1
|
Nguyen QH, Nguyen CL, Nguyen TS, Do BN, Tran TTT, Le TTH, Bui TT, Le HS, Quyen DV, Hayer J, Bañuls AL, Bui TS. Genomic insights into an extensively drug-resistant and hypervirulent Burkholderia dolosa N149 isolate of a novel sequence type (ST2237) from a Vietnamese patient hospitalised for stroke. J Glob Antimicrob Resist 2024; 37:44-47. [PMID: 38408562 DOI: 10.1016/j.jgar.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/28/2024] Open
Abstract
OBJECTIVES Burkholderia dolosa is a clinically important opportunistic pathogen in inpatients. Here we characterised an extensively drug-resistant and hypervirulent B. dolosa isolate from a patient hospitalised for stroke. METHODS Resistance to 41 antibiotics was tested with the agar disc diffusion, minimum inhibitory concentration, or broth microdilution method. The complete genome was assembled using short-reads and long-reads and the hybrid de novo assembly method. Allelic profiles obtained by multilocus sequence typing were analysed using the PubMLST database. Antibiotic-resistance and virulence genes were predicted in silico using public databases and the 'baargin' workflow. B. dolosa N149 phylogenetic relationships with all available B. dolosa strains and Burkholderia cepacia complex strains were analysed using the pangenome obtained with Roary. RESULTS B. dolosa N149 displayed extensive resistance to 31 antibiotics and intermediate resistance to 4 antibiotics. The complete genome included three circular chromosomes (6 338 630 bp in total) and one plasmid (167 591 bp). Genotypic analysis revealed various gene clusters (acr, amr, amp, emr, ade, bla and tet) associated with resistance to 35 antibiotic classes. The major intrinsic resistance mechanisms were multidrug efflux pump alterations, inactivation and reduced permeability of targeted antibiotics. Moreover, 91 virulence genes (encoding proteins involved in adherence, formation of capsule, biofilm and colony, motility, phagocytosis inhibition, secretion systems, protease secretion, transmission and quorum sensing) were identified. B. dolosa N149 was assigned to a novel sequence type (ST2237) and formed a mono-phylogenetic clade separated from other B. dolosa strains. CONCLUSIONS This study provided insights into the antimicrobial resistance and virulence mechanisms of B. dolosa.
Collapse
Affiliation(s)
- Quang Huy Nguyen
- LMI DRISA, University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam.
| | - Cam Linh Nguyen
- LMI DRISA, University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Thai Son Nguyen
- LMI DRISA, University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Bich Ngoc Do
- LMI DRISA, University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Thi Thanh Tam Tran
- LMI DRISA, University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Thi Thu Hang Le
- LMI DRISA, University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Thanh Thuyet Bui
- Department of Microbiology, 108 Military Central Hospital, Hanoi, Vietnam; Vietnamese-German Center for Medical Research, Hanoi, Vietnam
| | - Huu Song Le
- Department of Microbiology, 108 Military Central Hospital, Hanoi, Vietnam; Vietnamese-German Center for Medical Research, Hanoi, Vietnam
| | - Dong Van Quyen
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Juliette Hayer
- LMI DRISA, University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam; UMR MIVEGEC (University of Montpellier- IRD-CNRS), Montpellier, France
| | - Anne-Laure Bañuls
- LMI DRISA, University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam; UMR MIVEGEC (University of Montpellier- IRD-CNRS), Montpellier, France
| | - Tien Sy Bui
- Department of Microbiology, 108 Military Central Hospital, Hanoi, Vietnam; Vietnamese-German Center for Medical Research, Hanoi, Vietnam
| |
Collapse
|
2
|
Grognot M, Nam JW, Elson LE, Taute KM. Physiological adaptation in flagellar architecture improves Vibrio alginolyticus chemotaxis in complex environments. Proc Natl Acad Sci U S A 2023; 120:e2301873120. [PMID: 37579142 PMCID: PMC10450658 DOI: 10.1073/pnas.2301873120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/10/2023] [Indexed: 08/16/2023] Open
Abstract
