1
|
Da Costa RT, Nichenko A, Perez MM, Tokarska-Schlattner M, Kavehmoghaddam S, Hambardikar V, Scoma ER, Seifert EL, Schlattner U, Drake JC, Solesio ME. Mammalian mitochondrial inorganic polyphosphate (polyP) and cell signaling: Crosstalk between polyP and the activity of AMPK. Mol Metab 2025; 91:102077. [PMID: 39617267 PMCID: PMC11696858 DOI: 10.1016/j.molmet.2024.102077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024] Open
Abstract
Inorganic polyphosphate (polyP) is an evolutionary and ancient polymer composed by orthophosphate units linked by phosphoanhydride bonds. In mammalian cells, polyP shows a high localization in mammalian mitochondria, and its regulatory role in various aspects of bioenergetics has already been demonstrated, via molecular mechanism(s) yet to be fully elucidated. In recent years, a role for polyP in signal transduction, from brain physiology to the bloodstream, has also emerged. OBJECTIVE In this manuscript, we explored the intriguing possibility that the effects of polyP on signal transduction could be mechanistically linked to those exerted on bioenergetics. METHODS To conduct our studies, we used a combination of cellular and animal models. RESULTS Our findings demonstrate for the first time the intimate crosstalk between the levels of polyP and the activation status of the AMPK signaling pathway, via a mechanism involving free phosphate homeostasis. AMPK is a key player in mammalian cell signaling, and a crucial regulator of cellular and mitochondrial homeostasis. Our results show that the depletion of mitochondrial polyP in mammalian cells downregulates the activity of AMPK. Moreover, increased levels of polyP activate AMPK. Accordingly, the genetic downregulation of AMPKF0611 impairs polyP levels in both SH-SY5Y cells and in the brains of female mice. CONCLUSIONS This manuscript sheds new light on the regulation of AMPK and positions polyP as a potent regulator of mammalian cell physiology beyond mere bioenergetics, paving the road for using its metabolism as an innovative pharmacological target in pathologies characterized by dysregulated bioenergetics.
Collapse
Affiliation(s)
- Renata T Da Costa
- Department of Biology, and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Anna Nichenko
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Matheus M Perez
- Department of Biology, and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | | | - Sheida Kavehmoghaddam
- Department of Biology, and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Vedangi Hambardikar
- Department of Biology, and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Ernest R Scoma
- Department of Biology, and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Erin L Seifert
- MitoCare and Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Uwe Schlattner
- University Grenoble Alpes, Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France
| | - Joshua C Drake
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Maria E Solesio
- Department of Biology, and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA.
| |
Collapse
|
2
|
Dai S, Wang B, Ye R, Zhang D, Xie Z, Yu N, Cai C, Huang C, Zhao J, Zhang F, Hua Y, Zhao Y, Zhou R, Tian B. Structural Evolution of Bacterial Polyphosphate Degradation Enzyme for Phosphorus Cycling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309602. [PMID: 38682481 PMCID: PMC11234463 DOI: 10.1002/advs.202309602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/22/2024] [Indexed: 05/01/2024]
Abstract
Living organisms ranging from bacteria to animals have developed their own ways to accumulate and store phosphate during evolution, in particular as the polyphosphate (polyP) granules in bacteria. Degradation of polyP into phosphate is involved in phosphorus cycling, and exopolyphosphatase (PPX) is the key enzyme for polyP degradation in bacteria. Thus, understanding the structure basis of PPX is crucial to reveal the polyP degradation mechanism. Here, it is found that PPX structure varies in the length of ɑ-helical interdomain linker (ɑ-linker) across various bacteria, which is negatively correlated with their enzymatic activity and thermostability - those with shorter ɑ-linkers demonstrate higher polyP degradation ability. Moreover, the artificial DrPPX mutants with shorter ɑ-linker tend to have more compact pockets for polyP binding and stronger subunit interactions, as well as higher enzymatic efficiency (kcat/Km) than that of DrPPX wild type. In Deinococcus-Thermus, the PPXs from thermophilic species possess a shorter ɑ-linker and retain their catalytic ability at high temperatures (70 °C), which may facilitate the thermophilic species to utilize polyP in high-temperature environments. These findings provide insights into the interdomain linker length-dependent evolution of PPXs, which shed light on enzymatic adaption for phosphorus cycling during natural evolution and rational design of enzyme.
