1
|
Brunty S, Wagner K, Fleshman T, Ruley M, Mitchell B, Santanam N. Dual targeting of CXCR4 and EZH2 in endometriosis. iScience 2025; 28:112143. [PMID: 40171488 PMCID: PMC11960671 DOI: 10.1016/j.isci.2025.112143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/15/2025] [Accepted: 02/26/2025] [Indexed: 04/03/2025] Open
Abstract
We recently showed that endometriotic peritoneal fluid (PF) altered the regulation of enhancer of zeste homolog 2 (EZH2) and H3K27me3. This study aimed to determine if PF by regulating EZH2/H3K27me3 modulated C-X-C chemokine receptor type 4 (CXCR4), a major chemokine involved in the proliferation and migration processes in endometriosis. Endometriotic PF induced the mRNA expression of CXCR4 and EZH2 and protein expression of H3K27me3 in human endometrial stromal cells (hESCs) and eutopic endometrium (Eu). CXCR4 inhibitor, AMD3100, decreased the PF-induced expression of these factors and reduced migration, but increased the proliferation of hESCs. In contrast, the EZH2 inhibitor, GSK126, decreased the expression of EZH2 and H3K27me3 and reduced proliferation, but increased the expression of CXCR4 and migration of hESCs. A combination of both inhibitors decreased the expression of CXCR4, EZH2, and H3K27me3, as well as reduced cell proliferation and migration. Our study suggests that targeting both CXCR4 (inflammation) and EZH2 (epigenetics) may be a better alternative for women with endometriosis.
Collapse
Affiliation(s)
- Sarah Brunty
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3 Avenue, Huntington, WV 25755, USA
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, 1311 Cumberland Avenue, Knoxville, TN 37916, USA
| | - Kassey Wagner
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3 Avenue, Huntington, WV 25755, USA
| | - Taylor Fleshman
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3 Avenue, Huntington, WV 25755, USA
| | - Morgan Ruley
- Department of Obstetrics and Gynecology, Joan C. Edwards School of Medicine, Marshall University, One John Marshall Dr, Huntington, WV 25755, USA
| | - Brenda Mitchell
- Department of Obstetrics and Gynecology, Joan C. Edwards School of Medicine, Marshall University, One John Marshall Dr, Huntington, WV 25755, USA
| | - Nalini Santanam
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3 Avenue, Huntington, WV 25755, USA
| |
Collapse
|
2
|
Zhang H, Li C, Li W, Xin W, Qin T. Research Advances in Adenomyosis-Related Signaling Pathways and Promising Targets. Biomolecules 2024; 14:1402. [PMID: 39595579 PMCID: PMC11591984 DOI: 10.3390/biom14111402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Adenomyosis is a benign gynecological condition characterized by the proliferation of the endometrial stroma and glands into the myometrium, uterine volume enlargement, and peripheral smooth muscle hypertrophy. The typical clinical symptoms include chronic pelvic pain, abnormal uterine bleeding, and subfertility, all of which significantly impact quality of life. There are no effective prevention or treatment strategies for adenomyosis, partly due to a limited understanding of the pathological mechanisms underlying the initiation and progression of the disease. Given that signaling pathways play a crucial role in the development of adenomyosis, a better understanding of these signaling pathways is essential for identifying therapeutic targets and advancing drug development. The occurrence and progression of adenomyosis are closely linked to various underlying pathophysiological mechanisms, including proliferation, migration, invasion, fibrosis, angiogenesis, inflammation, oxidative stress, immune response, and epigenetic changes. This review summarizes the signaling pathways and targets associated with the pathogenesis of adenomyosis, including CXCL/CXCR, NLRP3, NF-κB, TGF-β/smad, VEGF, Hippo/YAP, PI3K/Akt/mTOR, JAK/STAT, and other relevant pathways. In addition, it identifies promising future targets for the development of adenomyosis treatment, such as m6A, GSK3β, sphks, etc.
