1
|
Tran H, Le L, Singh BN, Kramer J, Steward R. Tet controls axon guidance in early brain development through glutamatergic signaling. iScience 2024; 27:109634. [PMID: 38655199 PMCID: PMC11035372 DOI: 10.1016/j.isci.2024.109634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/18/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Mutations in ten-eleven translocation (TET) proteins are associated with human neurodevelopmental disorders. We find a function of Tet in regulating Drosophila early brain development. The Tet DNA-binding domain (TetAXXC) is required for axon guidance in the mushroom body (MB). Glutamine synthetase 2 (Gs2), a key enzyme in glutamatergic signaling, is significantly down-regulated in the TetAXXC brains. Loss of Gs2 recapitulates the TetAXXC phenotype. Surprisingly, Tet and Gs2 act in the insulin-producing cells (IPCs) to control MB axon guidance, and overexpression of Gs2 in IPCs rescues the defects of TetAXXC. Feeding TetAXXC with metabotropic glutamate receptor antagonist MPEP rescues the phenotype while glutamate enhances it. Mutants in Tet and Drosophila Fmr1, the homolog of human FMR1, have similar defects, and overexpression of Gs2 in IPCs also rescues the Fmr1 phenotype. We provide the first evidence that Tet controls the guidance of developing brain axons by modulating glutamatergic signaling.
Collapse
Affiliation(s)
- Hiep Tran
- Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Le Le
- Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Badri Nath Singh
- Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Joseph Kramer
- Department of Pathology and Laboratory Medicine, Rutgers Biomedical and Health Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Ruth Steward
- Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
- Department of Molecular Biology and Biochemistry, Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
2
|
Gilbert G, Renaud Y, Teste C, Anglaret N, Bertrand R, Hoehn S, Jurkowski TP, Schuettengruber B, Cavalli G, Waltzer L, Vandel L. Drosophila TET acts with PRC1 to activate gene expression independently of its catalytic activity. SCIENCE ADVANCES 2024; 10:eadn5861. [PMID: 38701218 PMCID: PMC11068012 DOI: 10.1126/sciadv.adn5861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/03/2024] [Indexed: 05/05/2024]
Abstract
Enzymes of the ten-eleven translocation (TET) family play a key role in the regulation of gene expression by oxidizing 5-methylcytosine (5mC), a prominent epigenetic mark in many species. Yet, TET proteins also have less characterized noncanonical modes of action, notably in Drosophila, whose genome is devoid of 5mC. Here, we show that Drosophila TET activates the expression of genes required for larval central nervous system (CNS) development mainly in a catalytic-independent manner. Genome-wide profiling shows that TET is recruited to enhancer and promoter regions bound by Polycomb group complex (PcG) proteins. We found that TET interacts and colocalizes on chromatin preferentially with Polycomb repressor complex 1 (PRC1) rather than PRC2. Furthermore, PRC1 but not PRC2 is required for the activation of TET target genes. Last, our results suggest that TET and PRC1 binding to activated genes is interdependent. These data highlight the importance of TET noncatalytic function and the role of PRC1 for gene activation in the Drosophila larval CNS.
Collapse
Affiliation(s)
- Guerric Gilbert
- Université Clermont Auvergne, CNRS, INSERM, iGReD, F-63000 Clermont-Ferrand, France
| | - Yoan Renaud
- Université Clermont Auvergne, CNRS, INSERM, iGReD, F-63000 Clermont-Ferrand, France
| | - Camille Teste
- Université Clermont Auvergne, CNRS, INSERM, iGReD, F-63000 Clermont-Ferrand, France
| | - Nadège Anglaret
- Université Clermont Auvergne, CNRS, INSERM, iGReD, F-63000 Clermont-Ferrand, France
| | - Romane Bertrand
- Université Clermont Auvergne, CNRS, INSERM, iGReD, F-63000 Clermont-Ferrand, France
| | - Sven Hoehn
- Cardiff University, School of Biosciences, Museum Avenue, CF10 3AX Cardiff, Wales, UK
| | - Tomasz P. Jurkowski
- Cardiff University, School of Biosciences, Museum Avenue, CF10 3AX Cardiff, Wales, UK
| | - Bernd Schuettengruber
- Institute of Human Genetics, UMR9002, CNRS and University of Montpellier, Montpellier, France
| | - Giacomo Cavalli
- Institute of Human Genetics, UMR9002, CNRS and University of Montpellier, Montpellier, France
| | - Lucas Waltzer
- Université Clermont Auvergne, CNRS, INSERM, iGReD, F-63000 Clermont-Ferrand, France
| | - Laurence Vandel
- Université Clermont Auvergne, CNRS, INSERM, iGReD, F-63000 Clermont-Ferrand, France
| |
Collapse
|
3
|
Tu R, Ping Z, Liu J, Tsoi ML, Song X, Liu W, Xie T. Niche Tet maintains germline stem cells independently of dioxygenase activity. EMBO J 2024; 43:1570-1590. [PMID: 38499787 PMCID: PMC11021519 DOI: 10.1038/s44318-024-00074-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/20/2024] Open
Abstract
Ten-eleven translocation (TET) proteins are dioxygenases that convert 5-methylcytosine (5mC) into 5-hydroxylmethylcytosine (5hmC) in DNA and RNA. However, their involvement in adult stem cell regulation remains unclear. Here, we identify a novel enzymatic activity-independent function of Tet in the Drosophila germline stem cell (GSC) niche. Tet activates the expression of Dpp, the fly homologue of BMP, in the ovary stem cell niche, thereby controlling GSC self-renewal. Depletion of Tet disrupts Dpp production, leading to premature GSC loss. Strikingly, both wild-type and enzyme-dead mutant Tet proteins rescue defective BMP signaling and GSC loss when expressed in the niche. Mechanistically, Tet interacts directly with Bap55 and Stat92E, facilitating recruitment of the Polybromo Brahma associated protein (PBAP) complex to the dpp enhancer and activating Dpp expression. Furthermore, human TET3 can effectively substitute for Drosophila Tet in the niche to support BMP signaling and GSC self-renewal. Our findings highlight a conserved novel catalytic activity-independent role of Tet as a scaffold protein in supporting niche signaling for adult stem cell self-renewal.