Collapse
Affiliation(s)
- Shang Dai
- Institute of BiophysicsCollege of Life SciencesZhejiang UniversityHangzhou310029China
- Shanghai Institute for Advanced Study of Zhejiang UniversityShanghai201203China
| | - Binqiang Wang
- Institute of BiophysicsCollege of Life SciencesZhejiang UniversityHangzhou310029China
- State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhou310029China
- Zhejiang Baima Lake Laboratory Co., LtdHangzhou310029China
| | - Rui Ye
- School of PhysicsInstitute of Quantitative BiologyZhejiang UniversityHangzhou310029China
| | - Dong Zhang
- Institute of BiophysicsCollege of Life SciencesZhejiang UniversityHangzhou310029China
- School of PhysicsInstitute of Quantitative BiologyZhejiang UniversityHangzhou310029China
| | - Zhenming Xie
- Institute of BiophysicsCollege of Life SciencesZhejiang UniversityHangzhou310029China
| | - Ning Yu
- Institute of BiophysicsCollege of Life SciencesZhejiang UniversityHangzhou310029China
| | - Chunhui Cai
- Institute of BiophysicsCollege of Life SciencesZhejiang UniversityHangzhou310029China
| | - Cheng Huang
- Institute of BiophysicsCollege of Life SciencesZhejiang UniversityHangzhou310029China
| | - Jie Zhao
- Institute of BiophysicsCollege of Life SciencesZhejiang UniversityHangzhou310029China
| | - Furong Zhang
- Institute of BiophysicsCollege of Life SciencesZhejiang UniversityHangzhou310029China
| | - Yuejin Hua
- Institute of BiophysicsCollege of Life SciencesZhejiang UniversityHangzhou310029China
- Cancer CenterZhejiang UniversityHangzhou310029China
| | - Ye Zhao
- Institute of BiophysicsCollege of Life SciencesZhejiang UniversityHangzhou310029China
- Cancer CenterZhejiang UniversityHangzhou310029China
| | - Ruhong Zhou
- Institute of BiophysicsCollege of Life SciencesZhejiang UniversityHangzhou310029China
- Shanghai Institute for Advanced Study of Zhejiang UniversityShanghai201203China
- School of PhysicsInstitute of Quantitative BiologyZhejiang UniversityHangzhou310029China
- Cancer CenterZhejiang UniversityHangzhou310029China
| | - Bing Tian
- Institute of BiophysicsCollege of Life SciencesZhejiang UniversityHangzhou310029China
- Cancer CenterZhejiang UniversityHangzhou310029China
| |
Collapse
|
3
|
Kumar D, Mandal S, Bailey JV, Flood BE, Jones RS. Fluoride and gallein inhibit polyphosphate accumulation by oral pathogen Rothia dentocariosa. Lett Appl Microbiol 2023; 76:ovad017. [PMID: 36715153 PMCID: PMC9990172 DOI: 10.1093/lambio/ovad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
The uptake and storage of extracellular orthophosphate (Pi) by polyphosphate (polyP) accumulating bacteria may contribute to mineral dissolution in the oral cavity. To test the effect of potential inhibitors of polyP kinases on Rothia dentocariosa, gallein (0, 25, 50, and 100 μM) and fluoride (0, 50, and 100 ppm) were added to R. dentocariosa cultures grown in brain-heart infusion broth. At a late log growth phase (8 h), extracellular Pi was measured using an ascorbic acid assay, and polyP was isolated from bacterial cells treated with RNA/DNAases using a neutral phenol/chloroform extraction. Extracts were hydrolyzed and quantified as above. Gallein and fluoride had minor effects on bacterial growth with NaF having a direct effect on media pH. Gallein (≥25 μM) and fluoride (≥50 ppm) attenuated the bacterial drawdown of extracellular Pi by 56.7% (P < 0.05) and 37.3% (P < 0.01). There was a corresponding polyP synthesis decrease of 73.2% (P < 0.0001) from gallein and 83.1% (P < 0.0001) from fluoride. Attenuated total reflectance-Fourier-transform infrared spectroscopy validated the presence of polyP and its reduced concentration in R. dentocariosa bacterial cells following gallein and fluoride treatment. Rothia dentocariosa can directly change extracellular Pi and accumulate intracellular polyP, but the mechanism is attenuated by gallein and NaF.
Collapse
Affiliation(s)
- Dhiraj Kumar
- Department of Developmental and Surgical Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Subhrangshu Mandal
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jake V Bailey
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Beverly E Flood
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Robert S Jones
- Department of Developmental and Surgical Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Müller WE, Neufurth M, Lieberwirth I, Wang S, Schröder HC, Wang X. Functional importance of coacervation to convert calcium polyphosphate nanoparticles into the physiologically active state. Mater Today Bio 2022; 16:100404. [PMID: 36065353 PMCID: PMC9440442 DOI: 10.1016/j.mtbio.2022.100404] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022] Open
Abstract
Inorganic polyphosphates (polyP) are of increasing medical interest due to their unprecedented ability to exhibit both morphogenetic and ATP-delivering properties. However, these polymers are only physiologically active in the coacervate state, but not as amorphous nanoparticles (NP), the storage form of the polymer. Little is known about the mechanism of formation and interconversion of these two distinct polyP phases in the presence of metal ions. Based on in silico simulation studies, showing a differential clustering of polyP and calcium ions, the pH-dependent NP and coacervate formation of polyP was examined experimentally. Turbidimetric studies showed that Ca-polyP coacervate formation at pH 7 is a slow process compared to NP formation at pH 10. In FTIR spectra, the asymmetric stretching vibration signal of the internal (PO2)- units, which is present in the Ca-polyP coacervate formed at pH 7, disappears in the NP formed at pH 10 using the conventional method (dropping of a CaCl2 solution into a Na-polyP solution). Surprisingly, when reversing the procedure, adding Na-polyP to CaCl2, a coacervate is obtained at both pH 7 and pH 10, as confirmed by SEM and FTIR analyses. The (PO2)- signal also disappears when Ca-polyP-NP are exposed to peptides, leading to the transformation of the NP into the coacervate phase. From these results, a mechanistic model of pH-dependent coacervate and NP formation is proposed that considers not only electrostatic ion-ion but also ion-dipole interactions. Functional studies revealed a delayed polyP release kinetics for Ca-polyP-NP embedded in a hydrogel due to NP/coacervate conversion. Human A549 epithelial cells grown on the coacervate show increased proliferation and ATP production compared to cells cultured on particulate polyP. Ca-polyP NP taken up by endocytosis undergo intracellular coacervate transformation. Understanding the differential expression of the two polyP phases is of functional importance for the potential therapeutic application of this physiological, regeneratively active polymer.