Collapse
Affiliation(s)
- Hongyu Zhang
- Department of Gynecology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Chaoming Li
- Departmemt of Urology, The First People’s Hospital of Longnan, Longnan 742500, China
| | - Wenyan Li
- Department of Gynecology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Wenhu Xin
- Department of Gynecology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Tiansheng Qin
- Department of Gynecology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
3
|
Guder C, Heinrich S, Seifert-Klauss V, Kiechle M, Bauer L, Öllinger R, Pichlmair A, Theodoraki MN, Ramesh V, Bashiri Dezfouli A, Wollenberg B, Pockley AG, Multhoff G. Extracellular Hsp70 and Circulating Endometriotic Cells as Novel Biomarkers for Endometriosis. Int J Mol Sci 2024; 25:11643. [PMID: 39519195 PMCID: PMC11546379 DOI: 10.3390/ijms252111643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Stress-inducible heat shock protein 70 (Hsp70), which functions as a molecular chaperone and is frequently overexpressed in different cancer cell types, is present on the cell surface of tumor cells and is actively released into the circulation in free and extracellular lipid vesicle-associated forms. Since the exact pathomechanism of endometriosis has not yet been elucidated (although it has been associated with the development of endometrial and ovarian cancer), we asked whether extracellular Hsp70 and circulating endometriotic cells (CECs) reflect the presence and development of endometriosis. Therefore, circulating levels of free and lipid microvesicle-associated Hsp70 were measured using the Hsp70-exo ELISA, and the presence of circulating CECs in the peripheral blood of patients with endometriosis was determined using membrane Hsp70 (mHsp70) and EpCAM monoclonal antibody (mAb)-based bead isolation approaches. Isolated CECs were further characterized by immunofluorescence using reagents directed against cytokeratin (epithelial marker), CD45 (leukocyte marker), CD105/CD44 (mesenchymal stemness markers) and by comparative RNA analysis. Similar to the situation in patients with cancer, the levels of circulating Hsp70 were elevated in the blood of patients with histologically proven endometriosis compared to a healthy control cohort, with significantly elevated Hsp70 levels in endometriosis patients with lesions outside the uterine cavity. Moreover, CECs could be isolated using the cmHsp70.1 mAb-based, and to a lesser extent EpCAM mAb-based, bead approach in all patients with endometriosis, with the highest counts obtained using the mHsp70-targeting procedure in patients with extra-uterine involvement. The longevity in cell culture and the expression of the cytokeratins CD105 and CD44, together with differentially expressed genes related to epithelial-to-mesenchymal transition (EMT), revealed similarities between mHsp70-expressing CECs and circulating tumor cells (CTCs) and suggest a mesenchymal stem cell origin. These findings support the involvement of mHsp70-positive stem cell-like cells in the development of endometriotic lesions. In summary, elevated levels of Hsp70 and CECs in the circulation could serve as liquid biopsy markers for endometriosis with extra-uterine involvement and help to elucidate the underlying pathomechanism of the disease.
Collapse
Affiliation(s)
- Christiane Guder
- Department of Otholaryngology, Head and Neck Surgery, TUM University Hospital, School of Medicine and Health, Technical University Munich, Ismaningerstr. 21, 81675 Munich, Germany; (C.G.); (M.-N.T.); (V.R.); (A.B.D.); (B.W.)
| | - Soraya Heinrich
- Department of Gynecology and Obstetrics, TUM University Hospital, School of Medicine and Health, Technical University Munich, Ismaningerstr. 21, 81675 Munich, Germany; (S.H.); (V.S.-K.); (M.K.)
| | - Vanadin Seifert-Klauss
- Department of Gynecology and Obstetrics, TUM University Hospital, School of Medicine and Health, Technical University Munich, Ismaningerstr. 21, 81675 Munich, Germany; (S.H.); (V.S.-K.); (M.K.)
| | - Marion Kiechle
- Department of Gynecology and Obstetrics, TUM University Hospital, School of Medicine and Health, Technical University Munich, Ismaningerstr. 21, 81675 Munich, Germany; (S.H.); (V.S.-K.); (M.K.)
