2B–/–). AMD3100 and CCX771 treatment reduced capillary leakage and increased formation of tight junctions as a marker for microvascular permeability in wild type animals. In contrast, both inhibitors failed to improve capillary leakage in A2B–/– animals, highlighting the impact of the A2B-receptor in SDF-1 mediated signaling. After inflammation, the CXCR4 and CXCR7 antagonist induced an enhanced expression of the protective A2B adenosine receptor and an increased activation of cAMP (cyclic adenosine mono phosphate) response element-binding protein (CREB), as downstream signaling pathway of A2B. The CXCR4- and CXCR7-inhibitor reduced the release of cytokines in wild type animals via decreased intracellular phosphorylation of ERK and NFκB p65. In vitro, CXCR4 and CXCR7 antagonism diminished the chemokine release of human cells and increased cellular integrity by enhancing the expression of tight junctions. These protective effects were linked with functional A2B-receptor signaling, confirming our in vivo data. In conclusion, our study revealed new protective aspects of the pharmacological modulation of the SDF-1-CXCR4/CXCR7-axis during acute peritoneal inflammation in terms of the two hallmarks PMN migration and barrier integrity. Both anti-inflammatory effects were linked with functional adenosine A2B-receptor signaling.
Collapse
Affiliation(s)
- Kristian-Christos Ngamsri
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Christoph Jans
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Rizki A Putri
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Katharina Schindler
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Jutta Gamper-Tsigaras
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Claudia Eggstein
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - David Köhler
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Franziska M Konrad
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Tübingen, Germany
| |
Collapse
|
24
|
Zhang W, Chihade DB, Xie J, Chen CW, Ramonell KM, Liang Z, Coopersmith CM, Ford ML. Preexisting malignancy abrogates the beneficial effects of CXCR4 blockade during sepsis. J Leukoc Biol 2020; 107:485-495. [PMID: 31985098 DOI: 10.1002/jlb.3a1019-502r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 10/21/2018] [Accepted: 12/30/2019] [Indexed: 11/06/2022] Open
Abstract
Patients with cancer are at an increased risk of developing and dying from sepsis. We previously reported that blockade of the chemokine receptor CXCR4 resulted in decreased CD4+ T cell exhaustion and improved survival in a model of polymicrobial sepsis in previously healthy mice. Here, we sought to determine whether CXCR4 blockade could improve mortality and immune dysregulation during sepsis complicated with malignancy. Results in animals inoculated with a lung cancer cell line and subjected to CLP 3 weeks later indicated that CXCR4 was up-regulated on naïve and central memory T cells following sepsis. Of note, and in contrast to results in previously healthy mice, CXCR4 blockade failed to improve survival in cancer septic animals; instead, it actually significantly worsened survival. In the setting of cancer, CXCR4 blockade failed to result in T cell egress from the bone marrow, reverse lymphopenia in the spleen, or reverse T cell exhaustion. Mechanistically, elevated expression of CD69 on naïve T cells in the bone marrow of cancer septic animals was associated with their inability to egress from the bone marrow in the setting of CXCR4 blockade. In conclusion, these results illuminate the differential impact of CXCR4 blockade on sepsis pathophysiology in the setting of cancer and highlight the need for personalized therapy during sepsis.
