1
|
Selby NM, Francis ST. Assessment of Acute Kidney Injury using MRI. J Magn Reson Imaging 2025; 61:25-41. [PMID: 38334370 PMCID: PMC11645494 DOI: 10.1002/jmri.29281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
There has been growing interest in using quantitative magnetic resonance imaging (MRI) to describe and understand the pathophysiology of acute kidney injury (AKI). The ability to assess kidney blood flow, perfusion, oxygenation, and changes in tissue microstructure at repeated timepoints is hugely appealing, as this offers new possibilities to describe nature and severity of AKI, track the time-course to recovery or progression to chronic kidney disease (CKD), and may ultimately provide a method to noninvasively assess response to new therapies. This could have significant clinical implications considering that AKI is common (affecting more than 13 million people globally every year), harmful (associated with short and long-term morbidity and mortality), and currently lacks specific treatments. However, this is also a challenging area to study. After the kidney has been affected by an initial insult that leads to AKI, complex coexisting processes ensue, which may recover or can progress to CKD. There are various preclinical models of AKI (from which most of our current understanding derives), and these differ from each other but more importantly from clinical AKI. These aspects are fundamental to interpreting the results of the different AKI studies in which renal MRI has been used, which encompass different settings of AKI and a variety of MRI measures acquired at different timepoints. This review aims to provide a comprehensive description and interpretation of current studies (both preclinical and clinical) in which MRI has been used to assess AKI, and discuss future directions in the field. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Nicholas M Selby
- Centre for Kidney Research and Innovation, Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- Department of Renal Medicine, University Hospitals of Derby and Burton NHS Foundation Trust, Derby, UK
| | - Susan T Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and The University of Nottingham, Nottingham, UK
| |
Collapse
|
2
|
Rojas-Canales DM, Wong SW, Tucker EJ, Fedele AO, McNicholas K, Mehdorn AS, Gleadle JM. The transcriptome of early compensatory kidney growth reveals cell and time specific responses. iScience 2024; 27:110608. [PMID: 39220259 PMCID: PMC11363579 DOI: 10.1016/j.isci.2024.110608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/24/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Following kidney removal, the remaining kidney enlarges and increases its function. The mechanism and signals driving this compensatory kidney hypertrophy and the enlargement of its constituent kidney cells remains elusive. RNA-seq studies in mice undergoing hypertrophy 24, 48, and 72 h following nephrectomy were undertaken to understand the early transcriptional changes. This revealed substantial enhancement of cholesterol biosynthesis pathways, increases in mitochondrial gene expression and cell cycle perturbations. Single nuclei RNA-seq delineated cell specific changes at 24 h post nephrectomy and showed that sterol binding protein 2 (SREBP2) activity increases in medullary thick ascending limb cells in keeping with promotion of cholesterol synthesis. Cultured renal tubular cells were examined for insulin-like growth factor-1 (IGF-1) stimulated hypertrophy and SREBP2 was found to be required for increase in cell size. This work describes the early cell specific growth pathways mediating cellular and kidney hypertrophy with an intriguing role for cholesterol synthesis.
Collapse
Affiliation(s)
- Darling M. Rojas-Canales
- Department of Renal Medicine, Southern Adelaide Local Health Network, Flinders Medical Centre, Bedford Park, SA, Australia
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, SA, Australia
| | - Soon Wei Wong
- Department of Renal Medicine, Southern Adelaide Local Health Network, Flinders Medical Centre, Bedford Park, SA, Australia
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, SA, Australia
| | - Elise J. Tucker
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, SA, Australia
| | - Anthony O. Fedele
- Department of Renal Medicine, Southern Adelaide Local Health Network, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Kym McNicholas
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, SA, Australia
| | - Anne-Sophie Mehdorn
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, SA, Australia
- Department of General, Abdominal, Thoracic, Transplantation and Paediatric Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Jonathan M. Gleadle
- Department of Renal Medicine, Southern Adelaide Local Health Network, Flinders Medical Centre, Bedford Park, SA, Australia
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, SA, Australia
| |
Collapse
|
3
|
Bleich E, Vonbrunn E, Büttner-Herold M, Amann K, Daniel C. Macrophage-Induced Pro-Fibrotic Gene Expression in Tubular Cells after Ischemia/Reperfusion Is Paralleled but Not Directly Mediated by C5a/C5aR1 Signaling. Life (Basel) 2024; 14:1031. [PMID: 39202772 PMCID: PMC11355820 DOI: 10.3390/life14081031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Ischemia/reperfusion (I/R) is inevitable during kidney transplantation and causes acute kidney injury (AKI), which affects immediate outcome and leads to chronic changes such as fibrotic remodeling of the graft. We investigated pro-fibrotic signaling after I/R, focusing on the complement component and receptor C5a/C5aR1 and macrophage/tubule crosstalk. Male Dark Agouti rats were subjected to I/R and their kidneys were harvested 10 min, 6 h, 24 h, 3 days, 5 days and 8 weeks after reperfusion. The development of renal fibrosis was assessed by the detection of Vimentin (VIM), α-smooth muscle actin (α-SMA) and collagen by immunohistochemistry and Sirius Red staining, respectively. The characterization of C5a/C5aR1 activity and C5aR1+ cells was performed by multiplex mRNA analysis, ELISA, immunofluorescence flow cytometry and in situ hybridization in animal models and cell culture analyses. In the cell culture experiments, we focused on macrophage/tubule cell crosstalk in co-culture experiments and mimicked in vivo conditions by hypoxia/reoxygenation and supplementation with C5a. Already 6-24 h after the induction of I/R in the rat model, C5a concentration in the plasma was significantly increased compared to the control. The matrix components VIM and α-SMA peaked on day 5 and declined after 8 weeks, when an increase in collagen was detected using Sirius Red. In contrast to early I/R-induced C5a activation, renal C5ar1 expression was maximal at day 5 and C5 expression increased until week 8, indicating that the renal upregulation of expression is not required for early complement activation. C5aR1 mRNA was detected in neutrophils and macrophages, but not in proximal tubular cells in the injured kidneys. The macrophage/tubular cell co-culture experiments showed that macrophages were mainly responsible for the increased expression of fibrosis-associated genes in tubule cells (ACTA2, VIM, SNAI1, TGFB1 and FGF-2), and hypoxia/reoxygenation had a partially enhancing effect. A direct pro-fibrotic effect of C5a was not observed. Increased TGF-ß levels were dependent on the differentiation of macrophages to the M2 subtype. In conclusion, the early activation of mesenchymal markers in tubular epithelial cells leads to long-term fibrotic remodeling characterized by VIM expression and driven by TGF-ß-dependent macrophage/tubular crosstalk. The chemoattractive properties of complement C5a may contribute to the recruitment of pro-fibrotic macrophages.