Collapse
Key Words
- ADK, adenylate kinase
- ALP, alkaline phosphatase
- ATP
- ATP, adenosine triphosphate
- Alkaline phosphatase
- Ap5A, (P1,P5-di(adenosine-5′)pentaphosphate
- Ca-polyP-Coa, calcium polyphosphate coacervate
- Ca-polyP-NP, calcium polyphosphate nanoparticles
- Coacervate
- ECM, extracellular matrix
- FTIR, Fourier Transformed Infrared Spectroscopy
- Inorganic polyphosphate
- LEV, levamisole
- NP, nanoparticles
- Na-polyP, sodium polyphosphate
- Nanoparticles
- PVA, poly(vinyl alcohol)
- Pi, orthophosphate
- SEM, scanning electron microscopy
- TEM, transmission electron microscopy
- polyP, polyphosphate
Collapse
Affiliation(s)
- Werner E.G. Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128, Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128, Mainz, Germany
| | - Ingo Lieberwirth
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128, Mainz, Germany
| | - Heinz C. Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128, Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128, Mainz, Germany
| |
Collapse
|
5
|
Schröder HC, Neufurth M, Zhou H, Wang S, Wang X, Müller WEG. Inorganic Polyphosphate: Coacervate Formation and Functional Significance in Nanomedical Applications. Int J Nanomedicine 2022; 17:5825-5850. [PMID: 36474526 PMCID: PMC9719705 DOI: 10.2147/ijn.s389819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/03/2022] [Indexed: 12/07/2024] Open
Abstract
Inorganic polyphosphates (polyP) are long-chain polymers of orthophosphate residues, which, depending on the external conditions, can be present both physiologically and synthetically in either soluble, nanoparticulate or coacervate form. In recent years, these polymers have received increasing attention due to their unprecedented ability to exhibit both morphogenetic and metabolic energy delivering properties. There are no other physiological molecules that contain as many metabolically utilizable, high-energy bonds as polyP, making these polymers of particular medical interest as components of advanced hydrogel scaffold materials for potential applications in ATP-dependent tissue regeneration and repair. However, these polymers show physiological activity only in soluble form and in the coacervate phase, but not as stable metal-polyP nanoparticles. Therefore, understanding the mechanisms of formation of polyP coacervates and nanoparticles as well as their transformations is important for the design of novel materials for tissue implants, wound healing, and drug delivery and is discussed here.
Collapse
Affiliation(s)
- Heinz C Schröder
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Huan Zhou
- School of Health Sciences and Biomedical Engineering, Heibei University of Technology, Tianjin, People’s Republic of China
| | - Shunfeng Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Werner E G Müller
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
6
|
Mohamed A, Martin U, Bastidas DM. Adsorption and Surface Analysis of Sodium Phosphate Corrosion Inhibitor on Carbon Steel in Simulated Concrete Pore Solution. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7429. [PMID: 36363021 PMCID: PMC9657493 DOI: 10.3390/ma15217429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Corrosion of steel-reinforced concrete exposed to marine environments could lead to structural catastrophic failure in service. Hence, the construction industry is seeking novel corrosion preventive methods that are effective, cheap, and non-toxic. In this regard, the inhibitive properties of sodium phosphate (Na3PO4) corrosion inhibitor have been investigated for carbon steel reinforcements in 0.6 M Cl- contaminated simulated concrete pore solution (SCPS). Different electrochemical testing has been utilized including potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and Mott-Schottky plots to test Na3PO4 at different concentrations: 0.05, 0.1, 0.3, and 0.6 M. It was found that Na3PO4 adsorbs on the surface through a combined physicochemical adsorption process, thus creating insoluble protective ferric phosphate film (FePO4) and achieving an inhibition efficiency (IE) up to 91.7%. The formation of FePO4 was elucidated by means of Fourier-transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). Quantum chemical parameters using density functional theory (DFT) were obtained to further understand the chemical interactions at the interface. It was found that PO43- ions have a low energy gap (ΔEgap), hence facilitating their adsorption. Additionally, Mulliken population analysis showed that the oxygen atoms present in PO43- are strong nucleophiles, thus acting as adsorption sites.
Collapse
Affiliation(s)
| | | | - David M. Bastidas
- National Center for Education and Research on Corrosion and Materials Performance, NCERCAMP-UA, Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, 302 E Buchtel Ave, Akron, OH 44325-3906, USA
| |
Collapse
|
7
|
Gawri R, Bielecki R, Salter EW, Zelinka A, Shiba T, Collingridge G, Nagy A, Kandel RA. The anabolic effect of inorganic polyphosphate on chondrocytes is mediated by calcium signalling. J Orthop Res 2022; 40:310-322. [PMID: 33719091 DOI: 10.1002/jor.25032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/08/2021] [Accepted: 03/10/2021] [Indexed: 02/04/2023]
Abstract
Inorganic polyphosphates (polyP) are polymers composed of phosphate residues linked by energy-rich phosphoanhydride bonds. As polyP can bind calcium, the hypothesis of this study is that polyP enters chondrocytes and exerts its anabolic effect by calcium influx through calcium channels. PolyP treatment of cartilage tissue formed in 3D culture by bovine chondrocytes showed an increase in proteoglycan accumulation but only when calcium was also present at a concentration of 1.5 mM. This anabolic effect could be prevented by treatment with either ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid or the calcium channel inhibitors gadolinium and nifedipine. Calcium and polyP cotreatment of chondrocytes in monolayer culture resulted in calcium oscillations that were polyP chain length specific and were inhibited by gadolinium and nifedipine. The calcium influx resulted in increased gene expression of sox9, collagen type II, and aggrecan which was prevented by treatment with either calphostin, an inhibitor of protein kinase C, and W7, an inhibitor of calmodulin; suggesting activation of the protein kinase C-calmodulin pathway. Tracing studies using 4',6-diamidino-2-phenylindole, Mitotracker Red, and/or Fura-AM staining showed that polyP was detected in the nucleus, mitochondria, and intracellular vacuoles suggesting that polyP may also enter the cell. PolyP colocalizes with calcium in mitochondria. This study demonstrates that polyP requires the influx of calcium to regulate chondrocyte matrix production, likely via activating calcium signaling. These findings identify the mechanism regulating the anabolic effect of polyP in chondrocytes which will help in its clinical translation into a therapeutic agent for cartilage repair.
Collapse
Affiliation(s)
- Rahul Gawri
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Ryszard Bielecki
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Eric W Salter
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Alena Zelinka
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Toshikazu Shiba
- Regenetiss Inc., Kunitachi, Japan.,Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| | - Graham Collingridge
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Andras Nagy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Rita A Kandel
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Wang X, Schepler H, Neufurth M, Wang S, Schröder HC, Müller WEG. Polyphosphate in Chronic Wound Healing: Restoration of Impaired Metabolic Energy State. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2022; 61:51-82. [PMID: 35697937 DOI: 10.1007/978-3-031-01237-2_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Many pathological conditions are characterized by a deficiency of metabolic energy. A prominent example is nonhealing or difficult-to-heal chronic wounds. Because of their unique ability to serve as a source of metabolic energy, inorganic polyphosphates (polyP) offer the opportunity to develop novel strategies to treat such wounds. The basis is the generation of ATP from the polymer through the joint action of two extracellular or plasma membrane-bound enzymes alkaline phosphatase and adenylate kinase, which enable the transfer of energy-rich phosphate from polyP to AMP with the formation of ADP and finally ATP. Building on these findings, it was possible to develop novel regeneratively active materials for wound therapy, which have already been successfully evaluated in first studies on patients.