Collapse
Affiliation(s)
- Wenxiao Zhang
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA.,Department of Critical Care Medicine, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou, China
| | - Deena B Chihade
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jianfeng Xie
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ching-Wen Chen
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kimberly M Ramonell
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Zhe Liang
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Craig M Coopersmith
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA.,Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mandy L Ford
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA.,Emory Transplant Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
25
|
Ghobrial IM, Liu CJ, Redd RA, Perez RP, Baz R, Zavidij O, Sklavenitis-Pistofidis R, Richardson PG, Anderson KC, Laubach J, Henrick P, Savell A, Reyes K, Hornburg K, Chuma S, Sabbatini P, Robbins MD, Becker PS. A Phase Ib/II Trial of the First-in-Class Anti-CXCR4 Antibody Ulocuplumab in Combination with Lenalidomide or Bortezomib Plus Dexamethasone in Relapsed Multiple Myeloma. Clin Cancer Res 2020; 26:344-353. [PMID: 31672767 PMCID: PMC11753616 DOI: 10.1158/1078-0432.ccr-19-0647] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/14/2019] [Accepted: 10/24/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Ulocuplumab (BMS-936564) is a first-in-class fully human IgG4 monoclonal anti-CXCR4 antibody that inhibits the binding of CXCR4 to CXCL12. PATIENTS AND METHODS This phase Ib/II study aimed to determine the safety and tolerability of ulocuplumab alone and in combination with lenalidomide and dexamethasone (Arm A), or bortezomib and dexamethasone (Arm B), in patients with relapsed/refractory multiple myeloma. RESULTS Forty-six patients were evaluated (median age, 60 years; range, 53-67). The median number of prior therapies was 3 (range, 1-11), with 70% of subjects having received ≥3. This trial had a dose-escalation and a dose-expansion part. Using a 3+3 design on both arms of the trial, ulocuplumab's dose was escalated to a maximum of 10 mg/kg without reaching MTD. The most common treatment-related adverse events (AE) were neutropenia (13 patients, 43.3%) in Arm A and thrombocytopenia (6 patients, 37.5%) in Arm B. No deaths related to study drugs occurred. The combination of ulocuplumab with lenalidomide and dexamethasone showed a high response rate (PR or better) of 55.2% and a clinical benefit rate of 72.4%, even in patients who had been previously treated with immunomodulatory agents (IMiD). CONCLUSIONS This study showed that blockade of the CXCR4-CXCL12 axis by ulocuplumab is safe with acceptable AEs and leads to a high response rate in combination with lenalidomide and dexamethasone in patients with relapsed/refractory myeloma, making CXCR4 inhibitors a promising class of antimyeloma drugs that should be further explored in clinical trials.
Collapse
Affiliation(s)
- Irene M Ghobrial
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| | - Chia-Jen Liu
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Robert A Redd
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | | | - Rachid Baz
- Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Oksana Zavidij
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | | | - Paul G Richardson
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Kenneth C Anderson
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Jacob Laubach
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Patrick Henrick
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Alexandra Savell
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Kaitlen Reyes
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Kalvis Hornburg
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Stacey Chuma
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Peter Sabbatini
- Bristol-Myers Squibb, Sunnyvale, California
- Bristol-Myers Squibb, Princeton, New Jersey
| | - Michael D Robbins
- Bristol-Myers Squibb, Sunnyvale, California
- Bristol-Myers Squibb, Princeton, New Jersey
| | | |
Collapse
|
26
|
Wang Y, Zhang H, He H, Ai K, Yu W, Xiao X, Qin Y, Zhang L, Xiong H, Zhou G. LRCH1 suppresses migration of CD4 + T cells and refers to disease activity in ulcerative colitis. Int J Med Sci 2020; 17:599-608. [PMID: 32210709 PMCID: PMC7085219 DOI: 10.7150/ijms.39106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/13/2020] [Indexed: 01/05/2023] Open
Abstract
Background: Ulcerative colitis (UC) is a chronically remittent and progressive inflammatory disorder. LRCH1 is reported to be involved in the immune-regulation of several diseases. However, the exact roles of LRCH1 in UC are still obscure. Materials and Methods: LRCH1 expression was analyzed in the inflamed mucosa and peripheral blood mononuclear cells (PBMCs) from patients with UC by quantitative RT-PCR and immunohistochemistry. Peripheral blood CD4+ T cells were transfected with lentivirus-expressing LRCH1 (LV-LRCH1) or LV-sh-LRCH1, and cytokine expression was determined by using flow cytometry, quantitative RT-PCR and ELISA. Transfected CD4+ T cells were harvested to examine the capacity of chemotaxis using Transwell plate. Results: LRCH1 expression was highly decreased in colonic mucosa and PBMCs from patients with A-UC, and negatively correlated with disease activity. Up or down regulation of LRCH1 did not affect the differentiation of CD4+ T cells, and the related cytokines expression. Moreover, LRCH1 inhibited migratory capacity of CD4+ T cells toward CXCL12 by PKCα. Conclusion: LRCH1 plays an important role in the pathogenesis of UC, possibly through modulating the migration of CD4+ T cells. Therefore, targeting LRCH1 might serve as a novel therapeutic approach in the management of UC.