Collapse
Affiliation(s)
| | | | | | | | - Christoph Daniel
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, 91054 Erlangen, Germany; (E.B.); (E.V.); (M.B.-H.); (K.A.)
| |
Collapse
|
4
|
Tomita N, Hotta Y, Ito H, Naiki-Ito A, Matsuta K, Yamamoto Y, Ohashi K, Hayakawa T, Sanagawa A, Horita Y, Kondo M, Kataoka T, Takahashi S, Sobue K, Kimura K. High preoperative serum strontium levels increase the risk of acute kidney injury after cardiopulmonary bypass. Clin Exp Nephrol 2023; 27:382-391. [PMID: 36689033 DOI: 10.1007/s10157-022-02314-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/26/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Acute kidney injury (AKI) is a common complication of cardiac surgeries. The incidence of AKI after cardiac surgeries using cardiopulmonary bypass (CPB-AKI) is high, emphasizing the need to determine strategies to prevent CPB-AKI. This study investigates the correlation between CPB-AKI and trace metal levels in clinical and animal studies. METHODS Samples and clinical data were obtained from 74 patients from the Nagoya City University Hospital and Okazaki City Hospital. Blood samples were collected before, immediately after, and 2 h after CPB withdrawal. Trace metal levels were measured using inductively coupled plasma mass spectrometry. Sr or vehicle treatment was orally administered to the rats to determine if Sr was associated with CPB-AKI. After the treatment, ischemia-reperfusion (IR) injury was induced, and serum creatinine (SCr) and blood urea nitrogen (BUN) levels were measured. RESULTS In this clinical study, the incidence of CPB-AKI was found to be 28% (21/74). The body mass index and estimated glomerular filtration rate were significantly different in patients with AKI. The intensive care unit and hospital stay were longer in AKI patients than in non-AKI patients. The Na, Fe, and Sr levels were significantly higher in AKI patients before CPB. Also, Fe and Sr were higher immediately after CPB withdrawal, and Sr was higher 2 h after CPB withdrawal in AKI patients. Animal studies showed that Sr-treated rats had significantly increased SCr and BUN levels than vehicle-treated rats at 24 h post-IR injury. CONCLUSIONS High preoperative serum Sr levels may be associated with CPB-AKI.
Collapse
Affiliation(s)
- Natsumi Tomita
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe Do-Ri, Mizuho-Ku, Nagoya, 467-8603, Japan
| | - Yuji Hotta
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe Do-Ri, Mizuho-Ku, Nagoya, 467-8603, Japan.
- Department of Pharmacy, Nagoya City University Hospital, 1-Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan.
| | - Hidekazu Ito
- Department of Anesthesiology and Intensive Care Medicine, Graduate School of Medical Sciences, Nagoya City University, 1-Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
- Okazaki City Hospital, 3-1, Goshoai, Kouryuji-Cho, Okazaki, 444-8553, Japan
| | - Aya Naiki-Ito
- Department of Experimental Pathology and Tumor Biology, Graduate School of Medical Sciences, Nagoya City University, 1-Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Karin Matsuta
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe Do-Ri, Mizuho-Ku, Nagoya, 467-8603, Japan
| | - Yuko Yamamoto
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe Do-Ri, Mizuho-Ku, Nagoya, 467-8603, Japan
- Department of Analytical Chemistry, Aichi Prefectural Institute of Public Health, 7-6, Nagare, Tsuji-Machi, Kita-Ku, Nagoya, 462-8576, Japan
| | - Kazuki Ohashi
- Department of Pharmacy, Nagoya City University Hospital, 1-Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Tomoaki Hayakawa
- Department of Pharmacy, Nagoya City University Hospital, 1-Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Akimasa Sanagawa
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe Do-Ri, Mizuho-Ku, Nagoya, 467-8603, Japan
- Department of Pharmacy, Nagoya City University Hospital, 1-Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Yasuhiro Horita
- Department of Pharmacy, Nagoya City University Hospital, 1-Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
- Department of Clinical Pharmaceutics, Graduate School of Medical Sciences, Nagoya City University, 1-Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Masahiro Kondo
- Department of Pharmacy, Nagoya City University Hospital, 1-Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Tomoya Kataoka
- Department of Clinical Pharmaceutics, Graduate School of Medical Sciences, Nagoya City University, 1-Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Graduate School of Medical Sciences, Nagoya City University, 1-Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Kazuya Sobue
- Department of Anesthesiology and Intensive Care Medicine, Graduate School of Medical Sciences, Nagoya City University, 1-Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Kazunori Kimura
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe Do-Ri, Mizuho-Ku, Nagoya, 467-8603, Japan
- Department of Pharmacy, Nagoya City University Hospital, 1-Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
- Department of Clinical Pharmaceutics, Graduate School of Medical Sciences, Nagoya City University, 1-Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| |
Collapse
|
5
|
Chawla LS. Permissive azotemia during acute kidney injury enables more rapid renal recovery and less renal fibrosis: a hypothesis and clinical development plan. Crit Care 2022; 26:116. [PMID: 35484549 PMCID: PMC9047291 DOI: 10.1186/s13054-022-03988-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022] Open
Abstract
Preclinical models of acute kidney injury (AKI) consistently demonstrate that a uremic milieu enhances renal recovery and decreases kidney fibrosis. Similarly, significant decreases in monocyte/macrophage infiltration, complement levels, and other markers of inflammation in the injured kidney are observed across multiple studies and species. In essence, decreased renal clearance has the surprising and counterintuitive effect of being an effective treatment for AKI. In this Perspective, the author suggests a hypothesis describing why the uremic milieu is kidney protective and proposes a clinical trial of 'permissive azotemia' to improve renal recovery and long-term renal outcomes in critically ill patients with severe AKI.