Collapse
Affiliation(s)
- Renjun Tu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region, China
| | - Zhaohua Ping
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO, USA
| | - Jian Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Centre, Shenzhen, Guangdong, China
| | - Man Lung Tsoi
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, New Territories, Hong Kong Special Administrative Region, China
| | - Xiaoqing Song
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO, USA
| | - Wei Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Centre, Shenzhen, Guangdong, China
| | - Ting Xie
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region, China.
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO, USA.
| |
Collapse
|
4
|
Singh BN, Tran H, Kramer J, Kirichenko E, Changela N, Wang F, Feng Y, Kumar D, Tu M, Lan J, Bizet M, Fuks F, Steward R. Tet-dependent 5-hydroxymethyl-Cytosine modification of mRNA regulates axon guidance genes in Drosophila. PLoS One 2024; 19:e0293894. [PMID: 38381741 PMCID: PMC10881007 DOI: 10.1371/journal.pone.0293894] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/21/2023] [Indexed: 02/23/2024] Open
Abstract
Modifications of mRNA, especially methylation of adenosine, have recently drawn much attention. The much rarer modification, 5-hydroxymethylation of cytosine (5hmC), is not well understood and is the subject of this study. Vertebrate Tet proteins are 5-methylcytosine (5mC) hydroxylases and catalyze the transition of 5mC to 5hmC in DNA. These enzymes have recently been shown to have the same function in messenger RNAs in both vertebrates and in Drosophila. The Tet gene is essential in Drosophila as Tet knock-out animals do not reach adulthood. We describe the identification of Tet-target genes in the embryo and larval brain by mapping one, Tet DNA-binding sites throughout the genome and two, the Tet-dependent 5hmrC modifications transcriptome-wide. 5hmrC modifications are distributed along the entire transcript, while Tet DNA-binding sites are preferentially located at the promoter where they overlap with histone H3K4me3 peaks. The identified mRNAs are preferentially involved in neuron and axon development and Tet knock-out led to a reduction of 5hmrC marks on specific mRNAs. Among the Tet-target genes were the robo2 receptor and its slit ligand that function in axon guidance in Drosophila and in vertebrates. Tet knock-out embryos show overlapping phenotypes with robo2 and both Robo2 and Slit protein levels were markedly reduced in Tet KO larval brains. Our results establish a role for Tet-dependent 5hmrC in facilitating the translation of modified mRNAs primarily in cells of the nervous system.
Collapse
Affiliation(s)
- Badri Nath Singh
- Waksman Institute, Rutgers University, Piscataway, New Jersey, United States of America
| | - Hiep Tran
- Waksman Institute, Rutgers University, Piscataway, New Jersey, United States of America
| | - Joseph Kramer
- Department of Pathology and Laboratory Medicine, Rutgers Biomedical and Health Sciences, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Elmira Kirichenko
- Waksman Institute, Rutgers University, Piscataway, New Jersey, United States of America
| | - Neha Changela
- Waksman Institute, Rutgers University, Piscataway, New Jersey, United States of America
| | - Fei Wang
- Waksman Institute, Rutgers University, Piscataway, New Jersey, United States of America
| | - Yaping Feng
- Waksman Institute, Rutgers University, Piscataway, New Jersey, United States of America
| | - Dibyendu Kumar
- Waksman Institute, Rutgers University, Piscataway, New Jersey, United States of America
| | - Min Tu
- Waksman Institute, Rutgers University, Piscataway, New Jersey, United States of America
| | - Jie Lan
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Martin Bizet
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - François Fuks
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ruth Steward
- Waksman Institute, Rutgers University, Piscataway, New Jersey, United States of America
- Department of Molecular Biology and Biochemistry, Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey, United States of America
| |
Collapse
|
5
|
Boulet M, Gilbert G, Renaud Y, Schmidt-Dengler M, Plantié E, Bertrand R, Nan X, Jurkowski T, Helm M, Vandel L, Waltzer L. Adenine methylation is very scarce in the Drosophila genome and not erased by the ten-eleven translocation dioxygenase. eLife 2023; 12:RP91655. [PMID: 38126351 PMCID: PMC10735219 DOI: 10.7554/elife.91655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
N6-methyladenine (6mA) DNA modification has recently been described in metazoans, including in Drosophila, for which the erasure of this epigenetic mark has been ascribed to the ten-eleven translocation (TET) enzyme. Here, we re-evaluated 6mA presence and TET impact on the Drosophila genome. Using axenic or conventional breeding conditions, we found traces of 6mA by LC-MS/MS and no significant increase in 6mA levels in the absence of TET, suggesting that this modification is present at very low levels in the Drosophila genome but not regulated by TET. Consistent with this latter hypothesis, further molecular and genetic analyses showed that TET does not demethylate 6mA but acts essentially in an enzymatic-independent manner. Our results call for further caution concerning the role and regulation of 6mA DNA modification in metazoans and underline the importance of TET non-enzymatic activity for fly development.
