1
|
Regmi P, Lin KW, Chuang YY, Yeh WB. Phytosanitary cold treatment of cherry tomatoes infested with Bactrocera dorsalis, Zeugodacus cucurbitae, and Zeugodacus tau (Diptera: Tephritidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:1823-1836. [PMID: 39226082 DOI: 10.1093/jee/toae190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/30/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Fruit flies attack numerous crops, including cherry tomatoes (Solanum lycopersicum var. cerasiforme). The potential presence of the immature stages of fruit fly species inside tomatoes during export hinders their international market access. Therefore, phytosanitary treatment must be performed before export to prevent fruit fly species from entering countries where they are not naturally found. We developed a phytosanitary cold disinfestation treatment protocol to eliminate oriental fruit fly (Bactrocera dorsalis Hendel), melon fly (Zeugodacus cucurbitae Coquillett), and pumpkin fruit fly (Zeugodacus tau Walker) concealed inside cherry tomatoes without causing critical damage to the fruit. We determined that the third instar of Z. cucurbitae exhibited the highest cold tolerance among the various development stages of the three fruit fly species. Thus, we performed a small-scale disinfestation test on Z. cucurbitae in two cultivars of tomato. We achieved complete disinfestation after 15 days of cold treatment at 1°C-1.5°C. The confirmatory test revealed the elimination of more than 80,000 treated third instar of Z. cucurbitae in each tomato variety. The developed phytosanitary cold treatment allows the tomatoes to retain their commercial value. This study provides a standard phytosanitary cold treatment protocol for cherry tomatoes, ensuring the disinfestation of fruit flies before their export to international markets.
Collapse
Affiliation(s)
- Prakriti Regmi
- Department of Entomology, National Chung Hsing University, 145 Xingda Rd., South District, Taichung City, 402, Taiwan
| | - Kao-Wei Lin
- Taichung Branch of Animal and Plant Health Inspection Agency, Ministry of Agriculture, 250 Guoguang Rd., South District, Taichung City, 402, Taiwan
| | - Yi-Yuan Chuang
- Department of Entomology, National Chung Hsing University, 145 Xingda Rd., South District, Taichung City, 402, Taiwan
| | - Wen-Bin Yeh
- Department of Entomology, National Chung Hsing University, 145 Xingda Rd., South District, Taichung City, 402, Taiwan
| |
Collapse
|
2
|
Vast Gene Flow among the Spanish Populations of the Pest Bactrocera oleae (Diptera, Tephritidae), Phylogeography of a Metapopulation to Be Controlled and Its Mediterranean Genetic Context. INSECTS 2022; 13:insects13070642. [PMID: 35886818 PMCID: PMC9322173 DOI: 10.3390/insects13070642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/10/2022] [Accepted: 07/15/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary The output of olive industry at the Mediterranean Basin, headed by Spain, is huge worldwide. The olive fruit fly Bactrocera oleae is the major pest of olive orchards. The damages it causes become in considerable economic losses as well as a decrease in oil quantity and quality. A key question for the success of pest control strategies is the further knowledge about the species, and genetic data becomes essential for this purpose. The present work analyses more than 250 fruit flies from six different Mediterranean countries, showing relevant data about the genetic structure and gene flow of this damaging pest. These findings are helpful to improve the integrated pest management strategies according to the current European Guidelines. Abstract Spain is the leading producer of olives and olive oil. Ninety-five percent of world production originate from Spain and other regions of the Mediterranean Basin. However, these olive-growing countries face a major problem, the harmful fly Bactrocera oleae, the main pest of olive crops. To improve its control, one of the challenges is the further knowledge of the species and populations dynamics in this area. A phylogeographic work is necessary to further characterise the levels and distribution patterns of genetic diversity of the Spanish populations and their genetic relationships with other Mediterranean populations. A 1151 bp fragment of the mitochondrial cytochrome oxidase subunit I (COI) gene has been analysed in over 250 specimens of the six main Mediterranean countries via sequencing. Genetic diversity parameters were high; 51 new haplotypes have been identified showing a geographical pattern across the Mediterranean area. The data revealed that olive fruit fly populations have been long time established in the Mediterranean Basin with two genetic groups. Gene flow seems to be the main process in shaping this genetic structure as well as fly’s colonisation routes that have paralleled those of the olive tree.