Collapse
Affiliation(s)
- Xiaohong Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Hadrian Schepler
- Department of Dermatology, University Clinic Mainz, Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Heinz C Schröder
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Werner E G Müller
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
9
|
Schröder HC, Wang X, Neufurth M, Wang S, Müller WEG. Biomimetic Polyphosphate Materials: Toward Application in Regenerative Medicine. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2022; 61:83-130. [PMID: 35697938 DOI: 10.1007/978-3-031-01237-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In recent years, inorganic polyphosphate (polyP) has attracted increasing attention as a biomedical polymer or biomaterial with a great potential for application in regenerative medicine, in particular in the fields of tissue engineering and repair. The interest in polyP is based on two properties of this physiological polymer that make polyP stand out from other polymers: polyP has morphogenetic activity by inducing cell differentiation through specific gene expression, and it functions as an energy store and donor of metabolic energy, especially in the extracellular matrix or in the extracellular space. No other biopolymer applicable in tissue regeneration/repair is known that is endowed with this combination of properties. In addition, polyP can be fabricated both in the form of a biologically active coacervate and as biomimetic amorphous polyP nano/microparticles, which are stable and are activated by transformation into the coacervate phase after contact with protein/body fluids. PolyP can be used in the form of various metal salts and in combination with various hydrogel-forming polymers, whereby (even printable) hybrid materials with defined porosities and mechanical and biological properties can be produced, which can even be loaded with cells for 3D cell printing or with drugs and support the growth and differentiation of (stem) cells as well as cell migration/microvascularization. Potential applications in therapy of bone, cartilage and eye disorders/injuries and wound healing are summarized and possible mechanisms are discussed.
Collapse
Affiliation(s)
- Heinz C Schröder
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Werner E G Müller
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
10
|
Schepler H, Neufurth M, Wang S, She Z, Schröder HC, Wang X, Müller WE. Acceleration of chronic wound healing by bio-inorganic polyphosphate: In vitro studies and first clinical applications. Theranostics 2022; 12:18-34. [PMID: 34987631 PMCID: PMC8690915 DOI: 10.7150/thno.67148] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
The healing of chronic wounds is impaired by a lack of metabolic energy. In previous studies, we showed that physiological inorganic polyphosphate (polyP) is a generator of metabolic energy by forming ATP as a result of the enzymatic cleavage of the high-energy phosphoanhydride bonds of this polymer. Therefore, in the present study, we investigated whether the administration of polyP can substitute for the energy deficiency in chronic wound healing. Methods: PolyP was incorporated into collagen mats and applied in vitro and to patients in vivo. Results: (i) In vitro studies: Keratinocytes grown in vitro onto the polyP/collagen mats formed long microvilli to guide them to a favorable environment. HUVEC cells responded to polyP/collagen mats with an increased adhesion and migration propensity as well as penetration into the mats. (ii) In vivo - human clinical studies: In a "bench to bedside" process these promising in vitro results were translated from the laboratory into the clinic. In the proof-of-concept application, the engineered polyP/collagen mats were applied to chronic wounds in patients. Those mats impressively accelerated the re-epithelialization rate, with a reduction of the wound area to 65% after 3 weeks and to 36.6% and 22.5% after 6 and 9 weeks, respectively. Complete healing was achieved and no further treatment was necessary. Biopsy samples from the regenerating wound area showed predominantly myofibroblasts. The wound healing process was supported by the use of a polyP containing moisturizing solution. Conclusion: The results strongly recommend polyP as a beneficial component in mats for a substantial healing of chronic wounds.
Collapse
Affiliation(s)
- Hadrian Schepler
- Department of Dermatology, University Clinic Mainz, Langenbeckstr. 1, D-55131 Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Zhengding She
- Shenzhen Lando Biomaterials Co., Ltd., Building B3, Unit 2B-C, China Merchants Guangming Science Park, Guangming District, Shenzhen 518107, China
| | | | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Werner E.G. Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| |
Collapse
|
11
|
Young GH, Lin JT, Cheng YF, Ho CF, Kuok QY, Hsu RC, Liao WR, Chen CC, Chen HM. Modulation of adenine phosphoribosyltransferase-mediated salvage pathway to accelerate diabetic wound healing. FASEB J 2021; 35:e21296. [PMID: 33675115 DOI: 10.1096/fj.202001736rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 01/13/2023]
Abstract
Adenine phosphoribosyltransferase (APRT) is the key enzyme involved in purine salvage by the incorporation of adenine and phosphoribosyl pyrophosphate to provide adenylate nucleotides. To evaluate the role of APRT in the repair processes of cutaneous wounds in healthy skin and in diabetic patients, a diabetic mouse model (db/db) and age-matched wild-type mice were used. Moreover, the topical application of adenine was assessed. In vitro studies, analytical, histological, and immunohistochemical methods were used. Diabetic mice treated with adenine exhibited elevated ATP levels in organismic skin and accelerated wound healing. In vitro studies showed that APRT utilized adenine to rescue cellular ATP levels and proliferation from hydrogen peroxide-induced oxidative damage. HPLC-ESI-MS/MS-based analysis of total adenylate nucleotides in NIH-3T3 fibroblasts demonstrated that adenine addition enlarged the cellular adenylate pool, reduced the adenylate energy charge, and provided additional AMP for the further generation of ATP. These data indicate an upregulation of APRT in skin wounds, highlighting its role during the healing of diabetic wounds through regulation of the nucleotide pool after injury. Furthermore, topical adenine supplementation resulted in an enlargement of the adenylate pool needed for the generation of ATP, an important molecule for wound repair.