Collapse
Affiliation(s)
- Manon Boulet
- Université Clermont Auvergne, CNRS, INSERM, iGReDClermont-FerrandFrance
| | - Guerric Gilbert
- Université Clermont Auvergne, CNRS, INSERM, iGReDClermont-FerrandFrance
| | - Yoan Renaud
- Université Clermont Auvergne, CNRS, INSERM, iGReDClermont-FerrandFrance
| | - Martina Schmidt-Dengler
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-UniversitätMainzGermany
| | - Emilie Plantié
- Université Clermont Auvergne, CNRS, INSERM, iGReDClermont-FerrandFrance
| | - Romane Bertrand
- Université Clermont Auvergne, CNRS, INSERM, iGReDClermont-FerrandFrance
| | - Xinsheng Nan
- School of Biosciences, Cardiff UniversityCardiffUnited Kingdom
| | | | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-UniversitätMainzGermany
| | - Laurence Vandel
- Université Clermont Auvergne, CNRS, INSERM, iGReDClermont-FerrandFrance
| | - Lucas Waltzer
- Université Clermont Auvergne, CNRS, INSERM, iGReDClermont-FerrandFrance
| |
Collapse
|
6
|
Ismail JN, Mantash S, Hallal M, Jabado N, Khoueiry P, Shirinian M. Phenotypic and transcriptomic impact of expressing mammalian TET2 in the Drosophila melanogaster model. Epigenetics 2023; 18:2192375. [PMID: 36989121 PMCID: PMC10072067 DOI: 10.1080/15592294.2023.2192375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Ten-Eleven Translocation (TET) proteins have recently come to light as important epigenetic regulators conserved in multicellular organisms. TET knockdown studies in rodents have highlighted the critical role of these proteins for proper brain development and function. Mutations in mammalian mTET proteins and mTET2 specifically are frequent and deregulated in leukaemia and glioma respectively. Accordingly, we examined the role of mTET2 in tumorigenesis in larval haemocytes and adult heads in Drosophila melanogaster. Our findings showed that expression of mutant and wild type mTET2 resulted in general phenotypic defects in adult flies and accumulation of abdominal melanotic masses. Notably, flies with mTET2-R43G mutation at the N-terminus of mTET2 exhibited locomotor and circadian behavioural deficits, as well as reduced lifespan. Flies with mTET2-R1261C mutation in the catalytic domain, a common mutation in acute myeloid leukaemia (AML), displayed alterations affecting haemocyte haemostasis. Using transcriptomic approach, we identified upregulated immune genes in fly heads that were not exclusive to TET2 mutants but also found in wild type mTET2 flies. Furthermore, inhibiting expression of genes that were found to be deregulated in mTET2 mutants, such as those involved in immune pathways, autophagy, and transcriptional regulation, led to a rescue in fly survival, behaviour, and hemocyte number. This study identifies the transcriptomic profile of wild type mTET2 versus mTET2 mutants (catalytic versus non-catalytic) with indications of TET2 role in normal central nervous system (CNS) function and innate immunity.