Collapse
Affiliation(s)
- Lakhmir S Chawla
- Department of Medicine, Veterans Affairs Medical Center, 3550 La Jolla Village Drive, San Diego, CA, USA.
| |
Collapse
|
6
|
Lee K, Jang HR, Jeon J, Yang KE, Lee JE, Kwon GY, Kim DJ, Kim YG, Huh W. Repair phase modeling of ischemic acute kidney injury: recovery vs. transition to chronic kidney disease. Am J Transl Res 2022; 14:554-571. [PMID: 35173874 PMCID: PMC8829619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
The repair mechanism after ischemic acute kidney injury (AKI) involves complex immunologic processes, which determine long-term renal outcomes. Through investigating two murine ischemia-reperfusion injury (IRI) models: bilateral IRI (BIRI) and unilateral IRI (UIRI), we aimed to determine an appropriate murine model that could simulate the recovery phase of ischemic AKI. Changes in renal function, phenotypes of kidney mononuclear cells, renal fibrosis, and intrarenal cytokine/chemokine expression were serially analyzed up to 12 weeks after IRI. Plasma creatinine and BUN concentrations increased and remained elevated in the BIRI group until 7 days but decreased to comparable levels with the sham control group at 2 weeks after surgery and thereafter, whereas plasma creatinine and BUN concentrations remained unchanged in the UIRI group. Intrarenal total leukocytes, and effector memory and activated phenotypes of CD4 and CD8 T cells markedly increased in the postischemic kidneys in both IRI groups. Expression of proinflammatory cytokines/chemokines and TGF-β1 was enhanced in the postischemic kidneys of both IRI groups with a higher degree in the UIRI group. Importantly, intrarenal immunologic changes of the BIRI group persisted until 6 weeks despite full functional recovery. The postischemic kidneys of the UIRI group showed earlier and more pronounced proinflammatory conditions as well as more severe atrophic and fibrotic changes compared to the BIRI group. These findings support the utility of longer follow-ups of BIRI and UIRI models for investigating the adaptive repair process, which facilitates recovery of ischemic AKI and maladaptive repair process may result in AKI to CKD transition, respectively.
Collapse
Affiliation(s)
- Kyungho Lee
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoul, Republic of Korea
| | - Hye Ryoun Jang
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoul, Republic of Korea
| | - Junseok Jeon
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoul, Republic of Korea
| | - Kyeong Eun Yang
- Division of Scientific Instrumentation & Management, Korea Basic Science InstituteDaejeon, Republic of Korea
| | - Jung Eun Lee
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoul, Republic of Korea
| | - Ghee Young Kwon
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoul, Republic of Korea
| | - Dae Joong Kim
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoul, Republic of Korea
| | - Yoon-Goo Kim
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoul, Republic of Korea
| | - Wooseong Huh
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoul, Republic of Korea
| |
Collapse
|
7
|
Azawi N, Jensen M, Jensen BL, Goetze JP, Bistrup C, Lund L. Functional adaptation after kidney tissue removal in patients is associated with increased plasma atrial natriuretic peptide concentration. Nephrol Dial Transplant 2021; 37:2138-2149. [PMID: 34792174 DOI: 10.1093/ndt/gfab327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Following nephrectomy, the remaining kidney tissue adapts by an increase in GFR. In rats, hyperfiltration can be transferred by plasma. We examined whether natriuretic peptides (ANP, BNP) increase in plasma proportionally with kidney mass reduction and, if so, whether the increase relates to an increase in GFR. METHODS Patients (n = 54) undergoing partial or total unilateral nephrectomy at two Danish centers were followed for one year in an observational study. Glomerular filtration rate was measured before, 3, and 12 months after surgery. Natriuretic propeptides (proANP and proBNP) and aldosterone were measured in plasma before and at 24 hours, five days, 21 days, three months, and 12 months. Cyclic GMP was determined in urine. RESULTS There was no baseline difference in GFR between total- and partial nephrectomy (90.1 mL/min ±14.6 vs. 82.9±18, p = 0.16). Single-kidney GFR increased after 3 and 12 months (12.0 and 11.9 ml/min/1.73m2, +23.3%). There was no change in measured GFR 3 and 12 months after partial nephrectomy. ProANP and proBNP increased 3-fold 24h after surgery and returned to baseline after five days. The magnitude of acute proANP and proBNP increases did not relate to kidney mass removed. ProANP, not proBNP, increased 12 months after nephrectomy. Plasma aldosterone and urine cGMP did not change. Urine albumin/creatine ratio increased transiently after partial nephrectomy. Blood pressure was similar between groups. CONCLUSION ANP and BNP increase acutely in plasma with no relation to degree of kidney tissue ablation. After 1year, only unilateral nephrectomy patients display increased plasma ANP which could support adaptation.