Collapse
Affiliation(s)
| | | | | | | | | | - Ru-Chun Hsu
- Energenesis Biomedical Co. Ltd, Taipei, Taiwan
| | | | | | - Han-Min Chen
- Energenesis Biomedical Co. Ltd, Taipei, Taiwan.,Department of Life Science, Institute of Applied Science and Engineering, Catholic Fu-Jen University, New Taipei City, Taiwan
| |
Collapse
|
12
|
Müller WEG, Neufurth M, Wang S, Tan R, Schröder HC, Wang X. Morphogenetic (Mucin Expression) as Well as Potential Anti-Corona Viral Activity of the Marine Secondary Metabolite Polyphosphate on A549 Cells. Mar Drugs 2020; 18:639. [PMID: 33327522 PMCID: PMC7764923 DOI: 10.3390/md18120639] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
The mucus layer of the nasopharynx and bronchial epithelium has a barrier function against inhaled pathogens such as the coronavirus SARS-CoV-2. We recently found that inorganic polyphosphate (polyP), a physiological, metabolic energy (ATP)-providing polymer released from blood platelets, blocks the binding of the receptor binding domain (RBD) to the cellular ACE2 receptor in vitro. PolyP is a marine natural product and is abundantly present in marine bacteria. Now, we have approached the in vivo situation by studying the effect of polyP on the human alveolar basal epithelial A549 cells in a mucus-like mucin environment. These cells express mucins as well as the ectoenzymes alkaline phosphatase (ALP) and adenylate kinase (ADK), which are involved in the extracellular production of ATP from polyP. Mucin, integrated into a collagen-based hydrogel, stimulated cell growth and attachment. The addition of polyP to the hydrogel significantly increased cell attachment and also the expression of the membrane-tethered mucin MUC1 and the secreted mucin MUC5AC. The increased synthesis of MUC1 was also confirmed by immunostaining. This morphogenetic effect of polyP was associated with a rise in extracellular ATP level. We conclude that the nontoxic and non-immunogenic polymer polyP could possibly also exert a protective effect against SARS-CoV-2-cell attachment; first, by stimulating the innate antiviral response by strengthening the mucin barrier with its antimicrobial proteins, and second, by inhibiting virus attachment to the cells, as deduced from the reduction in the strength of binding between the viral RBD and the cellular ACE2 receptor.
Collapse
Affiliation(s)
- Werner E. G. Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany; (M.N.); (S.W.); (H.C.S.)
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany; (M.N.); (S.W.); (H.C.S.)
| | - Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany; (M.N.); (S.W.); (H.C.S.)
| | - Rongwei Tan
- Shenzhen Lando Biomaterials Co., Ltd., Building B3, Unit 2B-C, China Merchants Guangming Science Park, Guangming District, Shenzhen 518107, China;
| | - Heinz C. Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany; (M.N.); (S.W.); (H.C.S.)
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany; (M.N.); (S.W.); (H.C.S.)
| |
Collapse
|
13
|
Mechanisms of detoxification of high copper concentrations by the microalga Chlorella sorokiniana. Biochem J 2020; 477:3729-3741. [DOI: 10.1042/bcj20200600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 11/17/2022]
Abstract
Microalgae have evolved mechanisms to respond to changes in copper ion availability, which are very important for normal cellular function, to tolerate metal pollution of aquatic ecosystems, and for modulation of copper bioavailability and toxicity to other organisms. Knowledge and application of these mechanisms will benefit the use of microalgae in wastewater processing and biomass production, and the use of copper compounds in the suppression of harmful algal blooms. Here, using electron microscopy, synchrotron radiation-based Fourier transform infrared spectroscopy, electron paramagnetic resonance spectroscopy, and X-ray absorption fine structure spectroscopy, we show that the microalga Chlorella sorokiniana responds promptly to Cu2+ at high non-toxic concentration, by mucilage release, alterations in the architecture of the outer cell wall layer and lipid structures, and polyphosphate accumulation within mucilage matrix. The main route of copper detoxification is by Cu2+ coordination to polyphosphates in penta-coordinated geometry. The sequestrated Cu2+ was accessible and could be released by extracellular chelating agents. Finally, the reduction in Cu2+ to Cu1+ appears also to take place. These findings reveal the biochemical basis of the capacity of microalgae to adapt to high external copper concentrations and to serve as both, sinks and pools of environmental copper.
Collapse
|
14
|
de Araújo TE, Milián ICB, de Souza G, da Silva RJ, Rosini AM, Guirelli PM, Franco PS, Barbosa BF, Ferro EAV, da Costa IN. Experimental models of maternal-fetal interface and their potential use for nanotechnology applications. Cell Biol Int 2020; 44:36-50. [PMID: 31469205 DOI: 10.1002/cbin.11222] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/22/2019] [Indexed: 01/24/2023]
Abstract
During pregnancy, the placenta regulates the transfer of oxygen, nutrients, and residual products between the maternal and fetal bloodstreams and is a key determinant of fetal exposure to xenobiotics from the mother. To study the disposition of substances through the placenta, various experimental models are used, especially the perfused placenta, placental villi explants, and cell lineage models. In this context, nanotechnology, an area of study that is on the rise, enables the creation of particles on nanometric scales capable of releasing drugs aimed at specific tissues. An important reason for furthering the studies on transplacental transfer is to explore the potential of nanoparticles (NPs), in new delivery strategies for drugs that are specifically aimed at the mother, the placenta, or the fetus and that involve less toxicity. Due to the fact that the placental barrier is essential for the interaction between the maternal and fetal organisms as well as the possibility of NPs being used in the treatment of various pathologies, the aim of this review is to present the main experimental models used in studying the maternal-fetal interaction and the action of NPs in the placental environment.