| | - Lisa Bauer
- Radiation Immuno-Oncology, TranslaTUM—Central Institute for Translational Cancer Research, TUM University Hospital, School of Medicine and Health, Technical University Munich, Ismaningerstr. 21, 81675 Munich, Germany;
- Department of Radiation Oncology, TUM University Hospital, School of Medicine and Health, Technical University Munich, Ismaningerstr. 21, 81675 Munich, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, TranslaTUM—Central Institute for Translational Cancer Research, TUM University Hospital, School of Medicine and Health, Technical University Munich, Ismaningerstr. 21, 81675 Munich, Germany;
| | - Andreas Pichlmair
- Department of Virology, TranslaTUM—Central Institute for Translational Cancer Research, TUM University Hospital, School of Medicine and Health, Technical University Munich, Ismaningerstr. 21, 81675 Munich, Germany;
| | - Marie-Nicole Theodoraki
- Department of Otholaryngology, Head and Neck Surgery, TUM University Hospital, School of Medicine and Health, Technical University Munich, Ismaningerstr. 21, 81675 Munich, Germany; (C.G.); (M.-N.T.); (V.R.); (A.B.D.); (B.W.)
- Department of ENT, Head and Neck Surgery, University Hospital Ulm, Albert Einstein-Allee 23, 89070 Ulm, Germany
| | - Veena Ramesh
- Department of Otholaryngology, Head and Neck Surgery, TUM University Hospital, School of Medicine and Health, Technical University Munich, Ismaningerstr. 21, 81675 Munich, Germany; (C.G.); (M.-N.T.); (V.R.); (A.B.D.); (B.W.)
| | - Ali Bashiri Dezfouli
- Department of Otholaryngology, Head and Neck Surgery, TUM University Hospital, School of Medicine and Health, Technical University Munich, Ismaningerstr. 21, 81675 Munich, Germany; (C.G.); (M.-N.T.); (V.R.); (A.B.D.); (B.W.)
| | - Barbara Wollenberg
- Department of Otholaryngology, Head and Neck Surgery, TUM University Hospital, School of Medicine and Health, Technical University Munich, Ismaningerstr. 21, 81675 Munich, Germany; (C.G.); (M.-N.T.); (V.R.); (A.B.D.); (B.W.)
| | - Alan Graham Pockley
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK;
| | - Gabriele Multhoff
- Radiation Immuno-Oncology, TranslaTUM—Central Institute for Translational Cancer Research, TUM University Hospital, School of Medicine and Health, Technical University Munich, Ismaningerstr. 21, 81675 Munich, Germany;
- Department of Radiation Oncology, TUM University Hospital, School of Medicine and Health, Technical University Munich, Ismaningerstr. 21, 81675 Munich, Germany
| |
Collapse
|
4
|
Wu L, Lin S, Hu Y, Jing S, Sun B, Chen X, Jia J, Zeng C, Pei F. Potential mechanism of Luoshi Neiyi prescription in endometriosis based on serum pharmacochemistry and network pharmacology. Front Pharmacol 2024; 15:1395160. [PMID: 39135784 PMCID: PMC11317381 DOI: 10.3389/fphar.2024.1395160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction Endometriosis (EMs) is characterized by ectopic growth of active endometrial tissue outside the uterus. The Luoshi Neiyi prescription (LSNYP) has been extensively used for treating EMs in China. However, data on the active chemical components of LSNYP are insufficient, and its pharmacological mechanism in EMs treatment remains unclear. This study aimed to explore the potential mechanism of LSNYP for EMs through network pharmacology based on the components absorbed into the blood. Methods Ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry was used to analyze blood components, and a series of network pharmacology strategies were utilized to predict targets of these components and EMs. Protein-protein interaction (PPI) network analysis, component-target-disease network construction, gene ontology (GO) functional enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed. Additionally, molecular docking, molecular dynamics simulations, and in vitro and in vivo experiments were conducted to validate the HIF1A/EZH2/ANTXR2 pathway associated with hypoxic pathology in EMs. Results Thirty-four absorbed components suitable for network pharmacology analysis were identified, and core targets, such as interleukin 6, EGFR, HIF1A, and EZH2, were founded. Enrichment results indicated that treatment of EMs with LSNYP may involve the regulation of hypoxia and inflammatory-related signaling pathways and response to oxidative stress and transcription factor activity. Experimental results demonstrated that LSNYP could decrease the expression of HIF1A, ANTXR2, YAP1, CD44, and β-catenin, and increased EZH2 expression in ectopic endometrial stromal cells and endometriotic tissues. Molecular docking and molecular dynamics simulations manifested that there was stable combinatorial activity between core components and key targets of the HIF1A/EZH2/ANTXR2 pathway. Conclusion LSNYP may exert pharmacological effects on EMs via the HIF1A/EZH2/ANTXR2 pathway; hence, it is a natural herb-related therapy for EMs.