Collapse
Affiliation(s)
- Nessn Azawi
- Department of Urology, Zealand University Hospital, Roskilde, Denmark.,Institute of clinical medicine, Copenhagen University, Denmark
| | - Mia Jensen
- Cardiovascular and renal research, Institute of Molecular Medicine, University of Southern Denmark, Denmark
| | - Boye L Jensen
- Cardiovascular and renal research, Institute of Molecular Medicine, University of Southern Denmark, Denmark.,Department of Urology, Odense University Hospital, Odense, Denmark
| | - Jens P Goetze
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Denmark
| | - Claus Bistrup
- Department of Nephrology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Denmark
| | - Lars Lund
- Department of Urology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Denmark
| |
Collapse
|
8
|
Róka B, Tod P, Kaucsár T, Bukosza ÉN, Vörös I, Varga ZV, Petrovich B, Ágg B, Ferdinandy P, Szénási G, Hamar P. Delayed Contralateral Nephrectomy Halted Post-Ischemic Renal Fibrosis Progression and Inhibited the Ischemia-Induced Fibromir Upregulation in Mice. Biomedicines 2021; 9:biomedicines9070815. [PMID: 34356879 PMCID: PMC8301422 DOI: 10.3390/biomedicines9070815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Ischemia reperfusion (IR) is the leading cause of acute kidney injury (AKI) and results in predisposition to chronic kidney disease. We demonstrated that delayed contralateral nephrectomy (Nx) greatly improved the function of the IR-injured kidney and decelerated fibrosis progression. Our aim was to identify microRNAs (miRNA/miR) involved in this process. (2) Methods: NMRI mice were subjected to 30 min of renal IR and one week later to Nx/sham surgery. The experiments were conducted for 7-28 days after IR. On day 8, multiplex renal miRNA profiling was performed. Expression of nine miRNAs was determined with qPCR at all time points. Based on the target prediction, plexin-A2 and Cd2AP were measured by Western blot. (3) Results: On day 8 after IR, the expression of 20/1195 miRNAs doubled, and 9/13 selected miRNAs were upregulated at all time points. Nx reduced the expression of several ischemia-induced pro-fibrotic miRNAs (fibromirs), such as miR-142a-duplex, miR-146a-5p, miR-199a-duplex, miR-214-3p and miR-223-3p, in the injured kidneys at various time points. Plexin-A2 was upregulated by IR on day 10, while Cd2AP was unchanged. (4) Conclusion: Nx delayed fibrosis progression and decreased the expression of ischemia-induced fibromirs. The protein expression of plexin-A2 and Cd2AP is mainly regulated by factors other than miRNAs.
Collapse
Affiliation(s)
- Beáta Róka
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (B.R.); (P.T.); (T.K.); (É.N.B.); (G.S.)
| | - Pál Tod
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (B.R.); (P.T.); (T.K.); (É.N.B.); (G.S.)
- Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Tamás Kaucsár
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (B.R.); (P.T.); (T.K.); (É.N.B.); (G.S.)
| | - Éva Nóra Bukosza
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (B.R.); (P.T.); (T.K.); (É.N.B.); (G.S.)
| | - Imre Vörös
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; (I.V.); (Z.V.V.); (B.P.); (B.Á.); (P.F.)
- HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, 1089 Budapest, Hungary
| | - Zoltán V. Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; (I.V.); (Z.V.V.); (B.P.); (B.Á.); (P.F.)
- HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, 1089 Budapest, Hungary
| | - Balázs Petrovich
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; (I.V.); (Z.V.V.); (B.P.); (B.Á.); (P.F.)
| | - Bence Ágg
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; (I.V.); (Z.V.V.); (B.P.); (B.Á.); (P.F.)
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; (I.V.); (Z.V.V.); (B.P.); (B.Á.); (P.F.)
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Gábor Szénási
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (B.R.); (P.T.); (T.K.); (É.N.B.); (G.S.)
| | - Péter Hamar
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (B.R.); (P.T.); (T.K.); (É.N.B.); (G.S.)
- Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
- Correspondence: ; Tel.: +36-20-825-9751
| |
Collapse
|
9
|
Garteiser P, Bane O, Doblas S, Friedli I, Hectors S, Pagé G, Van Beers BE, Waterton JC. Experimental Protocols for MRI Mapping of Renal T 1. Methods Mol Biol 2021; 2216:383-402. [PMID: 33476012 DOI: 10.1007/978-1-0716-0978-1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
The water proton longitudinal relaxation time, T1, is a common and useful MR parameter in nephrology research. Here we provide three step-by-step T1-mapping protocols suitable for different types of nephrology research. Firstly, we provide a single-slice 2D saturation recovery protocol suitable for studies of global pathology, where whole-kidney coverage is unnecessary. Secondly, we provide an inversion recovery type imaging protocol that may be optimized for specific kidney disease applications. Finally, we also provide imaging protocol for small animal kidney imaging in a clinical scanner.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This analysis protocol chapter is complemented by two separate chapters describing the basic concept and experimental procedure.
Collapse
Affiliation(s)
- Philippe Garteiser
- Laboratory of Imaging Biomarkers, Centre de Recherche sur l'Inflammation, Inserm UMR 1149, Université de Paris and AP-HP, Paris, France
| | - Octavia Bane
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sabrina Doblas
- Laboratory of Imaging Biomarkers, Centre de Recherche sur l'Inflammation, Inserm UMR 1149, Université de Paris and AP-HP, Paris, France
| | - Iris Friedli
- Antaros Medical, BioVenture Hub, Mölndal, Sweden
| | - Stefanie Hectors
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gwenaël Pagé
- Laboratory of Imaging Biomarkers, Centre de Recherche sur l'Inflammation, Inserm UMR 1149, Université de Paris and AP-HP, Paris, France
| | - Bernard E Van Beers
- Laboratory of Imaging Biomarkers, Centre de Recherche sur l'Inflammation, Inserm UMR 1149, Université de Paris and AP-HP, Paris, France
| | - John C Waterton
- Centre for Imaging Sciences, Division of Informatics Imaging & Data Sciences, School of Health Sciences, Faculty of Biology Medicine & Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK.