Collapse
Affiliation(s)
- Joy N Ismail
- Department of Experimental pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Sarah Mantash
- Department of Experimental pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Mohammad Hallal
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Biomedical Engineering Program, American University of Beirut, Beirut, Lebanon
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Pierre Khoueiry
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Pillar Genomics Institute, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Margret Shirinian
- Department of Experimental pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
7
|
Singh BN, Tran H, Kramer J, Kirichenko E, Changela N, Wang F, Feng Y, Kumar D, Tu M, Lan J, Bizet M, Fuks F, Steward R. Tet-dependent 5-hydroxymethyl-Cytosine modification of mRNA regulates axon guidance genes in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.522592. [PMID: 36711932 PMCID: PMC9881870 DOI: 10.1101/2023.01.03.522592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Modifications of mRNA, especially methylation of adenosine, have recently drawn much attention. The much rarer modification, 5-hydroxymethylation of cytosine (5hmC), is not well understood and is the subject of this study. Vertebrate Tet proteins are 5-methylcytosine (5mC) hydroxylases and catalyze the transition of 5mC to 5hmC in DNA. These enzymes have recently been shown to have the same function in messenger RNAs in both vertebrates and in Drosophila. The Tet gene is essential in Drosophila as Tet knock-out animals do not reach adulthood. We describe the identification of Tet-target genes in the embryo and larval brain by mapping one, Tet DNA-binding sites throughout the genome and two, the Tet-dependent 5hmrC modifications transcriptome-wide. 5hmrC modifications are distributed along the entire transcript, while Tet DNA-binding sites are preferentially located at the promoter where they overlap with histone H3K4me3 peaks. The identified mRNAs are preferentially involved in neuron and axon development and Tet knock-out led to a reduction of 5hmrC marks on specific mRNAs. Among the Tet-target genes were the robo2 receptor and its slit ligand that function in axon guidance in Drosophila and in vertebrates. Tet knock-out embryos show overlapping phenotypes with robo2 and both Robo2 and Slit protein levels were markedly reduced in Tet KO larval brains. Our results establish a role for Tet-dependent 5hmrC in facilitating the translation of modified mRNAs primarily in cells of the nervous system.
Collapse
|
8
|
Tran H, Le L, Singh BN, Kramer J, Steward R. Tet Controls Axon Guidance in Early Brain Development through Glutamatergic Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539069. [PMID: 37398066 PMCID: PMC10312521 DOI: 10.1101/2023.05.02.539069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Mutations in human TET proteins have been found in individuals with neurodevelopmental disorders. Here we report a new function of Tet in regulating Drosophila early brain development. We found that mutation in the Tet DNA-binding domain ( Tet AXXC ) resulted in axon guidance defects in the mushroom body (MB). Tet is required in early brain development during the outgrowth of MB β axons. Transcriptomic study shows that glutamine synthetase 2 (Gs2), a key enzyme in glutamatergic signaling, is significantly downregulated in the Tet AXXC mutant brains. CRISPR/Cas9 mutagenesis or RNAi knockdown of Gs2 recapitulates the Tet AXXC mutant phenotype. Surprisingly, Tet and Gs2 act in the insulin-producing cells (IPCs) to control MB axon guidance, and overexpression of Gs2 in these cells rescues the axon guidance defects of Tet AXXC . Treating Tet AXXC with the metabotropic glutamate receptor antagonist MPEP can rescue while treating with glutamate enhances the phenotype confirming Tet function in regulating glutamatergic signaling. Tet AXXC and the Drosophila homolog of Fragile X Messenger Ribonucleoprotein protein mutant ( Fmr1 3 ) have similar axon guidance defects and reduction in Gs2 mRNA levels. Interestingly, overexpression of Gs2 in the IPCs also rescues the Fmr1 3 phenotype, suggesting functional overlapping of the two genes. Our studies provide the first evidence that Tet can control the guidance of axons in the developing brain by modulating glutamatergic signaling and the function is mediated by its DNA-binding domain.
Collapse
|
9
|
Singh BN, Tran H, Kramer J, Kirishenko E, Changela N, Wang F, Feng Y, Kumar D, Tu M, Lan J, Bizet M, Fuks F, Steward R. Tet-dependent 5-hydroxymethyl-Cytosine modification of mRNA regulates the axon guidance genes robo2 and slit in Drosophila. RESEARCH SQUARE 2023:rs.3.rs-2511705. [PMID: 36824980 PMCID: PMC9949232 DOI: 10.21203/rs.3.rs-2511705/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Modifications of mRNA, especially methylation of adenosine, have recently drawn much attention. The much rarer modification, 5-hydroxymethylation of cytosine (5hmC), is not well understood and is the subject of this study. Vertebrate Tet proteins are 5-methylcytosine (5mC) hydroxylases enzymes catalyzing the transition of 5mC to 5hmC in DNA and have recently been shown to have the same function in messenger RNAs in both vertebrates and in Drosophila. The Tet gene is essential in Drosophila because Tet knock-out animals do not reach adulthood. We describe the identification of Tet-target genes in the embryo and larval brain by determining Tet DNA-binding sites throughout the genome and by mapping the Tet-dependent 5hmrC modifications transcriptome-wide. 5hmrC-modified sites can be found along the entire transcript and are preferentially located at the promoter where they overlap with histone H3K4me3 peaks. The identified mRNAs are frequently involved in neuron and axon development and Tet knock-out led to a reduction of 5hmrC marks on specific mRNAs. Among the Tet-target genes were the robo2 receptor and its slit ligand that function in axon guidance in Drosophila and in vertebrates. Tet knock-out embryos show overlapping phenotypes with robo2 and are sensitized to reduced levels of slit. Both Robo2 and Slit protein levels were markedly reduced in Tet KO larval brains. Our results establish a role for Tet-dependent 5hmrC in facilitating the translation of modified mRNAs, primarily in developing nerve cells.