Collapse
Affiliation(s)
- Lizheng Wu
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shuhong Lin
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yongjun Hu
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shangwen Jing
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Bowen Sun
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaoxin Chen
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jinjin Jia
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Cheng Zeng
- Department of Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Fangli Pei
- Department of Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Liu L, Zhang M, Cui N, Liu W, Di G, Wang Y, Xi X, Li H, Shen Z, Gu M, Wang Z, Jiang S, Liu B. Integration of single-cell RNA-seq and bulk RNA-seq to construct liver hepatocellular carcinoma stem cell signatures to explore their impact on patient prognosis and treatment. PLoS One 2024; 19:e0298004. [PMID: 38635528 PMCID: PMC11025768 DOI: 10.1371/journal.pone.0298004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/11/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Liver hepatocellular carcinoma (LIHC) is a prevalent form of primary liver cancer. Research has demonstrated the contribution of tumor stem cells in facilitating tumor recurrence, metastasis, and treatment resistance. Despite this, there remains a lack of established cancer stem cells (CSCs)-associated genes signatures for effectively predicting the prognosis and guiding the treatment strategies for patients diagnosed with LIHC. METHODS The single-cell RNA sequencing (scRNA-seq) and bulk RNA transcriptome data were obtained based on public datasets and computerized firstly using CytoTRACE package and One Class Linear Regression (OCLR) algorithm to evaluate stemness level, respectively. Then, we explored the association of stemness indicators (CytoTRACE score and stemness index, mRNAsi) with survival outcomes and clinical characteristics by combining clinical information and survival analyses. Subsequently, weighted co-expression network analysis (WGCNA) and Cox were applied to assess mRNAsi-related genes in bulk LIHC data and construct a prognostic model for LIHC patients. Single-sample gene-set enrichment analysis (ssGSEA), Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT) and Tumor Immune Estimation Resource (TIMER) analysis were employed for immune infiltration assessment. Finally, the potential immunotherapeutic response was predicted by the Tumor Immune Dysfunction and Exclusion (TIDE), and the tumor mutation burden (TMB). Additionally, pRRophetic package was applied to evaluate the sensitivity of high and low-risk groups to common chemotherapeutic drugs. RESULTS A total of four genes (including STIP1, H2AFZ, BRIX1, and TUBB) associated with stemness score (CytoTRACE score and mRNAsi) were identified and constructed a risk model that could predict prognosis in LIHC patients. It was observed that high stemness cells occurred predominantly in the late stages of LIHC and that poor overall survival in LIHC patients was also associated with high mRNAsi scores. In addition, pathway analysis confirmed the biological uniqueness of the two risk groups. Personalized treatment predictions suggest that patients with a low risk benefited more from immunotherapy, while those with a high risk group may be conducive to chemotherapeutic drugs. CONCLUSION The current study developed a novel prognostic risk signature with genes related to CSCs, which provides novel ideas for the diagnosis, prognosis and treatment of LIHC.