| |
Collapse
|
10
|
Hectors SJ, Garteiser P, Doblas S, Pagé G, Van Beers BE, Waterton JC, Bane O. MRI Mapping of Renal T 1: Basic Concept. Methods Mol Biol 2021; 2216:157-169. [PMID: 33475999 DOI: 10.1007/978-1-0716-0978-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
In renal MRI, measurement of the T1 relaxation time of water molecules may provide a valuable biomarker for a variety of pathological conditions. Due to its sensitivity to the tissue microenvironment, T1 has gained substantial interest for noninvasive imaging of renal pathology, including inflammation and fibrosis. In this chapter, we will discuss the basic concept of T1 mapping and different T1 measurement techniques and we will provide an overview of emerging preclinical applications of T1 for imaging of kidney disease.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This introduction chapter is complemented by two separate chapters describing the experimental procedure and data analysis.
Collapse
Affiliation(s)
- Stefanie J Hectors
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Philippe Garteiser
- Laboratory of Imaging Biomarkers, Centre de Recherche sur l'Inflammation, Inserm UMR 1149, Université de Paris, Paris, France
| | - Sabrina Doblas
- Laboratory of Imaging Biomarkers, Centre de Recherche sur l'Inflammation, Inserm UMR 1149, Université de Paris, Paris, France
| | - Gwenaël Pagé
- Laboratory of Imaging Biomarkers, Centre de Recherche sur l'Inflammation, Inserm UMR 1149, Université de Paris, Paris, France
| | - Bernard E Van Beers
- Laboratory of Imaging Biomarkers, Centre de Recherche sur l'Inflammation, Inserm UMR 1149, Université de Paris and AP-HP, Paris, France
| | - John C Waterton
- Division of Informatics Imaging & Data Sciences, Faculty of Biology Medicine & Health, Centre for Imaging Sciences, School of Health Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Octavia Bane
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
11
|
Lohmann S, Eijken M, Møldrup U, Møller BK, Hunter J, Moers C, Leuvenink H, Ploeg RJ, Clahsen-van Groningen MC, Hoogduijn M, Baan CC, Keller AK, Jespersen B. Ex Vivo Administration of Mesenchymal Stromal Cells in Kidney Grafts Against Ischemia-reperfusion Injury-Effective Delivery Without Kidney Function Improvement Posttransplant. Transplantation 2021; 105:517-528. [PMID: 32956281 DOI: 10.1097/tp.0000000000003429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Mesenchymal stromal cell (MSC) therapy may improve renal function after ischemia-reperfusion injury in transplantation. Ex vivo renal intraarterial administration is a targeted delivery method, avoiding the lung vasculature, a known barrier for cellular therapies. In a randomized and blinded study, we tested the feasibility and effectiveness of MSC therapy in a donation after circulatory death autotransplantation model to improve posttransplant kidney function, using an ex vivo MSC delivery method similar to the clinical standard procedure of pretransplant cold graft flush. METHODS Kidneys exposed to 75 minutes of warm ischemia and 16 hours of static cold storage were intraarterially infused ex vivo with 10 million male porcine MSCs (Tx-MSC, n = 8) or vehicle (Tx-control, n = 8). Afterwards, the kidneys were autotransplanted after contralateral nephrectomy. Biopsies an hour after reperfusion confirmed the presence of MSCs in the renal cortex. Animals were observed for 14 days. RESULTS Postoperatively, peak plasma creatinine was 1230 and 1274 µmol/L (Tx-controls versus Tx-MSC, P = 0.69). During follow-up, no significant differences over time were detected between groups regarding plasma creatinine, plasma neutrophil gelatinase-associated lipocalin, or urine neutrophil gelatinase-associated lipocalin/creatinine ratio. At day 14, measured glomerular filtration rates were 40 and 44 mL/min, P = 0.66. Renal collagen content and fibrosis-related mRNA expression were increased in both groups but without significant differences between the groups. CONCLUSIONS We demonstrated intraarterial MSC infusion to transplant kidneys as a safe and effective method to deliver MSCs to the graft. However, we could not detect any positive effects of this cell treatment within 14 days of observation.
Collapse
Affiliation(s)
- Stine Lohmann
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Marco Eijken
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Ulla Møldrup
- Department of Urology, Aarhus University Hospital, Aarhus, Denmark
| | - Bjarne K Møller
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - James Hunter
- Nuffield Department of Surgical Sciences, Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Cyril Moers
- Department of Surgery-Organ Donation and Transplantation, University of Medical Center Groningen, Groningen, the Netherlands
| | - Henri Leuvenink
- Department of Surgery-Organ Donation and Transplantation, University of Medical Center Groningen, Groningen, the Netherlands
| | - Rutger J Ploeg
- Nuffield Department of Surgical Sciences, Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | | | - Martin Hoogduijn
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Carla C Baan
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Anna Krarup Keller
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Urology, Aarhus University Hospital, Aarhus, Denmark
| | - Bente Jespersen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
12
|
Analysis Protocols for MRI Mapping of Renal T 1. Methods Mol Biol 2021. [PMID: 33476025 DOI: 10.1007/978-1-0716-0978-1_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The computation of T1 maps from MR datasets represents an important step toward the precise characterization of kidney disease models in small animals. Here the main strategies to analyze renal T1 mapping datasets derived from small rodents are presented. Suggestions are provided with respect to essential software requirements, and advice is provided as to how dataset completeness and quality may be evaluated. The various fitting models applicable to T1 mapping are presented and discussed. Finally, some methods are proposed for validating the obtained results.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This analysis protocol chapter is complemented by two separate chapters describing the basic concept and experimental procedure.