Bacteria navigate natural habitats with a wide range of mechanical properties, from the ocean to the digestive tract and soil, by rotating helical flagella like propellers. Species differ in the number, position, and shape of their flagella, but the adaptive value of these flagellar architectures is unclear. Many species traverse multiple types of environments, such as pathogens inside and outside a host. We investigate the hypothesis that flagellar architectures mediate environment-specific benefits in the marine pathogen Vibrio alginolyticus which exhibits physiological adaptation to the mechanical environment. In addition to its single polar flagellum, the bacterium produces lateral flagella in environments that differ mechanically from water. These are known to facilitate surface motility and attachment. We use high-throughput 3D bacterial tracking to quantify chemotactic performance of both flagellar architectures in three archetypes of mechanical environments relevant to the bacterium's native habitats: water, polymer solutions, and hydrogels. We reveal that lateral flagella impede chemotaxis in water by lowering the swimming speed but improve chemotaxis in both types of complex environments. Statistical trajectory analysis reveals two distinct underlying behavioral mechanisms: In viscous solutions of the polymer PVP K90, lateral flagella increase the swimming speed. In agar hydrogels, lateral flagella improve overall chemotactic performance, despite lowering the swimming speed, by preventing trapping in pores. Our findings show that lateral flagella are multipurpose tools with a wide range of applications beyond surfaces. They implicate flagellar architecture as a mediator of environment-specific benefits and point to a rich space of bacterial navigation behaviors in complex environments.
Collapse
Affiliation(s)
- Marianne Grognot
- Rowland Institute, Harvard University, Cambridge, MA02142
- Institute of Medical Microbiology, Rheinisch-Westfälische Technische Hochschule University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule University, Aachen52074, Germany
| | - Jong Woo Nam
- Rowland Institute, Harvard University, Cambridge, MA02142
| | | | - Katja M. Taute
- Rowland Institute, Harvard University, Cambridge, MA02142
- Biozentrum, Ludwig-Maximilians-Universität München, Martinsried82152, Germany
| |
Collapse
|
3
|
Peduzzi C, Sagia A, Burokienė D, Nagy IK, Fischer-Le Saux M, Portier P, Dereeper A, Cunnac S, Roman-Reyna V, Jacobs JM, Bragard C, Koebnik R. Complete Genome Sequencing of Three Clade-1 Xanthomonads Reveals Genetic Determinants for a Lateral Flagellin and the Biosynthesis of Coronatine-Like Molecules in Xanthomonas. PHYTOPATHOLOGY 2023; 113:1185-1191. [PMID: 36611232 DOI: 10.1094/phyto-10-22-0373-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Evolutionarily, early-branching xanthomonads, also referred to as clade-1 xanthomonads, include major plant pathogens, most of which colonize monocotyledonous plants. Seven species have been validly described, among them the two sugarcane pathogens Xanthomonas albilineans and Xanthomonas sacchari, as well as Xanthomonas translucens, which infects small-grain cereals and diverse grasses but also asparagus and pistachio trees. Single-gene sequencing and genomic approaches have indicated that this clade likely contains more, yet-undescribed species. In this study, we sequenced representative strains of three novel species using long-read sequencing technology. Xanthomonas campestris pv. phormiicola strain CFBP 8444 causes bacterial streak on New Zealand flax, another monocotyledonous plant. Xanthomonas sp. strain CFBP 8443 has been isolated from common bean, and Xanthomonas sp. strain CFBP 8445 originated from banana. Complete assemblies of the chromosomes confirmed their unique phylogenetic position within clade 1 of Xanthomonas. Genome mining revealed novel genetic features, hitherto undescribed in other members of the Xanthomonas genus. In strain CFBP 8444, we identified genes related to the synthesis of coronatine-like compounds, a phytotoxin produced by several pseudomonads, which raises interesting questions about the evolution and pathogenicity of this pathogen. Furthermore, strain CFBP 8444 was found to contain a second, atypical flagellar gene cluster in addition to the canonical flagellar gene cluster. Overall, this research represents an important step toward better understanding the evolutionary history and biology of early-branching xanthomonads.