Collapse
Affiliation(s)
- Lixia Liu
- Department of Ultrasound and Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Affiliated Hospital of Hebei University, Baoding, 071052, China
| | - Meng Zhang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Hebei University, Baoding, 071052, China
| | - Naipeng Cui
- Department of Breast Surgery, Affiliated Hospital of Hebei University, Baoding, 071052, China
| | - Wenwen Liu
- Department of Breast Surgery, Affiliated Hospital of Hebei University, Baoding, 071052, China
| | - Guixin Di
- Department of Ultrasound, Affiliated Hospital of Hebei University, Baoding, 071052, China
| | - Yanan Wang
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding, 071052, China
| | - Xin Xi
- Central Laboratory, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding, 071052, China
| | - Hao Li
- Central Laboratory, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding, 071052, China
| | - Zhou Shen
- Central Laboratory, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding, 071052, China
| | - Miaomiao Gu
- Department of Ultrasound, Affiliated Hospital of Hebei University, Baoding, 071052, China
| | - Zichao Wang
- Department of Ultrasound, Affiliated Hospital of Hebei University, Baoding, 071052, China
| | - Shan Jiang
- Central Laboratory, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding, 071052, China
| | - Bin Liu
- Central Laboratory, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding, 071052, China
| |
Collapse
|
6
|
Zhao X, Wang Y, Xia H, Liu S, Huang Z, He R, Yu L, Meng N, Wang H, You J, Li J, Yam JWP, Xu Y, Cui Y. Roles and Molecular Mechanisms of Biomarkers in Hepatocellular Carcinoma with Microvascular Invasion: A Review. J Clin Transl Hepatol 2023; 11:1170-1183. [PMID: 37577231 PMCID: PMC10412705 DOI: 10.14218/jcth.2022.00013s] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 01/18/2023] [Accepted: 03/21/2023] [Indexed: 07/03/2023] Open
Abstract
Hepatocellular carcinoma (HCC) being a leading cause of cancer-related death, has high associated mortality and recurrence rates. It has been of great necessity and urgency to find effective HCC diagnosis and treatment measures. Studies have shown that microvascular invasion (MVI) is an independent risk factor for poor prognosis after hepatectomy. The abnormal expression of biomacromolecules such as circ-RNAs, lncRNAs, STIP1, and PD-L1 in HCC patients is strongly correlated with MVI. Deregulation of several markers mentioned in this review affects the proliferation, invasion, metastasis, EMT, and anti-apoptotic processes of HCC cells through multiple complex mechanisms. Therefore, these biomarkers may have an important clinical role and serve as promising interventional targets for HCC. In this review, we provide a comprehensive overview on the functions and regulatory mechanisms of MVI-related biomarkers in HCC.
Collapse
Affiliation(s)
- Xudong Zhao
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yudan Wang
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Haoming Xia
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shuqiang Liu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ziyue Huang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Risheng He
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Liang Yu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Nanfeng Meng
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hang Wang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Junqi You
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jinglin Li
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Judy Wai Ping Yam
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, Fujian, China
- Jiangsu Province Engineering Research Center of Tumor Targeted Nano Diagnostic and Therapeutic Materials, Yancheng Teachers University, Yancheng, Jiangsu, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang province, Hangzhou, Zhejiang, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Department of Pharmacy, Changxing People’s Hospital, Changxing, Zhejiang, China
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
7
|
Kobayashi H. Endometrial Inflammation and Impaired Spontaneous Decidualization: Insights into the Pathogenesis of Adenomyosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3762. [PMID: 36834456 PMCID: PMC9964052 DOI: 10.3390/ijerph20043762] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Adenomyosis is an estrogen-dependent gynecologic disease characterized by the myometrial invasion of the endometrial tissue. This review summarized the current understanding and recent findings on the pathophysiology of adenomyosis, focusing on repeated menstruation, persistent inflammation, and impaired spontaneous decidualization. A literature search was performed in the PubMed and Google Scholar databases from inception to 30 April 2022. Thirty-one full-text articles met the eligibility criteria. Repeated episodes of physiological events (i.e., endometrial shedding, damage, proliferation, differentiation, repair, and regeneration) during the menstrual cycle are associated with inflammation, angiogenesis, and immune processes. The decidualization process in humans is driven by the rise in progesterone levels, independently of pregnancy (i.e., spontaneous decidualization). Adenomyotic cells produce angiogenic and fibrogenic factors with the downregulation of decidualization-associated molecules. This decidualization dysfunction and persistent inflammation are closely related to the pathogenesis of adenomyosis. Recently, it has been found that the reproductive tract microbiota composition and function in women with adenomyosis differ from those without. An increase in opportunistic pathogens and a decrease in beneficial commensals may promote impaired defense mechanisms against inflammation and predispose women to uncontrolled endometrial inflammation. However, currently, there is no direct evidence that adenomyosis is linked to pre-existing inflammation and impaired spontaneous decidualization. Overall, persistent inflammation, impaired spontaneous decidualization, and microbiota dysbiosis (i.e., an imbalance in the composition and function of endometrial microbiota) may be involved in the pathophysiology of adenomyosis.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, 871-1 Shijo-cho, Kashihara 634-0813, Japan; ; Tel.: +81-744-20-0028