Collapse
|
13
|
Hosszu A, Kaucsar T, Seeliger E, Fekete A. Animal Models of Renal Pathophysiology and Disease. Methods Mol Biol 2021; 2216:27-44. [PMID: 33475992 DOI: 10.1007/978-1-0716-0978-1_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Renal diseases remain devastating illnesses with unacceptably high rates of mortality and morbidity worldwide. Animal models are essential tools to better understand the pathomechanisms of kidney-related illnesses and to develop new, successful therapeutic strategies. Magnetic resonance imaging (MRI) has been actively explored in the last decades for assessing renal function, perfusion, tissue oxygenation as well as the degree of fibrosis and inflammation. This chapter aims to provide a comprehensive overview of animal models of acute and chronic kidney diseases, highlighting MRI-specific considerations, advantages, and pitfalls, and thus assisting the researcher in experiment planning.This publication is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers.
Collapse
Affiliation(s)
- Adam Hosszu
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Tamas Kaucsar
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Erdmann Seeliger
- Working Group Integrative Kidney Physiology, Institute of Physiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Andrea Fekete
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
14
|
Abstract
Although kidney oxygen tensions are heterogenous, and mostly below renal vein level, the nephron is highly dependent on aerobic metabolism for active tubular transport. This renders the kidney particularly susceptible to hypoxia, which is considered a main characteristic and driver of acute and chronic kidney injury, albeit the evidence supporting this assumption is not entirely conclusive. Kidney transplants are exposed to several conditions that may interfere with the balance between oxygen supply and consumption, and enhance hypoxia and hypoxic injury. These include conditions leading to and resulting from brain death of kidney donors, ischemia and reperfusion during organ donation, storage and transplantation, postoperative vascular complications, vasoconstriction induced by immunosuppression, and impaired perfusion resulting from interstitial edema, inflammation, and fibrosis. Acute graft injury, the immediate consequence of hypoxia and reperfusion, results in delayed graft function and increased risk of chronic graft failure. Although current strategies to alleviate hypoxic/ischemic graft injury focus on limiting injury (eg, by reducing cold and warm ischemia times), experimental evidence suggests that preconditioning through local or remote ischemia, or activation of the hypoxia-inducible factor pathway, can decrease hypoxic injury. In combination with ex vivo machine perfusion such approaches hold significant promise for improving transplantation outcomes.
Collapse
Affiliation(s)
- Christian Rosenberger
- Department of Nephrology and Medical Intensive Care, Charité Universitaetsmedizin Berlin, Berlin, Germany.
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité Universitaetsmedizin Berlin, Berlin, Germany
| |
Collapse
|
15
|
Shiva N, Sharma N, Kulkarni YA, Mulay SR, Gaikwad AB. Renal ischemia/reperfusion injury: An insight on in vitro and in vivo models. Life Sci 2020; 256:117860. [PMID: 32534037 DOI: 10.1016/j.lfs.2020.117860] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 02/08/2023]
Abstract
Optimal tissue oxygenation is essential for its normal function. Suboptimal oxygenation or ischemia contributes to increased mortalities during various pathological conditions such as stroke, acute kidney injury (AKI), cardiac failure. Despite the rapid progression of renal tissue injury, the mechanism underlying renal ischemia/reperfusion injury (IRI) remains highly unclear. Experimental in vitro and in vivo models epitomizing the fundamental process is critical to the research of the pathogenesis of IRI and the development of plausible therapeutics. In this review, we describe the in vitro and in vivo models of IRI, ranges from proximal tubular cell lines to surgery-based animal models like clamping of both renal pedicles (bilateral IRI), clamping of one renal pedicle (unilateral IRI), clamping of one/or both renal arteries/or vein, or unilateral IRI with contralateral nephrectomy (uIRIx). Also, advanced technologies like three-dimensional kidney organoids, kidney-on-a-chip are explained. This review provides thoughtful information for establishing reliable and pertinent models for studying IRI-associated acute renal pathologies.
Collapse
Affiliation(s)
- Niharika Shiva
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Nisha Sharma
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Shrikant R Mulay
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
16
|
Post-Ischemic Renal Fibrosis Progression Is Halted by Delayed Contralateral Nephrectomy: The Involvement of Macrophage Activation. Int J Mol Sci 2020; 21:ijms21113825. [PMID: 32481551 PMCID: PMC7312122 DOI: 10.3390/ijms21113825] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
(1) Background: Successful treatment of acute kidney injury (AKI)-induced chronic kidney disease (CKD) is unresolved. We aimed to characterize the time-course of changes after contralateral nephrectomy (Nx) in a model of unilateral ischemic AKI-induced CKD with good translational utility. (2) Methods: Severe (30 min) left renal ischemia-reperfusion injury (IRI) or sham operation (S) was performed in male Naval Medical Research Institute (NMRI) mice followed by Nx or S one week later. Expression of proinflammatory, oxidative stress, injury and fibrotic markers was evaluated by RT-qPCR. (3) Results: Upon Nx, the injured kidney hardly functioned for three days, but it gradually regained function until day 14 to 21, as demonstrated by the plasma urea. Functional recovery led to a drastic reduction in inflammatory infiltration by macrophages and by decreases in macrophage chemoattractant protein-1 (MCP-1) and tumor necrosis factor-alpha (TNF-α) mRNA and most injury markers. However, without Nx, a marked upregulation of proinflammatory (TNF-α, IL-6, MCP-1 and complement-3 (C3)); oxidative stress (nuclear factor erythroid 2-related factor 2, NRF2) and fibrosis (collagen-1a1 (Col1a1) and fibronectin-1 (FN1)) genes perpetuated, and the injured kidney became completely fibrotic. Contralateral Nx delayed the development of renal failure up to 20 weeks. (4) Conclusion: Our results suggest that macrophage activation is involved in postischemic renal fibrosis, and it is drastically suppressed by contralateral nephrectomy ameliorating progression.