Collapse
|
3
|
Gouvi G, Gariou-Papalexiou A, Augustinos AA, Drosopoulou E, Tsiamis G, Bourtzis K, Zacharopoulou A. The Chromosomes of Zeugodacus tau and Zeugodacus cucurbitae: A Comparative Analysis. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.854723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Availability of polytene chromosomes and development of polytene chromosome maps have greatly facilitated genetic analysis in Diptera and understanding of chromosomal organization. In tephritids, following the first polytene chromosome maps constructed for the Mediterranean fruit fly, Ceratitis capitata, additional maps have been developed for only few species belonging to the main genera of agricultural importance that are Anastrepha, Bactrocera, Ceratitis, Dacus, Rhagoletis, and Zeugodacus. Comparison of the polytene chromosomes of these species has pointed to the presence of chromosomal rearrangements that can, at least partially, shed light to the chromosomal evolution in this family. Up to now, polytene chromosome maps are available only for one Zeugodacus species, that is Zeugodacus cucurbitae. Here we report the cytogenetic analysis of the mitotic and polytene chromosomes of the pumpkin fly, Zeugodacus tau, along with a comparative analysis with polytene chromosomes of Zeugodacus cucurbitae as well as other tephritids. In situ hybridization experiments resulting to chromosomal localization of selected genes in both species are also presented. The genes used as markers are hsp70, hsp83, scarlet and white pupae. The established homologies presented in this study verify that the two Zeugodacus species are genetically close and support the current taxonomic placement of the Zeugodacus genus. The differences in polytene chromosome level, in combination with results of in situ hybridization experiments, reveal the presence of chromosomal rearrangements, mainly inversions, to both closely and distantly related species, which could potentially be a useful diagnostic tool.
Collapse
|
4
|
Mitochondrial genome sequencing and phylogeny of Haemagogus albomaculatus, Haemagogus leucocelaenus, Haemagogus spegazzinii, and Haemagogus tropicalis (Diptera: Culicidae). Sci Rep 2020; 10:16948. [PMID: 33046768 PMCID: PMC7550346 DOI: 10.1038/s41598-020-73790-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/14/2020] [Indexed: 12/22/2022] Open
Abstract
The genus Haemagogus (Diptera: Culicidae) comprises species of great epidemiological relevance, involved in transmission cycles of the Yellow fever virus and other arboviruses in South America. So far, only Haemagogus janthinomys has complete mitochondrial sequences available. Given the unavailability of information related to aspects of the evolutionary biology and molecular taxonomy of this genus, we report here, the first sequencing of the mitogenomes of Haemagogus albomaculatus, Haemagogus leucocelaenus, Haemagogus spegazzinii, and Haemagogus tropicalis. The mitogenomes showed an average length of 15,038 bp, average AT content of 79.3%, positive AT-skews, negative GC-skews, and comprised 37 functional subunits (13 PCGs, 22 tRNA, and 02 rRNA). The PCGs showed ATN as start codon, TAA as stop codon, and signs of purifying selection. The tRNAs had the typical leaf clover structure, except tRNASer1. Phylogenetic analyzes of Bayesian inference and Maximum Likelihood, based on concatenated sequences from all 13 PCGs, produced identical topologies and strongly supported the monophyletic relationship between the Haemagogus and Conopostegus subgenera, and corroborated with the known taxonomic classification of the evaluated taxa, based on external morphological aspects. The information produced on the mitogenomes of the Haemagogus species evaluated here may be useful in carrying out future taxonomic and evolutionary studies of the genus.