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan
| |
Collapse
|
8
|
Abstract
The Hsp70/Hsp90 organising protein (Hop, also known as stress-inducible protein 1/STI1/STIP1) has received considerable attention for diverse cellular functions in both healthy and diseased states. There is extensive evidence that intracellular Hop is a co-chaperone of the major chaperones Hsp70 and Hsp90, playing an important role in the productive folding of Hsp90 client proteins, although recent evidence suggests that eukaryotic Hop is regulatory within chaperone complexes rather than essential. Consequently, Hop is implicated in many key signalling pathways, including aberrant pathways leading to cancer. Hop is also secreted, and it is now well established that Hop interacts with the prion protein, PrPC, to mediate multiple signalling events. The intracellular and extracellular forms of Hop most likely represent two different isoforms, although the molecular determinants of these divergent functions are yet to be identified. There is also a growing body of research that reports the involvement of Hop in cellular activities that appear independent of either chaperones or PrPC. While the various cellular functions of Hop have been described, its biological function remains elusive. However, recent knockout studies in mammals suggest that Hop has an important role in embryonic development. This review provides a critical overview of the latest molecular, cellular and biological research on Hop, critically evaluating its function in healthy systems and how this function is adapted in diseased states.
Collapse
|
9
|
Endometriosis Stem Cells as a Possible Main Target for Carcinogenesis of Endometriosis-Associated Ovarian Cancer (EAOC). Cancers (Basel) 2022; 15:cancers15010111. [PMID: 36612107 PMCID: PMC9817684 DOI: 10.3390/cancers15010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Endometriosis is a serious recurrent disease impairing the quality of life and fertility, and being a risk for some histologic types of ovarian cancer defined as endometriosis-associated ovarian cancers (EAOC). The presence of stem cells in the endometriotic foci could account for the proliferative, migrative and angiogenic activity of the lesions. Their phenotype and sources have been described. The similarly disturbed expression of several genes, miRNAs, galectins and chaperones has been observed both in endometriotic lesions and in ovarian or endometrial cancer. The importance of stem cells for nascence and sustain of malignant tumors is commonly appreciated. Although the proposed mechanisms promoting carcinogenesis leading from endometriosis into the EAOC are not completely known, they have been discussed in several articles. However, the role of endometriosis stem cells (ESCs) has not been discussed in this context. Here, we postulate that ESCs may be a main target for the carcinogenesis of EAOC and present the possible sequence of events resulting finally in the development of EAOC.
Collapse
|
10
|
Chen D, Zhou L, Qiao H, Wang Y, Xiao Y, Fang L, Yang B, Wang Z. Comparative proteomics identify HSP90A, STIP1 and TAGLN‑2 in serum extracellular vesicles as potential circulating biomarkers for human adenomyosis. Exp Ther Med 2022; 23:374. [PMID: 35495589 PMCID: PMC9019665 DOI: 10.3892/etm.2022.11301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/22/2021] [Indexed: 11/05/2022] Open
Affiliation(s)
- Dayong Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ling Zhou
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hai Qiao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yiting Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yao Xiao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Liaoqiong Fang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Bing Yang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Zhibiao Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
11
|
Ke J, Ye J, Li M, Zhu Z. The Role of Matrix Metalloproteinases in Endometriosis: A Potential Target. Biomolecules 2021; 11:1739. [PMID: 34827737 PMCID: PMC8615881 DOI: 10.3390/biom11111739] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 12/14/2022] Open
Abstract
Endometriosis is a condition that is influenced by hormones and involves stroma and glands being found outside the uterus; there are increases in proliferation, invasion, internal bleeding, and fibrosis. Matrix metalloproteinases (MMPs) have been suggested to be crucial in the progression of invasion. The MMP family includes calcium-dependent zinc-containing endopeptidases, some of which not only affect the process of cell invasion but also participate in other physiological and pathological processes, such as angiogenesis and fibrosis. MMPs act as downstream-targeted molecules and their expression can be regulated by numerous factors such as estrogen, oxidative stress, cytokines, and environmental contaminants. Given their unique roles in endometriosis, MMPs may become effective biomarkers of endometriosis in the future. In the present review, we summarize the current literature on MMPs regarding their classification, function, and potential value for endometriosis, which may contribute to our knowledge of MMPs and MMP-targeted interventions.