Collapse
|
17
|
Zimmerman KA, Huang J, He L, Revell DZ, Li Z, Hsu JS, Fitzgibbon WR, Hazard ES, Hardiman G, Mrug M, Bell PD, Yoder BK, Saigusa T. Interferon Regulatory Factor-5 in Resident Macrophage Promotes Polycystic Kidney Disease. ACTA ACUST UNITED AC 2020; 1:179-190. [PMID: 33490963 DOI: 10.34067/kid.0001052019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Autosomal dominant polycystic kidney disease is caused by genetic mutations in PKD1 or PKD2. Macrophages and their associated inflammatory cytokines promote cyst progression; however, transcription factors within macrophages that control cytokine production and cystic disease are unknown. Methods In these studies, we used conditional Pkd1 mice to test the hypothesis that macrophage-localized interferon regulatory factor-5 (IRF5), a transcription factor associated with production of cyst-promoting cytokines (TNFα, IL-6), is required for accelerated cyst progression in a unilateral nephrectomy (1K) model. Analyses of quantitative real-time PCR (qRT-PCR) and flow-cytometry data 3 weeks post nephrectomy, a time point before the onset of severe cystogenesis, indicate an accumulation of inflammatory infiltrating and resident macrophages in 1K Pkd1 mice compared with controls. qRT-PCR data from FACS cells at this time demonstrate that macrophages from 1K Pkd1 mice have increased expression of Irf5 compared with controls. To determine the importance of macrophage-localized Irf5 in cyst progression, we injected scrambled or IRF5 antisense oligonucleotide (ASO) in 1K Pkd1 mice and analyzed the effect on macrophage numbers, cytokine production, and renal cystogenesis 6 weeks post nephrectomy. Results Analyses of qRT-PCR and IRF5 ASO treatment significantly reduced macrophage numbers, Irf5 expression in resident-but not infiltrating-macrophages, and the severity of cystic disease. In addition, IRF5 ASO treatment in 1K Pkd1 mice reduced Il6 expression in resident macrophages, which was correlated with reduced STAT3 phosphorylation and downstream p-STAT3 target gene expression. Conclusions These data suggest that Irf5 promotes inflammatory cytokine production in resident macrophages resulting in accelerated cystogenesis.
Collapse
Affiliation(s)
- Kurt A Zimmerman
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jifeng Huang
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lan He
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Dustin Z Revell
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Zhang Li
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jung-Shan Hsu
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Wayne R Fitzgibbon
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - E Starr Hazard
- Academic Affairs Faculty and Computational Biology Resource Center, Medical University of South Carolina, Charleston, South Carolina
| | - Gary Hardiman
- School of Biological Sciences, Institute for Global Food Security, Queens University Belfast, Belfast, United Kingdom
| | - Michal Mrug
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - P Darwin Bell
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Bradley K Yoder
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Takamitsu Saigusa
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
18
|
A Pilot Study of Postoperative Animal Welfare as a Guidance Tool in the Development of a Kidney Autotransplantation Model With Extended Warm Ischemia. Transplant Direct 2019; 5:e495. [PMID: 31773049 PMCID: PMC6831118 DOI: 10.1097/txd.0000000000000941] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/18/2019] [Accepted: 08/12/2019] [Indexed: 01/10/2023] Open
Abstract
This pilot study aimed to maintain acceptable animal welfare in the development of a porcine autotransplantation model with severe and incremental renal ischemic injury, a model for usage in future intervention studies. Secondary aims were to develop and test methods to collect blood and urine without the need to restrain or use sedative and avoid transportation to optimize welfare of the pig.
Collapse
|
19
|
Hoff U, Bubalo G, Fechner M, Blum M, Zhu Y, Pohlmann A, Hentschel J, Arakelyan K, Seeliger E, Flemming B, Gürgen D, Rothe M, Niendorf T, Manthati VL, Falck JR, Haase M, Schunck W, Dragun D. A synthetic epoxyeicosatrienoic acid analogue prevents the initiation of ischemic acute kidney injury. Acta Physiol (Oxf) 2019; 227:e13297. [PMID: 31077555 DOI: 10.1111/apha.13297] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 12/19/2022]
Abstract
AIM Imbalances in cytochrome P450 (CYP)-dependent eicosanoid formation may play a central role in ischemic acute kidney injury (AKI). We reported previously that inhibition of 20-hydroxyeicosatetraenoic acid (20-HETE) action ameliorated ischemia/reperfusion (I/R)-induced AKI in rats. Now we tested the hypothesis that enhancement of epoxyeicosatrienoic acid (EET) actions may counteract the detrimental effects of 20-HETE and prevent the initiation of AKI. METHODS Male Lewis rats underwent right nephrectomy and ischemia was induced by 45 min clamping of the left renal pedicle followed by up to 48 h of reperfusion. Circulating CYP-eicosanoid profiles were compared in patients who underwent cardiac surgery with (n = 21) and without (n = 38) developing postoperative AKI. RESULTS Ischemia induced an about eightfold increase of renal 20-HETE levels, whereas free EETs were not accumulated. To compensate for this imbalance, a synthetic 14,15-EET analogue was administered by intrarenal infusion before ischemia. The EET analogue improved renal reoxygenation as monitored by in vivo parametric MRI during the initial 2 h reperfusion phase. The EET analogue improved PI3K- as well as mTORC2-dependent rephosphorylation of Akt, induced inactivation of GSK-3β, reduced the development of tubular apoptosis and attenuated inflammatory cell infiltration. The EET analogue also significantly alleviated the I/R-induced drop in creatinine clearance. Patients developing postoperative AKI featured increased preoperative 20-HETE and 8,9-EET levels. CONCLUSIONS Pharmacological interventions targeting the CYP-eicosanoid pathway could offer promising new options for AKI prevention. Individual differences in CYP-eicosanoid formation may contribute to the risk of developing AKI in clinical settings.