Collapse
Affiliation(s)
| | - Hiep Tran
- Waksman Institute, Rutgers University, Piscataway, NJ 08854
| | - Joseph Kramer
- Department of Pathology and Laboratory Medicine, Rutgers Biomedical and Health Sciences, Rutgers University, New Brunswick
| | | | - Neha Changela
- Waksman Institute, Rutgers University, Piscataway, NJ 08854
| | - Fei Wang
- Waksman Institute, Rutgers University, Piscataway, NJ 08854
| | - Yaping Feng
- Waksman Institute, Rutgers University, Piscataway, NJ 08854
| | - Dibyendu Kumar
- Waksman Institute, Rutgers University, Piscataway, NJ 08854
| | - Min Tu
- Waksman Institute, Rutgers University, Piscataway, NJ 08854
| | - Jie Lan
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Present address, Institute for Genetics, Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Martin Bizet
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - François Fuks
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ruth Steward
- Waksman Institute, Rutgers University, Piscataway, NJ 08854
- Department of Molecular Biology and Biochemistry, Cancer Institute of New Jersey, Rutgers University
| |
Collapse
|
10
|
Dynamic changes in genomic 5-hydroxymethyluracil and N6-methyladenine levels in the Drosophila melanogaster life cycle and in response to different temperature conditions. Sci Rep 2022; 12:17552. [PMID: 36266436 PMCID: PMC9584883 DOI: 10.1038/s41598-022-22490-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/14/2022] [Indexed: 01/13/2023] Open
Abstract
In this study, the level of DNA modifications was investigated in three developmental stages of Drosophila melanogaster (larvae, pupae, imago) and in an in vitro model (Schneider 2 cells). Analysis was carried out using two-dimensional ultra-performance liquid chromatography with tandem mass spectrometry. Our method made it possible, for the first time, to analyze a broad spectrum of DNA modifications in the three stages of Drosophila. Each stage was characterized by a specific modification pattern, and the levels of these compounds fluctuated throughout the D. melanogaster life cycle. The level of DNA modification was also compared between insects bred at 25 °C (optimal temperature) and at 18 °C, and the groups differed significantly. The profound changes in N6-methyladenine and 5-hydroxymethyluracil levels during the Drosophila life cycle and as a result of breeding temperature changes indicate that these DNA modifications can play important regulatory roles in response to environmental changes and/or biological conditions. Moreover, the supplementation of Schneider 2 cells with 1 mM L-ascorbic acid caused a time-dependent increase in the level of 5-(hydroxymethyl)-2'-deoxyuridine. These data suggest that a certain pool of this compound may arise from the enzymatic activity of the dTET protein.
Collapse
|
11
|
Sági-Kazár M, Solymosi K, Solti Á. Iron in leaves: chemical forms, signalling, and in-cell distribution. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1717-1734. [PMID: 35104334 PMCID: PMC9486929 DOI: 10.1093/jxb/erac030] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/26/2022] [Indexed: 05/26/2023]
Abstract
Iron (Fe) is an essential transition metal. Based on its redox-active nature under biological conditions, various Fe compounds serve as cofactors in redox enzymes. In plants, the photosynthetic machinery has the highest demand for Fe. In consequence, the delivery and incorporation of Fe into cofactors of the photosynthetic apparatus is the focus of Fe metabolism in leaves. Disturbance of foliar Fe homeostasis leads to impaired biosynthesis of chlorophylls and composition of the photosynthetic machinery. Nevertheless, mitochondrial function also has a significant demand for Fe. The proper incorporation of Fe into proteins and cofactors as well as a balanced intracellular Fe status in leaf cells require the ability to sense Fe, but may also rely on indirect signals that report on the physiological processes connected to Fe homeostasis. Although multiple pieces of information have been gained on Fe signalling in roots, the regulation of Fe status in leaves has not yet been clarified in detail. In this review, we give an overview on current knowledge of foliar Fe homeostasis, from the chemical forms to the allocation and sensing of Fe in leaves.
Collapse
Affiliation(s)
- Máté Sági-Kazár
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary
| | - Katalin Solymosi
- Department of Plant Anatomy, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary
| | - Ádám Solti
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary
| |
Collapse
|
12
|
Drosophila Tet Is Required for Maintaining Glial Homeostasis in Developing and Adult Fly Brains. eNeuro 2022; 9:ENEURO.0418-21.2022. [PMID: 35396259 PMCID: PMC9045479 DOI: 10.1523/eneuro.0418-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 11/21/2022] Open
Abstract
Ten-eleven translocation (TET) proteins are crucial epigenetic regulators highly conserved in multicellular organisms. TETs’ enzymatic function in demethylating 5-methyl cytosine in DNA is required for proper development and TETs are frequently mutated in cancer. Recently, Drosophila melanogaster Tet (dTet) was shown to be highly expressed in developing fly brains and discovered to play an important role in brain and muscle development as well as fly behavior. Furthermore, dTet was shown to have different substrate specificity compared with mammals. However, the exact role dTet plays in glial cells and how ectopic TET expression in glial cells contributes to tumorigenesis and glioma is still not clear. Here, we report a novel role for dTet specifically in glial cell organization and number. We show that loss of dTet affects the organization of a specific glia population in the optic lobe, the “optic chiasm” glia. Additionally, we find irregularities in axon patterns in the ventral nerve cord (VNC) both, in the midline and longitudinal axons. These morphologic glia and axonal defects were accompanied by locomotor defects in developing larvae escalating to immobility in adult flies. Furthermore, glia homeostasis was disturbed in dTet-deficient brains manifesting in gain of glial cell numbers and increased proliferation. Finally, we establish a Drosophila model to understand the impact of human TET3 in glia and find that ectopic expression of hTET3 in dTet-expressing cells causes glia expansion in larval brains and affects sleep/rest behavior and the circadian clock in adult flies.