Collapse
Affiliation(s)
- Junya Ke
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China;
- Department of Integrated Traditional & Western Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- Institute of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Jiangfeng Ye
- Division of Obstetrics and Gynecology, KK Women’s and Children’s Hospital, Singapore 229899, Singapore;
| | - Mingqing Li
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China;
- Institute of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai 200011, China
| | - Zhiling Zhu
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China;
- Department of Integrated Traditional & Western Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| |
Collapse
|
12
|
Tsai CL, Jung SM, Chi LM, Tsai CN, Lin CY, Chao A, Lee YS. Glycogen synthase kinase-3 beta (GSK3β)-mediated phosphorylation of ETS1 promotes progression of ovarian carcinoma. Aging (Albany NY) 2021; 13:13739-13763. [PMID: 34023818 PMCID: PMC8202891 DOI: 10.18632/aging.202966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/14/2021] [Indexed: 11/25/2022]
Abstract
ETS1 - an evolutionarily conserved transcription factor involved in the regulation of a number of cellular processes - is overexpressed in several malignancies, including ovarian cancer. Most studies on ETS1 expression have been focused on the transcriptional and RNA levels, with post-translational control mechanisms remaining relatively unexplored in the pathogenesis of malignancies. Here, we show that ETS1 forms a complex with glycogen synthase kinase-3β (GSK3β). Specifically, GSK3β-mediated phosphorylation of ETS1 at threonine 265 and serine 269 promoted protein stability, induced the transcriptional activation of matrix metalloproteinase (MMP)-9, and increased cell migration. In vivo experiments revealed that a GSK3β inhibitor was able to suppress both endogenous ETS1 expression and induction of MMP-9 expression. Upon generation of a specific antibody against phosphorylated ETS1, we demonstrated that phospho-ETS1 immunohistochemical expression in ovarian cancer specimens was correlated with that of MMP-9. Notably, the cumulative overall survival of patients with low phospho-ETS1 histoscores was significantly longer than that of those showing higher scores. We conclude that the GSK3β/ETS1/MMP-9 axis may regulate the biological aggressiveness of ovarian cancer and can serve as a prognostic factor in patients with this malignancy.
Collapse
Affiliation(s)
- Chia-Lung Tsai
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shih-Ming Jung
- Department of Pathology, Chang Gung Memorial Hospital, Linkou Medical Center, and Chang Gung University, Taoyuan, Taiwan
| | - Lang-Ming Chi
- Clinical Proteomics Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chi-Neu Tsai
- Graduate Institute of Clinical Medical Science, Chang-Gung University, Taoyuan, Taiwan
- Department of Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chiao-Yun Lin
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Angel Chao
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, and Chang Gung University, Taoyuan, Taiwan
| | - Yun-Shien Lee
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Biotechnology, Ming Chuan University, Taoyuan, Taiwan
| |
Collapse
|
13
|
da Fonseca ACC, Matias D, Geraldo LHM, Leser FS, Pagnoncelli I, Garcia C, do Amaral RF, da Rosa BG, Grimaldi I, de Camargo Magalhães ES, Cóppola-Segovia V, de Azevedo EM, Zanata SM, Lima FRS. The multiple functions of the co-chaperone stress inducible protein 1. Cytokine Growth Factor Rev 2020; 57:73-84. [PMID: 32561134 DOI: 10.1016/j.cytogfr.2020.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/22/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022]
Abstract
Stress inducible protein 1 (STI1) is a co-chaperone acting with Hsp70 and Hsp90 for the correct client proteins' folding and therefore for the maintenance of cellular homeostasis. Besides being expressed in the cytosol, STI1 can also be found both in the cell membrane and the extracellular medium playing several relevant roles in the central nervous system (CNS) and tumor microenvironment. During CNS development, in association with cellular prion protein (PrPc), STI1 regulates crucial events such as neuroprotection, neuritogenesis, astrocyte differentiation and survival. In cancer, STI1 is involved with tumor growth and invasion, is undoubtedly a pro-tumor factor, being considered as a biomarker and possibly therapeutic target for several malignancies. In this review, we discuss current knowledge and new findings on STI1 function as well as its role in tissue homeostasis, CNS and tumor progression.