Collapse
Affiliation(s)
- Uwe Hoff
- Nephrology and Intensive Care Medicine, Center for Cardiovascular Research Charité‐Universitätsmedizin Berlin Berlin Germany
| | - Gordana Bubalo
- Nephrology and Intensive Care Medicine, Center for Cardiovascular Research Charité‐Universitätsmedizin Berlin Berlin Germany
| | - Mandy Fechner
- Nephrology and Intensive Care Medicine, Center for Cardiovascular Research Charité‐Universitätsmedizin Berlin Berlin Germany
| | | | - Ye Zhu
- Nephrology and Intensive Care Medicine, Center for Cardiovascular Research Charité‐Universitätsmedizin Berlin Berlin Germany
- Department of Nephrology The Fifth Affiliated Hospital of Sun Yat‐sun University Zhuhai China
| | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F.) Max Delbrueck Center for Molecular Medicine Berlin Germany
| | - Jan Hentschel
- Berlin Ultrahigh Field Facility (B.U.F.F.) Max Delbrueck Center for Molecular Medicine Berlin Germany
| | - Karen Arakelyan
- Berlin Ultrahigh Field Facility (B.U.F.F.) Max Delbrueck Center for Molecular Medicine Berlin Germany
- Center for Cardiovascular Research, Institute of Physiology Charité‐Universitätsmedizin Berlin Berlin Germany
| | - Erdmann Seeliger
- Center for Cardiovascular Research, Institute of Physiology Charité‐Universitätsmedizin Berlin Berlin Germany
| | - Bert Flemming
- Center for Cardiovascular Research, Institute of Physiology Charité‐Universitätsmedizin Berlin Berlin Germany
| | - Dennis Gürgen
- Nephrology and Intensive Care Medicine, Center for Cardiovascular Research Charité‐Universitätsmedizin Berlin Berlin Germany
| | | | - Thoralf Niendorf
- Max Delbrueck Center for Molecular Medicine Berlin Germany
- Berlin Ultrahigh Field Facility (B.U.F.F.) Max Delbrueck Center for Molecular Medicine Berlin Germany
| | | | - John R. Falck
- Biochemistry Department UT Southwestern Dallas Texas
| | - Michael Haase
- Medical Faculty Otto‐von‐Guericke University Magdeburg Germany
- Diaverum Deutschland Potsdam Germany
| | | | - Duska Dragun
- Nephrology and Intensive Care Medicine, Center for Cardiovascular Research Charité‐Universitätsmedizin Berlin Berlin Germany
| |
Collapse
|
20
|
Zhang JL, Lee VS. Renal perfusion imaging by MRI. J Magn Reson Imaging 2019; 52:369-379. [PMID: 31452303 DOI: 10.1002/jmri.26911] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022] Open
Abstract
Renal perfusion can be quantitatively assessed by multiple magnetic resonance imaging (MRI) methods, including dynamic contrast enhanced (DCE), arterial spin labeling (ASL), and diffusion-weighted imaging with intravoxel incoherent motion (IVIM) analysis. In this review we summarize the advances in the field of renal-perfusion MRI over the past 5 years. The review starts with a brief introduction of relevant MRI methods, followed by a discussion of recent technical developments. In the main section of the review, we examine the clinical and preclinical applications for three disease populations: chronic kidney disease, renal transplant, and renal tumors. The DCE method has been routinely used for assessing renal tumors but not other renal diseases. As a noncontrast alternative, ASL was extensively explored in both preclinical and clinical applications and showed much promise. Protocol standardization for the methods is desperately needed, and then large-scale clinical trials for the methods can be initiated prior to their broad clinical use. Level of Evidence: 5 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019. J. Magn. Reson. Imaging 2020;52:369-379.
Collapse
Affiliation(s)
- Jeff L Zhang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Vivian S Lee
- Verily Life Sciences, Cambridge, Massachusetts, USA
| |
Collapse
|
21
|
Rojas-Canales DM, Li JY, Makuei L, Gleadle JM. Compensatory renal hypertrophy following nephrectomy: When and how? Nephrology (Carlton) 2019; 24:1225-1232. [PMID: 30809888 DOI: 10.1111/nep.13578] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2019] [Indexed: 12/16/2022]
Abstract
Following surgical removal of one kidney, the other enlarges and increases its function. The mechanism for the sensing of this change and the growth is incompletely understood but begins within days and compensatory renal hypertrophy (CRH) is the dominant contributor to the growth. In many individuals undergoing nephrectomy for cancer or kidney donation this produces a substantial and helpful increase in renal function. Two main mechanisms have been proposed, one in which increased activity by the remaining kidney leads to hypertrophy, the second in which there is release of a kidney specific factor in response to a unilateral nephrectomy that initiates CRH. Whilst multiple growth factors and pathways such as the mTORC pathway have been implicated in experimental studies, their roles and the precise mechanism of CRH are not defined. Unrestrained hypoxia inducible factor activation in renal cancer promotes growth and may play an important role in driving CRH.
Collapse
Affiliation(s)
- Darling M Rojas-Canales
- College of Medicine and Public Health and Medicine, Flinders University, Adelaide, South Australia, Australia.,Department of Renal Medicine, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Jordan Y Li
- College of Medicine and Public Health and Medicine, Flinders University, Adelaide, South Australia, Australia.,Department of Renal Medicine, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Leek Makuei
- College of Medicine and Public Health and Medicine, Flinders University, Adelaide, South Australia, Australia
| | - Jonathan M Gleadle
- College of Medicine and Public Health and Medicine, Flinders University, Adelaide, South Australia, Australia.,Department of Renal Medicine, Flinders Medical Centre, Adelaide, South Australia, Australia
| |
Collapse
|