Collapse
Affiliation(s)
- Thádia Evelyn de Araújo
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Brazil
| | - Iliana Claudia Balga Milián
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Brazil
| | - Guilherme de Souza
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Brazil
| | - Rafaela José da Silva
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Brazil
| | - Alessandra Monteiro Rosini
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Brazil
| | - Pâmela Mendonça Guirelli
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Brazil
| | - Priscila Silva Franco
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Brazil
| | - Bellisa Freitas Barbosa
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Brazil
| | - Eloisa Amália Vieira Ferro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Brazil
| | - Idessania Nazareth da Costa
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Brazil.,Laboratory of Parasitology, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| |
Collapse
|
15
|
Müller WE, Schröder HC, Wang X. Inorganic Polyphosphates As Storage for and Generator of Metabolic Energy in the Extracellular Matrix. Chem Rev 2019; 119:12337-12374. [PMID: 31738523 PMCID: PMC6935868 DOI: 10.1021/acs.chemrev.9b00460] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Indexed: 12/14/2022]
Abstract
Inorganic polyphosphates (polyP) consist of linear chains of orthophosphate residues, linked by high-energy phosphoanhydride bonds. They are evolutionarily old biopolymers that are present from bacteria to man. No other molecule concentrates as much (bio)chemically usable energy as polyP. However, the function and metabolism of this long-neglected polymer are scarcely known, especially in higher eukaryotes. In recent years, interest in polyP experienced a renaissance, beginning with the discovery of polyP as phosphate source in bone mineralization. Later, two discoveries placed polyP into the focus of regenerative medicine applications. First, polyP shows morphogenetic activity, i.e., induces cell differentiation via gene induction, and, second, acts as an energy storage and donor in the extracellular space. Studies on acidocalcisomes and mitochondria provided first insights into the enzymatic basis of eukaryotic polyP formation. In addition, a concerted action of alkaline phosphatase and adenylate kinase proved crucial for ADP/ATP generation from polyP. PolyP added extracellularly to mammalian cells resulted in a 3-fold increase of ATP. The importance and mechanism of this phosphotransfer reaction for energy-consuming processes in the extracellular matrix are discussed. This review aims to give a critical overview about the formation and function of this unique polymer that is capable of storing (bio)chemically useful energy.
Collapse
Affiliation(s)
- Werner E.G. Müller
- ERC Advanced Investigator
Grant Research
Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Heinz C. Schröder
- ERC Advanced Investigator
Grant Research
Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator
Grant Research
Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| |
Collapse
|
16
|
Phelipe Hatt L, Thompson K, Müller WEG, Stoddart MJ, Armiento AR. Calcium Polyphosphate Nanoparticles Act as an Effective Inorganic Phosphate Source during Osteogenic Differentiation of Human Mesenchymal Stem Cells. Int J Mol Sci 2019; 20:5801. [PMID: 31752206 PMCID: PMC6887735 DOI: 10.3390/ijms20225801] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/06/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022] Open
Abstract
The ability of bone-marrow-derived mesenchymal stem/stromal cells (BM-MSCs) to differentiate into osteoblasts makes them the ideal candidate for cell-based therapies targeting bone-diseases. Polyphosphate (polyP) is increasingly being studied as a potential inorganic source of phosphate for extracellular matrix mineralisation. The aim of this study is to investigate whether polyP can effectively be used as a phosphate source during the in vitro osteogenic differentiation of human BM-MSCs. Human BM-MSCs are cultivated under osteogenic conditions for 28 days with phosphate provided in the form of organic β-glycerolphosphate (BGP) or calcium-polyP nanoparticles (polyP-NP). Mineralisation is demonstrated using Alizarin red staining, cellular ATP content, and free phosphate levels are measured in both the cells and the medium. The effects of BGP or polyP-NP on alkaline phosphatase (ALP) activity and gene expression of a range of osteogenic-related markers are also assessed. PolyP-NP supplementation displays comparable effects to the classical BGP-containing osteogenic media in terms of mineralisation, ALP activity and expression of osteogenesis-associated genes. This study shows that polyP-NP act as an effective source of phosphate during mineralisation of BM-MSC. These results open new possibilities with BM-MSC-based approaches for bone repair to be achieved through doping of conventional biomaterials with polyP-NP.
Collapse
Affiliation(s)
- Luan Phelipe Hatt
- AO Research Institute Davos, 7270 Davos Platz, Switzerland; (L.P.H.); (K.T.); (M.J.S.)
| | - Keith Thompson
- AO Research Institute Davos, 7270 Davos Platz, Switzerland; (L.P.H.); (K.T.); (M.J.S.)
| | - Werner E. G. Müller
- Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany;
| | - Martin James Stoddart
- AO Research Institute Davos, 7270 Davos Platz, Switzerland; (L.P.H.); (K.T.); (M.J.S.)
| | - Angela Rita Armiento
- AO Research Institute Davos, 7270 Davos Platz, Switzerland; (L.P.H.); (K.T.); (M.J.S.)
| |
Collapse
|
17
|
Gericke A, Wang X, Ackermann M, Neufurth M, Wiens M, Schröder HC, Pfeiffer N, Müller WEG. Utilization of metabolic energy in treatment of ocular surface disorders: polyphosphate as an energy source for corneal epithelial cell proliferation. RSC Adv 2019; 9:22531-22539. [PMID: 35519495 PMCID: PMC9066647 DOI: 10.1039/c9ra04409d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/16/2019] [Indexed: 12/18/2022] Open
Abstract
Impaired regeneration of the corneal epithelium, as found in many ocular surface diseases, is a major clinical problem in ophthalmology. We hypothesized that corneal epithelial regeneration can be promoted by the physiological, energy-delivering as well as "morphogenetically active" polymer, inorganic polyphosphate (polyP). Corneal limbal explants (diameter, 4 mm) were cultivated on collagen-coated well plates in the absence or presence of polyP (chain length, ∼40 Pi units; 50 μg ml-1) or human platelet lysate (hp-lysate; 5% v/v). Cell outgrowth and differentiation were analyzed after staining with DRAQ5 (nuclei) and rhodamine phalloidin (cytoskeleton), as well as by environmental scanning electron microscopy (ESEM). Cell growth/viability of hCECs was assessed by XTT assay. The expression of SDF-1 was quantitated by qRT-PCR. Exposure to hp-lysate (also containing polyP) increased cell migration already at day 1. Even stronger was the effect of polyP. This effect was blocked by a mast cell serine protease. The formation of cell multilayers was enhanced by hp-lysate or even more by polyP. ESEM revealed continuous cell junctions and prominent microvilli on the surface of adjacent cells exposed to polyP; those structures were only rarely seen in the controls. The hp-lysate and, more potently, polyP increased the proliferation of hCECs, as well as SDF-1 expression. The findings indicate the potential usefulness of the natural polymer, polyP, for topical treatment of corneal epithelial defects. Future studies are directed to develop suitable formulations of polyP, such as biomimetic polyP nano/microparticles showing an adjustable release kinetics.