Collapse
|
13
|
Kyger R, Luzuriaga-Neira A, Layman T, Milkewitz Sandberg TO, Singh D, Huchon D, Peri S, Atkinson SD, Bartholomew JL, Yi SV, Alvarez-Ponce D. Myxosporea (Myxozoa, Cnidaria) Lack DNA Cytosine Methylation. Mol Biol Evol 2021; 38:393-404. [PMID: 32898240 PMCID: PMC7826176 DOI: 10.1093/molbev/msaa214] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
DNA cytosine methylation is central to many biological processes, including regulation of gene expression, cellular differentiation, and development. This DNA modification is conserved across animals, having been found in representatives of sponges, ctenophores, cnidarians, and bilaterians, and with very few known instances of secondary loss in animals. Myxozoans are a group of microscopic, obligate endoparasitic cnidarians that have lost many genes over the course of their evolution from free-living ancestors. Here, we investigated the evolution of the key enzymes involved in DNA cytosine methylation in 29 cnidarians and found that these enzymes were lost in an ancestor of Myxosporea (the most speciose class of Myxozoa). Additionally, using whole-genome bisulfite sequencing, we confirmed that the genomes of two distant species of myxosporeans, Ceratonova shasta and Henneguya salminicola, completely lack DNA cytosine methylation. Our results add a notable and novel taxonomic group, the Myxosporea, to the very short list of animal taxa lacking DNA cytosine methylation, further illuminating the complex evolutionary history of this epigenetic regulatory mechanism.
Collapse
Affiliation(s)
- Ryan Kyger
- Department of Biology, University of Nevada, Reno, NV
| | | | - Thomas Layman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| | | | - Devika Singh
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| | - Dorothée Huchon
- Department of Zoology, Tel Aviv University, Tel Aviv, Israel.,The Steinhardt Museum of Natural History and National Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Sateesh Peri
- Department of Biology, University of Nevada, Reno, NV
| | | | | | - Soojin V Yi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| | | |
Collapse
|
14
|
Poovathumkadavil P, Jagla K. Genetic Control of Muscle Diversification and Homeostasis: Insights from Drosophila. Cells 2020; 9:cells9061543. [PMID: 32630420 PMCID: PMC7349286 DOI: 10.3390/cells9061543] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
In the fruit fly, Drosophila melanogaster, the larval somatic muscles or the adult thoracic flight and leg muscles are the major voluntary locomotory organs. They share several developmental and structural similarities with vertebrate skeletal muscles. To ensure appropriate activity levels for their functions such as hatching in the embryo, crawling in the larva, and jumping and flying in adult flies all muscle components need to be maintained in a functionally stable or homeostatic state despite constant strain. This requires that the muscles develop in a coordinated manner with appropriate connections to other cell types they communicate with. Various signaling pathways as well as extrinsic and intrinsic factors are known to play a role during Drosophila muscle development, diversification, and homeostasis. In this review, we discuss genetic control mechanisms of muscle contraction, development, and homeostasis with particular emphasis on the contractile unit of the muscle, the sarcomere.
Collapse
|
15
|
Ismail JN, Ghannam M, Al Outa A, Frey F, Shirinian M. Ten-eleven translocation proteins and their role beyond DNA demethylation - what we can learn from the fly. Epigenetics 2020; 15:1139-1150. [PMID: 32419604 DOI: 10.1080/15592294.2020.1767323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Ten-eleven Translocation (TET) proteins have emerged as a family of epigenetic regulators that are important during development and have been implicated in various types of cancers. TET is a highly conserved protein that has orthologues in almost all multicellular organisms. Here, we review recent literature on the novel substrate specificity of this family of DNA 5-methylcytosine demethylases on DNA 6-methyladenine and RNA 5-methylcytosine that were first identified in the invertebrate model Drosophila. We focus on the biological role of these novel epigenetic marks in the fruit fly and mammals and highlight TET proteins' critical function during development specifically in brain development.