Collapse
Affiliation(s)
- Yibo Wang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Hairong Zhang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Heng He
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Kuankuan Ai
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Wei Yu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Xiao Xiao
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Yufen Qin
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Lingming Zhang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Guangxi Zhou
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| |
Collapse
|
27
|
Mistarz A, Komorowski MP, Graczyk MA, Gil M, Jiang A, Opyrchal M, Rokita H, Odunsi KO, Kozbor D. Recruitment of Intratumoral CD103 + Dendritic Cells by a CXCR4 Antagonist-Armed Virotherapy Enhances Antitumor Immunity. Mol Ther Oncolytics 2019; 14:233-245. [PMID: 31384667 PMCID: PMC6667789 DOI: 10.1016/j.omto.2019.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/21/2019] [Indexed: 01/16/2023] Open
Abstract
Intratumoral dendritic cells play an important role in stimulating cytotoxic T cells and driving antitumor immunity. Using a metastatic ovarian tumor model in syngeneic mice, we explored whether therapy with a CXCR4 antagonist-armed oncolytic vaccinia virus activates endogenous CD103+ dendritic cell responses associated with the induction of adaptive immunity against viral and tumor antigens. The overall goal of this study was to determine whether expansion of CD103+ dendritic cells by the virally delivered CXCR4 antagonist augments overall survival and in situ boosting with a tumor antigen peptide-based vaccine. We found that locoregional delivery of the CXCR4-A-armed virus reduced the tumor load and the immunosuppressive network in the tumor microenvironment, leading to infiltration of CD103+ dendritic cells that were capable of phagocytic clearance of cellular material from virally infected cancer cells. Further expansion of tumor-resident CD103+ DCs by injecting the FMS-related tyrosine kinase 3 ligand, the formative cytokine for CD103+ DCs, provided a platform for a booster immunization with the Wilms tumor antigen 1 peptide-based vaccine delivered intraperitoneally with polyriboinosinic:polyribocytidylic acid as an adjuvant. The vaccine-induced antitumor responses inhibited tumor growth and increased overall survival, indicating that expansion of intratumoral CD103+ dendritic cells by CXCR4-A-armed oncovirotherapy treatment can potentiate in situ cancer vaccine boosting.
Collapse
Affiliation(s)
- Anna Mistarz
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Marcin P. Komorowski
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Matthew A. Graczyk
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Margaret Gil
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Aimin Jiang
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Mateusz Opyrchal
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Hanna Rokita
- Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Kunle O. Odunsi
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Danuta Kozbor
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
28
|
Chen J, Lin M, Zhang S. Identification of key miRNA‑mRNA pairs in septic mice by bioinformatics analysis. Mol Med Rep 2019; 20:3858-3866. [PMID: 31432183 PMCID: PMC6755251 DOI: 10.3892/mmr.2019.10594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/26/2019] [Indexed: 11/06/2022] Open
Abstract
Sepsis is one of the most common causes of death among critically ill patients in intensive care units worldwide; however, the microRNAs (miRNAs/miRs) involved in the sepsis process (and their target genes) are largely unknown. The present study integrated miRNA and mRNA datasets to elucidate key sepsis-related miRNA-mRNA pairs. The datasets, GSE74952 and GSE55238 were downloaded from the Gene Expression Omnibus. By performing bioinformatics analysis such as GEO2R, miRNA target gene prediction, Gene Ontology analysis, Kyoto Encyclopedia of Genes and Genomes pathway analysis and miRNA-mRNA network analysis, a total of four sepsis-related miRNA-mRNA pairs were successfully obtained. Mmu-miR-370-3p, cluster of differentiation (CD)8a, CD247, Zap70 and inhibitor of nuclear factor κ B kinase subunit β (Ikbkb) were identified as the components involved in these pairs, and these genes were enriched in the T-cell receptor signaling pathway. Finally, reverse transcription-quantitative PCR results validated that the expression levels of the four genes (CD8a, CD247, Zap70 and Ikbkb) in the sepsis model mice were consistent with the microarray analysis. In conclusion, the present study identified four sepsis-related miRNA-mRNA pairs using bioinformatics analysis. These results indicated that the candidate miRNA-mRNA pairs may be involved in the regulation of immunity in sepsis, which may in turn act as indicators or therapeutic targets for sepsis.