Collapse
|
5
|
Drosopoulou E, Syllas A, Goutakoli P, Zisiadis GA, Konstantinou T, Pangea D, Sentis G, van Sauers-Muller A, Wee SL, Augustinos AA, Zacharopoulou A, Bourtzis K. Τhe Complete Mitochondrial Genome of Bactrocera carambolae (Diptera: Tephritidae): Genome Description and Phylogenetic Implications. INSECTS 2019; 10:E429. [PMID: 31795125 PMCID: PMC6955806 DOI: 10.3390/insects10120429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/15/2019] [Accepted: 11/21/2019] [Indexed: 01/09/2023]
Abstract
Bactrocera carambolae is one of the approximately 100 sibling species of the Bactrocera dorsalis complex and considered to be very closely related to B. dorsalis. Due to their high morphological similarity and overlapping distribution, as well as to their economic impact and quarantine status, the development of reliable markers for species delimitation between the two taxa is of great importance. Here we present the complete mitochondrial genome of B. carambolae sourced from its native range in Malaysia and its invaded territory in Suriname. The mitogenome of B. carambolae presents the typical organization of an insect mitochondrion. Comparisons of the analyzed B. carambolae sequences to all available complete mitochondrial sequences of B. dorsalis revealed several species-specific polymorphic sites. Phylogenetic analysis based on Bactrocera mitogenomes supports that B. carambolae is a differentiated taxon though closely related to B. dorsalis. The present complete mitochondrial sequences of B. carambolae could be used, in the frame of Integrative Taxonomy, for species discrimination and resolution of the phylogenetic relationships within this taxonomically challenging complex, which would facilitate the application of species-specific population suppression strategies, such as the sterile insect technique.
Collapse
Affiliation(s)
- Elena Drosopoulou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.S.); (P.G.); (G.-A.Z.); (T.K.); (D.P.); (G.S.)
| | - Alexandros Syllas
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.S.); (P.G.); (G.-A.Z.); (T.K.); (D.P.); (G.S.)
| | - Panagiota Goutakoli
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.S.); (P.G.); (G.-A.Z.); (T.K.); (D.P.); (G.S.)
| | - Georgios-Alkis Zisiadis
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.S.); (P.G.); (G.-A.Z.); (T.K.); (D.P.); (G.S.)
| | - Theodora Konstantinou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.S.); (P.G.); (G.-A.Z.); (T.K.); (D.P.); (G.S.)
| | - Dimitra Pangea
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.S.); (P.G.); (G.-A.Z.); (T.K.); (D.P.); (G.S.)
| | - George Sentis
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.S.); (P.G.); (G.-A.Z.); (T.K.); (D.P.); (G.S.)
| | - Alies van Sauers-Muller
- Consultant, retired from Ministry of Agriculture, Animal Husbandry and Fisheries, Carambola Fruit Fly Project, Damboentong 282, Tijgerkreek, Saramacca, Suriname;
| | - Suk-Ling Wee
- Center for Insect Systematics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Antonios A. Augustinos
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Seibersdorf, A-1400 Vienna, Austria; (A.A.A.); (K.B.)
| | | | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Seibersdorf, A-1400 Vienna, Austria; (A.A.A.); (K.B.)
| |
Collapse
|
6
|
The first complete mitochondrial genome of Bactrocera tsuneonis (Miyake) (Diptera: Tephritidae) by next-generation sequencing and its phylogenetic implications. Int J Biol Macromol 2018; 118:1229-1237. [PMID: 29944944 DOI: 10.1016/j.ijbiomac.2018.06.099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 11/20/2022]
Abstract
Bactrocera tsuneonis (Miyake), generally known as the Japanese orange fly, is considered to be a major pest of commercial citrus crops. It has a limited distribution in China, Japan and Vietnam, but it has the potential to invade areas outside of Asia. More genetic information of B. tsuneonis should be obtained in order to develop effective methodologies for rapid and accurate molecular identification due to the difficulty of distinguishing it from Bactrocera minax based on morphological features. We report here the whole mitochondrial genome of B. tsuneonis sequenced by next-generation sequencing. This mitogenome sequence had a total length of 15,865 bp, a typical circular molecule comprising 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and a non-coding region (A + T-rich control region). The structure and organization of the molecule were typical and similar compared with the published homologous sequences of other fruit flies in Tephritidae. The phylogenetic analyses based on the mitochondrial genome data presented a close genetic relationship between B. tsuneonis and B. minax. This is the first report of the complete mitochondrial genome of B. tsuneonis, and it can be used in further studies of species diagnosis, evolutionary biology, prevention and control.
Collapse
|