Collapse
Affiliation(s)
- Chloé Peduzzi
- Earth & Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
| | - Angeliki Sagia
- Earth & Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
- Plant Health Institute of Montpellier (PHIM), University of Montpellier, Cirad, INRAE, Institut Agro, IRD, Montpellier, France
| | - Daiva Burokienė
- Nature Research Centre, Institute of Botany, Laboratory of Plant Pathology, Vilnius, Lithuania
| | | | | | - Perrine Portier
- Univ. Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, CIRM-CFBP, F-49000 Angers, France
| | - Alexis Dereeper
- Plant Health Institute of Montpellier (PHIM), University of Montpellier, Cirad, INRAE, Institut Agro, IRD, Montpellier, France
| | - Sébastien Cunnac
- Plant Health Institute of Montpellier (PHIM), University of Montpellier, Cirad, INRAE, Institut Agro, IRD, Montpellier, France
| | - Veronica Roman-Reyna
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, U.S.A
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Jonathan M Jacobs
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, U.S.A
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Claude Bragard
- Earth & Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
| | - Ralf Koebnik
- Plant Health Institute of Montpellier (PHIM), University of Montpellier, Cirad, INRAE, Institut Agro, IRD, Montpellier, France
| |
Collapse
|
4
|
|
5
|
Koosakulnirand S, Phokrai P, Jenjaroen K, Roberts RA, Utaisincharoen P, Dunachie SJ, Brett PJ, Burtnick MN, Chantratita N. Immune response to recombinant Burkholderia pseudomallei FliC. PLoS One 2018; 13:e0198906. [PMID: 29902230 PMCID: PMC6002054 DOI: 10.1371/journal.pone.0198906] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 05/29/2018] [Indexed: 11/22/2022] Open
Abstract
Burkholderia pseudomallei is a flagellated Gram-negative bacterium which is the causative agent of melioidosis. The disease poses a major public health problem in tropical regions and diabetes is a major risk factor. The high mortality rate of melioidosis is associated with severe sepsis which involves the overwhelming production of pro-inflammatory cytokines. Bacterial flagellar protein (flagellin) activates Toll-like receptor 5 (TLR5)-mediated innate immune signaling pathways and induces adaptive immune response. However, previous studies of TLR5 signaling in melioidosis have been performed using recombinant flagellin from Salmonella Typhimurium instead of B. pseudomallei. This study aimed to investigate human innate immune response and antibody response against a recombinant B. pseudomallei flagellin (rFliC). We prepared B. pseudomallei rFliC and used it to stimulate HEK-BlueTM-hTLR5 and THP1-DualTM cells to assess TLR5 activation. Subsequently, whole blood stimulation assays with rFliC were performed ex vivo. TLR5-flagellin interactions trigger activation of transcription factor NF-κB in HEK-BlueTM-hTLR5 cells. Pro-inflammatory cytokine (IL-1β, IL-6, and TNF-α) productions from whole blood in response to rFliC differed between fourteen healthy individuals. The levels of these cytokines changed in a dose and time-dependent manner. ELISA was used to determine rFliC-specific antibodies in serum samples from different groups of melioidosis patients and healthy subjects. IgG antibody to rFliC in melioidosis patients with diabetes were higher compared with non-diabetic patients. Our results show that B. pseudomallei flagellin is a potent immune stimulator and that the immune responses to rFliC are different among individuals. This may provide valuable insights toward the potential use of rFliC in vaccine development.
Collapse
Affiliation(s)
- Sirikamon Koosakulnirand
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Phornpun Phokrai
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kemajittra Jenjaroen
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Rosemary A. Roberts
- Department of Microbiology and Immunology, University of South Alabama, Mobile, AL, United States of America
| | | | - Susanna J. Dunachie
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Center for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Paul J. Brett
- Department of Microbiology and Immunology, University of South Alabama, Mobile, AL, United States of America
| | - Mary N. Burtnick
- Department of Microbiology and Immunology, University of South Alabama, Mobile, AL, United States of America
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| |
Collapse
|