Collapse
Affiliation(s)
- Joy N Ismail
- Department of Experimental pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut , Beirut, Lebanon.,Center for Infectious Diseases Research, American University of Beirut Medical Center , Beirut, Lebanon
| | - Mirna Ghannam
- Department of Experimental pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut , Beirut, Lebanon.,Center for Infectious Diseases Research, American University of Beirut Medical Center , Beirut, Lebanon
| | - Amani Al Outa
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut , Beirut, Lebanon
| | - Felice Frey
- Department of Experimental pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut , Beirut, Lebanon.,Center for Infectious Diseases Research, American University of Beirut Medical Center , Beirut, Lebanon
| | - Margret Shirinian
- Department of Experimental pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut , Beirut, Lebanon.,Center for Infectious Diseases Research, American University of Beirut Medical Center , Beirut, Lebanon
| |
Collapse
|
16
|
Gao L, Yang M, Wei Z, Gu M, Yang L, Bai C, Wu Y, Li G. MSTN Mutant Promotes Myogenic Differentiation by Increasing Demethylase TET1 Expression via the SMAD2/SMAD3 Pathway. Int J Biol Sci 2020; 16:1324-1334. [PMID: 32210722 PMCID: PMC7085230 DOI: 10.7150/ijbs.40551] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/31/2020] [Indexed: 12/20/2022] Open
Abstract
Myostatin (MSTN) is mostly expressed in skeletal muscle and plays crucial roles in the negative regulation of muscle mass development. The methylation and demethylation of myogenesis-specific genes are major regulatory factors in muscle satellite cell differentiation. The present study was designed to investigate the mechanism of myogenic differentiation regulated by MSTN mutation (MT) and the methylation/demethylation state of downstream genes. The results showed that, in the MSTN-/+ satellite cells, a higher myotube fusion index and a larger myotube length were observed compared to the wild type controls; the genes associated with myogenesis were all up-regulated compared to the WT controls. The methylation of the promoters and gene bodies of PAX3, PAX7, MyoD, and MyoG were all down-regulated, while the expression of the key demethylase TET1 was significantly promoted. ChIP-qPCR was used to demonstrate that the SMAD2/SMAD3 complex combined with the promoter of TET1 to inhibit the activity of TET1 promoter, indicating that MSTN may regulate TET1 via SMAD2/SMAD3. The overexpression of TET1 in wild type cells promoted myogenic differentiation, increased the myotube index, and reduced the methylation of the associated genes. On the contrary, the knockdown of TET1 in the MSTN mutant cells resulted in the opposite phenomena as in the overexpressed cells. In conclusion, the myostatin mutant showed an increased transcriptional activity of TET1, inducing higher levels of demethylation and improving the transcriptional activity levels of myogenic differentiation-associated genes. The binding of SMAD2/SMAD3 directly to the TET1 promoter region indicated that the MSTN mutant demethylated the myogenesis-specific genes by up-regulating TET1, which is directly controlled by SMAD2/SMAD3.
Collapse
Affiliation(s)
- Li Gao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010070, China
| | - Miaomiao Yang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010070, China
| | - Zhuying Wei
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010070, China.,School of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Mingjuan Gu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010070, China
| | - Lei Yang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010070, China
| | - Chunling Bai
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010070, China.,School of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Yunxi Wu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010070, China.,School of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010070, China.,School of Life Science, Inner Mongolia University, Hohhot, 010070, China
| |
Collapse
|
17
|
Mahmood AM, Dunwell JM. Evidence for novel epigenetic marks within plants. AIMS GENETICS 2019; 6:70-87. [PMID: 31922011 PMCID: PMC6949463 DOI: 10.3934/genet.2019.4.70] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/07/2019] [Indexed: 12/21/2022]
Abstract
Variation in patterns of gene expression can result from modifications in the genome that occur without a change in the sequence of the DNA; such modifications include methylation of cytosine to generate 5-methylcytosine (5mC) resulting in the generation of heritable epimutation and novel epialleles. This type of non-sequence variation is called epigenetics. The enzymes responsible for generation of such DNA modifications in mammals are named DNA methyltransferases (DNMT) including DNMT1, DNMT2 and DNMT3. The later stages of oxidations to these modifications are catalyzed by Ten Eleven Translocation (TET) proteins, which contain catalytic domains belonging to the 2-oxoglutarate dependent dioxygenase family. In various mammalian cells/tissues including embryonic stem cells, cancer cells and brain tissues, it has been confirmed that these proteins are able to induce the stepwise oxidization of 5-methyl cytosine to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and finally 5-carboxylcytosine (5caC). Each stage from initial methylation until the end of the DNA demethylation process is considered as a specific epigenetic mark that may regulate gene expression. This review discusses controversial evidence for the presence of such oxidative products, particularly 5hmC, in various plant species. Whereas some reports suggest no evidence for enzymatic DNA demethylation, other reports suggest that the presence of oxidative products is followed by the active demethylation and indicate the contribution of possible TET-like proteins in the regulation of gene expression in plants. The review also summarizes the results obtained by expressing the human TET conserved catalytic domain in transgenic plants.