Collapse
Affiliation(s)
| | - Diana Matias
- Molecular Bionics Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, United Kingdom
| | - Luiz Henrique Medeiros Geraldo
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil; Université de Paris, PARCC, INSERM, Paris, 75015, France
| | - Felipe Saceanu Leser
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Iohana Pagnoncelli
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Celina Garcia
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Rackele Ferreira do Amaral
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Barbara Gomes da Rosa
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Izabella Grimaldi
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Eduardo Sabino de Camargo Magalhães
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil; European Research Institute for the Biology of Aging, University of Groningen, Groningen, 9713 AV, Netherlands
| | - Valentín Cóppola-Segovia
- Departments of Basic Pathology and Cell Biology, Federal University of Paraná, Paraná, RJ, 81531-970, Brazil
| | - Evellyn Mayla de Azevedo
- Departments of Basic Pathology and Cell Biology, Federal University of Paraná, Paraná, RJ, 81531-970, Brazil
| | - Silvio Marques Zanata
- Departments of Basic Pathology and Cell Biology, Federal University of Paraná, Paraná, RJ, 81531-970, Brazil
| | - Flavia Regina Souza Lima
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil.
| |
Collapse
|
14
|
Ma XL, Tang WG, Yang MJ, Xie SH, Wu ML, Lin G, Lu RQ. Serum STIP1, a Novel Indicator for Microvascular Invasion, Predicts Outcomes and Treatment Response in Hepatocellular Carcinoma. Front Oncol 2020; 10:511. [PMID: 32426271 PMCID: PMC7212360 DOI: 10.3389/fonc.2020.00511] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Previous studies reported that stress-induced phosphoprotein 1 (STIP1) can be secreted by hepatocellular carcinoma (HCC) cells and is increased in the serum of HCC patients. However, the therapy-monitoring and prognostic value of serum STIP1 in HCC remains unclear. Here, we aimed to systemically explore the prognostic significance of serum STIP1 in HCC. Methods: A total of 340 HCC patients were recruited to this study; 161 underwent curative resection and 179 underwent transcatheter arterial chemoembolization (TACE). Serum STIP1 was detected by enzyme-linked immunosorbent assay (ELISA). Optimal cutoff values for serum STIP1 in resection and TACE groups were determined by receiver operating characteristic (ROC) analysis. Prognostic value was assessed by Kaplan-Meier, log-rank, and Cox regression analyses. Predictive values of STIP1 for objective response (OR) to TACE and MVI were evaluated by ROC curves and logistic regression. Results: Serum STIP1 was significantly increased in HCC patients when compared with chronic hepatitis B patients or health donors (both P < 0.05). Optimal cutoff values for STIP1 in resection and TACE groups were 83.43 and 112.06 ng/ml, respectively. High pretreatment STIP1 was identified as an independent prognosticator. Dynamic changes in high STIP1 status were significantly associated with long-term prognosis, regardless of treatment approaches. Moreover, post-TACE STIP1 was identified as an independent predictor for OR, with a higher area under ROC curve (AUC-ROC) than other clinicopathological features. Specifically, pretreatment STIP1 was significantly increased in patients with microvascular invasion (MVI), and was confirmed as a novel, powerful predictor for MVI. Conclusions: Serum STIP1 is a promising biomarker for outcome evaluation, therapeutic response assessment, and MVI prediction in HCC. Integration serum STIP1 detection into HCC management might facilitate early clinical decision making to improve the prognosis of HCC.
Collapse
Affiliation(s)
- Xiao-Lu Ma
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Wei-Guo Tang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Hepatobiliary and Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai, China
| | - Min-Jie Yang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, Shanghai, China
| | - Su-Hong Xie
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Min-Le Wu
- Department of Clinical Laboratory, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Guo Lin
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Ren-Quan Lu
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Associations between a single nucleotide polymorphism of stress-induced phosphoprotein 1 and endometriosis/adenomyosis. Taiwan J Obstet Gynecol 2018; 57:270-275. [DOI: 10.1016/j.tjog.2018.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2018] [Indexed: 02/06/2023] Open
|