Collapse
Affiliation(s)
- Adrian Gericke
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz Langenbeckstrasse 1 55131 Mainz Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Duesbergweg 6 D-55128 Mainz Germany +49-6131-39-25243 +49-6131-39-25910
| | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University Johann Joachim Becher Weg 13 55099 Mainz Germany
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Duesbergweg 6 D-55128 Mainz Germany +49-6131-39-25243 +49-6131-39-25910
| | - Matthias Wiens
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Duesbergweg 6 D-55128 Mainz Germany +49-6131-39-25243 +49-6131-39-25910
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Duesbergweg 6 D-55128 Mainz Germany +49-6131-39-25243 +49-6131-39-25910
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz Langenbeckstrasse 1 55131 Mainz Germany
| | - Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Duesbergweg 6 D-55128 Mainz Germany +49-6131-39-25243 +49-6131-39-25910
| |
Collapse
|
18
|
Wang X, Gericke A, Ackermann M, Wang S, Neufurth M, Schröder HC, Pfeiffer N, Müller WEG. Polyphosphate, the physiological metabolic fuel for corneal cells: a potential biomaterial for ocular surface repair. Biomater Sci 2019; 7:5506-5515. [DOI: 10.1039/c9bm01289c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Polyphosphate, a natural inorganic polymer that acts as a reservoir for metabolic fuel (ATP), increases the proliferation and migration potency of epithelial cells, covering the avascular cornea.
Collapse
Affiliation(s)
- Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry
- University Medical Center of the Johannes Gutenberg University
- 55128 Mainz
- Germany
| | - Adrian Gericke
- Department of Ophthalmology
- University Medical Center of the Johannes Gutenberg-University Mainz
- 55131 Mainz
- Germany
| | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy
- University Medical Center of the Johannes Gutenberg University
- 55099 Mainz
- Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry
- University Medical Center of the Johannes Gutenberg University
- 55128 Mainz
- Germany
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry
- University Medical Center of the Johannes Gutenberg University
- 55128 Mainz
- Germany
| | - Heinz C. Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry
- University Medical Center of the Johannes Gutenberg University
- 55128 Mainz
- Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology
- University Medical Center of the Johannes Gutenberg-University Mainz
- 55131 Mainz
- Germany
| | - Werner E. G. Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry
- University Medical Center of the Johannes Gutenberg University
- 55128 Mainz
- Germany
| |
Collapse
|
19
|
Müller WEG, Ackermann M, Tolba E, Neufurth M, Ivetac I, Kokkinopoulou M, Schröder HC, Wang X. Role of ATP during the initiation of microvascularization: acceleration of an autocrine sensing mechanism facilitating chemotaxis by inorganic polyphosphate. Biochem J 2018; 475:3255-3273. [PMID: 30242064 DOI: 10.1042/bcj20180535] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 12/21/2022]
Abstract
The in vitro tube formation assay with human umbilical vein endothelial cells (HUVEC) was applied to identify the extra- and intracellular sources of metabolic energy/ATP required for cell migration during the initial stage of microvascularization. Extracellularly, the physiological energy-rich polymer, inorganic polyphosphate (polyP), applied as biomimetic amorphous calcium polyP microparticles (Ca-polyP-MP), is functioning as a substrate for ATP generation most likely via the combined action of the alkaline phosphatase (ALP) and the adenylate kinase (AK). The linear Ca-polyP-MP with a size of 40 phosphate units, close to the polyP in the acidocalcisomes in the blood platelets, were found to increase endothelial cell tube formation, as well as the intracellular ATP levels. Depletion of extracellular ATP with apyrase suppressed tube formation during the initial incubation period. Inhibition experiments revealed that inhibitors (levamisole and Ap5A) of the enzymes involved in extracellular ATP generation strongly reduce the Ca-polyP-MP-induced tube formation. The stimulatory effect of Ca-polyP-MP was also diminished by the glycolysis inhibitor oxamate and trifluoperazine which blocks endocytosis, as well as by MRS2211, an antagonist of the P2Y13 receptor. Oligomycin, an inhibitor of the mitochondrial F0F1-ATP synthase, displayed no effect at lower concentrations on tube formation. Electron microscopic data revealed that after cellular uptake, the Ca-polyP-MP accumulate close to the cell membrane. We conclude that in HUVEC exposed to polyP, ATP is formed extracellularly via the coupled ALP-AK reaction, and intracellularly during glycolysis. The results suggest an autocrine signaling pathway of ATP with polyP as an extracellular store of metabolic energy for endothelial cell migration during the initial vascularization process.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University, Johann Joachim Becher Weg 13, 55099 Mainz, Germany
| | - Emad Tolba
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
- Polymers and Pigments Department, National Research Center, 33 El Buhouth St, Dokki, 12311 Cairo, Egypt
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Ivan Ivetac
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
- Surgical Oncology Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3002, Australia
| | - Maria Kokkinopoulou
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| |
Collapse
|
20
|
Kulakovskaya EV, Zemskova MY, Kulakovskaya TV. Inorganic Polyphosphate and Cancer. BIOCHEMISTRY (MOSCOW) 2018; 83:961-968. [DOI: 10.1134/s0006297918080072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Müller WEG, Wang S, Tolba E, Neufurth M, Ackermann M, Muñoz-Espí R, Lieberwirth I, Glasser G, Schröder HC, Wang X. Transformation of Amorphous Polyphosphate Nanoparticles into Coacervate Complexes: An Approach for the Encapsulation of Mesenchymal Stem Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801170. [PMID: 29847707 DOI: 10.1002/smll.201801170] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/22/2018] [Indexed: 06/08/2023]