Collapse
Affiliation(s)
- Jianxin Chen
- Department of Colorectal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Min Lin
- School of Information Engineering, Putian University, Putian, Fujian 351100, P.R. China
| | - Sen Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
29
|
Jensen IJ, Sjaastad FV, Griffith TS, Badovinac VP. Sepsis-Induced T Cell Immunoparalysis: The Ins and Outs of Impaired T Cell Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 200:1543-1553. [PMID: 29463691 DOI: 10.4049/jimmunol.1701618] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 12/20/2017] [Indexed: 12/13/2022]
Abstract
Sepsis results in a deluge of pro- and anti-inflammatory cytokines, leading to lymphopenia and chronic immunoparalysis. Sepsis-induced long-lasting immunoparalysis is defined, in part, by impaired CD4 and CD8 αβ T cell responses in the postseptic environment. The dysfunction in T cell immunity affects naive, effector, and memory T cells and is not restricted to classical αβ T cells. Although sepsis-induced severe and transient lymphopenia is a contributory factor to diminished T cell immunity, T cell-intrinsic and -extrinsic factors/mechanisms also contribute to impaired T cell function. In this review, we summarize the current knowledge of how sepsis quantitatively and qualitatively impairs CD4 and CD8 T cell immunity of classical and nonclassical T cell subsets and discuss current therapeutic approaches being developed to boost the recovery of T cell immunity postsepsis induction.
Collapse
Affiliation(s)
- Isaac J Jensen
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242
| | - Frances V Sjaastad
- Microbiology, Immunology, and Cancer Biology Ph.D. Program, University of Minnesota, Minneapolis, MN 55455
| | - Thomas S Griffith
- Microbiology, Immunology, and Cancer Biology Ph.D. Program, University of Minnesota, Minneapolis, MN 55455.,Center for Immunology, University of Minnesota, Minneapolis, MN 55455.,Department of Urology, University of Minnesota, Minneapolis, MN 55455.,Minneapolis VA Health Care System, Minneapolis, MN 55455
| | - Vladimir P Badovinac
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242; .,Department of Pathology, University of Iowa, Iowa City, IA 52242; and.,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
30
|
The case for plerixafor to replace filgrastim as the optimal agent to mobilize peripheral blood donors for allogeneic hematopoietic cell transplantation. Exp Hematol 2018; 70:1-9. [PMID: 30428338 DOI: 10.1016/j.exphem.2018.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/03/2018] [Accepted: 11/06/2018] [Indexed: 12/25/2022]
Abstract
Granulocyte colony-stimulating factor (G-CSF)-stimulated peripheral blood progenitor cells (G-PBs) from either a related or unrelated donor continue to be the preferred donor source for most allogeneic hematopoietic cell transplantation (HCT). Recently, the American Society for Blood and Marrow Transplantation has recommended marrow instead of G-PBs as an unrelated graft source due to its lower rate of chronic graft-versus-host disease (cGVHD). However, the use of marrow is limited by both clinical considerations (slower rate of engraftment and increased donor morbidity) and logistical considerations (use of operating room resources and increased physician utilization), so this recommendation has not been widely adopted. An optimal donor source would include the rapid engraftment characteristic and the low donor morbidity associated with G-PBs and a rate of cGVHD similar to or lower than that of marrow. Recent data suggest that plerixafor mobilized PBs (P-PBs) have the rapid engraftment characteristics of G-PBs in allogeneic HCT with less cGVHD. The biologic mechanism of the lower rate of cGVHD appears to be through mobilization of regulator natural killer cells and plasmacytoid dendritic cell precursors that are associated with lower acute and chronic GVHD compared with G-PBs and rapid engraftment characterized by rapid myeloid-repopulating capacity. We suggest that, based on the experience of the two Phase II clinical trials and the unique biology of plerixafor-mobilized donor product, it should be evaluated in Phase III trials as an approach to replacing G-CSF mobilization for allogeneic HCT.
Collapse
|