Collapse
Affiliation(s)
- Asaad M Mahmood
- Department of Biology, College of Education, University of Garmian, Kalar, KRG/Iraq
| | - Jim M Dunwell
- School of School of Agriculture, Policy and Development, University of Reading, Reading, Berkshire, UK
| |
Collapse
|
18
|
Armstrong MJ, Jin Y, Allen EG, Jin P. Diverse and dynamic DNA modifications in brain and diseases. Hum Mol Genet 2019; 28:R241-R253. [PMID: 31348493 PMCID: PMC6872432 DOI: 10.1093/hmg/ddz179] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 12/17/2022] Open
Abstract
DNA methylation is a class of epigenetic modification essential for coordinating gene expression timing and magnitude throughout normal brain development and for proper brain function following development. Aberrant methylation changes are associated with changes in chromatin architecture, transcriptional alterations and a host of neurological disorders and diseases. This review highlights recent advances in our understanding of the methylome's functionality and covers potential new roles for DNA methylation, their readers, writers, and erasers. Additionally, we examine novel insights into the relationship between the methylome, DNA-protein interactions, and their contribution to neurodegenerative diseases. Lastly, we outline the gaps in our knowledge that will likely be filled through the widespread use of newer technologies that provide greater resolution into how individual cell types are affected by disease and the contribution of each individual modification site to disease pathogenicity.
Collapse
Affiliation(s)
- Matthew J Armstrong
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Yulin Jin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Emily G Allen
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Peng Jin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
19
|
Ismail JN, Badini S, Frey F, Abou-Kheir W, Shirinian M. Drosophila Tet Is Expressed in Midline Glia and Is Required for Proper Axonal Development. Front Cell Neurosci 2019; 13:252. [PMID: 31213988 PMCID: PMC6558204 DOI: 10.3389/fncel.2019.00252] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/20/2019] [Indexed: 01/10/2023] Open
Abstract
Ten-Eleven Translocation (TET) proteins are important epigenetic regulators that play a key role in development and are frequently deregulated in cancer. Drosophila melanogaster has a single homologous Tet gene (dTet) that is highly expressed in the central nervous system during development. Here, we examined the expression pattern of dTet in the third instar larval CNS and discovered its presence in a specific set of glia cells: midline glia (MG). Moreover, dTet knockdown resulted in significant lethality, locomotor dysfunction, and alterations in axon patterning in the larval ventral nerve cord. Molecular analyses on dTet knockdown larvae showed a downregulation in genes involved in axon guidance and reduced expression of the axon guidance cue Slit. Our findings point toward a potential role for dTet in midline glial function, specifically the regulation of axon patterning during neurodevelopment.
Collapse
Affiliation(s)
- Joy N Ismail
- Department of Experimental Pathology and Immunology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| | - Shireen Badini
- Department of Experimental Pathology and Immunology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| | - Felice Frey
- Department of Experimental Pathology and Immunology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Margret Shirinian
- Department of Experimental Pathology and Immunology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
20
|
Anreiter I, Biergans SD, Sokolowski MB. Epigenetic regulation of behavior in Drosophila melanogaster. Curr Opin Behav Sci 2019. [DOI: 10.1016/j.cobeha.2018.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Pennings S, Revuelta A, McLaughlin KA, Abd Hadi NA, Petchreing P, Ottaviano R, Meehan RR. Dynamics and Mechanisms of DNA Methylation Reprogramming. EPIGENETICS AND REGENERATION 2019:19-45. [DOI: 10.1016/b978-0-12-814879-2.00002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
22
|
Chen AS, Read RD. Drosophila melanogaster as a Model System for Human Glioblastomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1167:207-224. [PMID: 31520357 DOI: 10.1007/978-3-030-23629-8_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignant adult brain tumor. Genomic amplifications, activating mutations, and overexpression of receptor tyrosine kinases (RTKs) such as EGFR, and genes in core RTK signaling transduction pathways such as PI3K are common in GBM. However, efforts to target these pathways have been largely unsuccessful in the clinic, and the median survival of GBM patients remains poor at 14-15 months. Therefore, to improve patient outcomes, there must be a concerted effort to elucidate the underlying biology involved in GBM tumorigenesis. Drosophila melanogaster has been a highly effective model for furthering our understanding of GBM tumorigenesis due to a number of experimental advantages it has over traditional mouse models. For example, there exists extensive cellular and genetic homology between humans and Drosophila, and 75% of genes associated with human disease have functional fly orthologs. To take advantage of these traits, we developed a Drosophila GBM model with constitutively active variants of EGFR and PI3K that effectively recapitulated key aspects of GBM disease. Researchers have utilized this model in forward genetic screens and have expanded on its functionality to make a number of important discoveries regarding requirements for key components in GBM tumorigenesis, including genes and pathways involved in extracellular matrix signaling, glycolytic metabolism, invasion/migration, stem cell fate and differentiation, and asymmetric cell division. Drosophila will continue to reveal novel biological pathways and mechanisms involved in gliomagenesis, and this knowledge may contribute to the development of effective treatment strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Alexander S Chen
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Renee D Read
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA. .,Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA. .,Winship Cancer Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|