Abstract
Inorganic polyphosphate [polyP] has proven to be a promising physiological biopolymer for potential use in regenerative medicine because of its morphogenetic activity and function as an extracellular energy-donating system. Amorphous Ca2+ -polyP nanoparticles [Ca-polyP-NPs] are characterized by a high zeta potential with -34 mV (at pH 7.4). This should contribute to the stability of suspensions of the spherical nanoparticles (radius 94 nm), but make them less biocompatible. The zeta potential decreases to near zero after exposure of the Ca-polyP-NPs to protein/peptide-containing serum or medium plus serum. Electron microscopy analysis reveals that the particles rapidly change into a coacervate phase. Those mats are amorphous, but less stable than the likewise amorphous Ca-polyP-NPs and are morphogenetically active. Mesenchymal stem cells grown onto the polyP coacervate show enhanced growth/proliferation and become embedded in the coacervate. These results suggest that the Ca-polyP coacervate, formed from Ca-polyP-NPs in the presence of protein, can act as an adaptable framework that mimics a niche and provides metabolic energy in bone/cartilage engineering.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128, Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128, Mainz, Germany
| | - Emad Tolba
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128, Mainz, Germany
- Polymers and Pigments Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128, Mainz, Germany
| | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University, Johann Joachim Becher Weg 13, D-55099, Mainz, Germany
| | - Rafael Muñoz-Espí
- Institute of Materials Science (ICMUV), Universitat de València, C/Catedràtic José Beltrán 2, Paterna, 46980, València, Spain
| | - Ingo Lieberwirth
- Max Planck Institute for Polymer Research, Electron Microscopy Division, Ackermannweg 10, D-55021, Mainz, Germany
| | - Gunnar Glasser
- Max Planck Institute for Polymer Research, Electron Microscopy Division, Ackermannweg 10, D-55021, Mainz, Germany
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128, Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128, Mainz, Germany
| |
Collapse
|
22
|
Müller WEG, Neufurth M, Wang S, Ackermann M, Muñoz-Espí R, Feng Q, Lu Q, Schröder HC, Wang X. Amorphous, Smart, and Bioinspired Polyphosphate Nano/Microparticles: A Biomaterial for Regeneration and Repair of Osteo-Articular Impairments In-Situ. Int J Mol Sci 2018; 19:427. [PMID: 29385104 PMCID: PMC5855649 DOI: 10.3390/ijms19020427] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/27/2018] [Accepted: 01/29/2018] [Indexed: 12/19/2022] Open
Abstract
Using femur explants from mice as an in vitro model, we investigated the effect of the physiological polymer, inorganic polyphosphate (polyP), on differentiation of the cells of the bone marrow in their natural microenvironment into the osteogenic and chondrogenic lineages. In the form of amorphous Ca-polyP nano/microparticles, polyP retains its function to act as both an intra- and extracellular metabolic fuel and a stimulus eliciting morphogenetic signals. The method for synthesis of the nano/microparticles with the polyanionic polyP also allowed the fabrication of hybrid particles with the bisphosphonate zoledronic acid, a drug used in therapy of bone metastases in cancer patients. The results revealed that the amorphous Ca-polyP particles promote the growth/viability of mesenchymal stem cells, as well as the osteogenic and chondrogenic differentiation of the bone marrow cells in rat femur explants, as revealed by an upregulation of the expression of the transcription factors SOX9 (differentiation towards osteoblasts) and RUNX2 (chondrocyte differentiation). In parallel to this bone anabolic effect, incubation of the femur explants with these particles significantly reduced the expression of the gene encoding the osteoclast bone-catabolic enzyme, cathepsin-K, while the expression of the tartrate-resistant acid phosphatase remained unaffected. The gene expression data were supported by the finding of an increased mineralization of the cells in the femur explants in response to the Ca-polyP particles. Finally, we show that the hybrid particles of polyP complexed with zoledronic acid exhibit both the cytotoxic effect of the bisphosphonate and the morphogenetic and mineralization inducing activity of polyP. Our results suggest that the Ca-polyP nano/microparticles are not only a promising scaffold material for repairing long bone osteo-articular damages but can also be applied, as a hybrid with zoledronic acid, as a drug delivery system for treatment of bone metastases. The polyP particles are highlighted as genuine, smart, bioinspired nano/micro biomaterials.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| | - Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Johann Joachim Becher Weg 13, 55099 Mainz, Germany.
| | - Rafael Muñoz-Espí
- Institute of Materials Science (ICMUV), Universitat de València, C/Catedràtic José Beltrán 2, Paterna, 46980 València, Spain.
| | - Qingling Feng
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Qiang Lu
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| |
Collapse
|
23
|
Wang X, Schröder HC, Müller WEG. Amorphous polyphosphate, a smart bioinspired nano-/bio-material for bone and cartilage regeneration: towards a new paradigm in tissue engineering. J Mater Chem B 2018; 6:2385-2412. [DOI: 10.1039/c8tb00241j] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Physiological amorphous polyphosphate nano/micro-particles, injectable and implantable, attract and stimulate MSCs into implants for tissue regeneration.
Collapse
Affiliation(s)
- Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry
- University Medical Center of the Johannes Gutenberg University
- 55128 Mainz
- Germany
| | - Heinz C. Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry
- University Medical Center of the Johannes Gutenberg University
- 55128 Mainz
- Germany
| | - Werner E. G. Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry
- University Medical Center of the Johannes Gutenberg University
- 55128 Mainz
- Germany
| |
Collapse
|