1
|
Xiong M, Xiu Y, Long J, Zhao X, Wang Q, Yang H, Yu H, Bian L, Ju Y, Yin H, Hou Q, Liang F, Liu N, Chen F, Fan R, Sun Y, Zeng Y. Proteomics reveals dynamic metabolic changes in human hematopoietic stem progenitor cells from fetal to adulthood. Stem Cell Res Ther 2024; 15:303. [PMID: 39278906 PMCID: PMC11403967 DOI: 10.1186/s13287-024-03930-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/06/2024] [Indexed: 09/18/2024] Open
Abstract
BACKGROUND Hematopoietic stem progenitor cells (HSPCs) undergo phenotypical and functional changes during their emergence and development. Although the molecular programs governing the development of human hematopoietic stem cells (HSCs) have been investigated broadly, the relationships between dynamic metabolic alterations and their functions remain poorly characterized. METHODS In this study, we comprehensively described the proteomics of HSPCs in the human fetal liver (FL), umbilical cord blood (UCB), and adult bone marrow (aBM). The metabolic state of human HSPCs was assessed via a Seahorse assay, RT‒PCR, and flow cytometry-based metabolic-related analysis. To investigate whether perturbing glutathione metabolism affects reactive oxygen species (ROS) production, the metabolic state, and the expansion of human HSPCs, HSPCs were treated with buthionine sulfoximine (BSO), an inhibitor of glutathione synthetase, and N-acetyl-L-cysteine (NAC). RESULTS We investigated the metabolomic landscape of human HSPCs from the fetal, perinatal, and adult developmental stages by in-depth quantitative proteomics and predicted a metabolic switch from the oxidative state to the glycolytic state during human HSPC development. Seahorse assays, mitochondrial activity, ROS level, glucose uptake, and protein synthesis rate analysis supported our findings. In addition, immune-related pathways and antigen presentation were upregulated in UCB or aBM HSPCs, indicating their functional maturation upon development. Glutathione-related metabolic perturbations resulted in distinct responses in human HSPCs and progenitors. Furthermore, the molecular and immunophenotypic differences between human HSPCs at different developmental stages were revealed at the protein level for the first time. CONCLUSION The metabolic landscape of human HSPCs at three developmental stages (FL, UCB, and aBM), combined with proteomics and functional validations, substantially extends our understanding of HSC metabolic regulation. These findings provide valuable resources for understanding human HSC function and development during fetal and adult life.
Collapse
Affiliation(s)
- Mingfang Xiong
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
- Medical School of the Chinese PLA General Hospital, Beijing, 100039, China
| | - Yanyu Xiu
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Juan Long
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Xiao Zhao
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Qianqian Wang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 311399, China
| | - Haoyu Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Hang Yu
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
- Medical School of the Chinese PLA General Hospital, Beijing, 100039, China
| | - Lihong Bian
- Department of Gynecology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Yan Ju
- Department of Gynecology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Hongyu Yin
- Department of Gynecology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Qingxiang Hou
- Department of Obstetrics and Gynecology, PLA Rocket Force Characteristic Medical Center, Beijing, 100088, China
| | - Fei Liang
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Nan Liu
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Fudong Chen
- Medical School of the Chinese PLA General Hospital, Beijing, 100039, China
| | - Ruiwen Fan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yuying Sun
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China.
| | - Yang Zeng
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China.
- Medical School of the Chinese PLA General Hospital, Beijing, 100039, China.
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 311399, China.
| |
Collapse
|
2
|
Fomukong HA, Kalu M, Aimola IA, Sallau AB, Bello-Manga H, Gouegni FE, Ameloko JU, Bello ZK, David AU, Baba RS. Single-cell RNA seq analysis of erythroid cells reveals a specific sub-population of stress erythroid progenitors. Hematology 2023; 28:2261802. [PMID: 37791839 DOI: 10.1080/16078454.2023.2261802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND : Erythroid cells play important roles in hemostasis and disease. However, there is still significant knowledge gap regarding stress erythropoiesis. METHODS : Two single-cell RNAseq datasets of erythroid cells on GEO with accession numbers GSE149938 and GSE184916 were obtained. The datasets from two sources, bone marrow and peripheral blood were analyzed using Seurat v4.1.1, and other tools in R. QC metrics were performed, data were normalized and scaled. Principal components that capture the variation of the data were determined. In clustering the cells, KNN graph was constructed and Louvain algorithm was applied to optimize the standard modularity function. Clusters were defined via differential expression of features. RESULTS We identified 9 different cell types, with a particular cluster representing the stress erythroids. The clusters showed differentially expressed genes as observed from the gene signature plot. The stress erythroid cluster differentially expressed some genes including ALAS2, HEMGN, and GUK1. CONCLUSION The erythroid population was found to be heterogeneous, with a distinct sub-cell type constituting the stress erythroids; this may have important implications for our knowledge of steady-state and stress erythropoiesis, and the markers found in this cluster may prove useful for future research into the dynamics of stress erythroid progenitor cell differentiation.
Collapse
Affiliation(s)
- Hanneda A Fomukong
- Department of Biochemistry, Ahmadu Bello University, Kaduna, Nigeria
- Africa Center of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Kaduna, Nigeria
| | - Mayen Kalu
- Department of Biochemistry, Ahmadu Bello University, Kaduna, Nigeria
- Africa Center of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Kaduna, Nigeria
| | - Idowu A Aimola
- Department of Biochemistry, Ahmadu Bello University, Kaduna, Nigeria
- Africa Center of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Kaduna, Nigeria
| | - Abdullahi B Sallau
- Department of Biochemistry, Ahmadu Bello University, Kaduna, Nigeria
- Africa Center of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Kaduna, Nigeria
| | | | - Flore E Gouegni
- Department of Biochemistry, Ahmadu Bello University, Kaduna, Nigeria
- Africa Center of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Kaduna, Nigeria
| | - Joy U Ameloko
- Department of Biochemistry, Ahmadu Bello University, Kaduna, Nigeria
- Africa Center of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Kaduna, Nigeria
| | - Zeenat K Bello
- Department of Biochemistry, Ahmadu Bello University, Kaduna, Nigeria
- Africa Center of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Kaduna, Nigeria
| | - Alfa U David
- Department of Biochemistry, Ahmadu Bello University, Kaduna, Nigeria
- Africa Center of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Kaduna, Nigeria
| | - Reuben S Baba
- Department of Biochemistry, Ahmadu Bello University, Kaduna, Nigeria
| |
Collapse
|
3
|
Hemogen /BRG1 cooperativity modulates promoter and enhancer activation during erythropoiesis. Blood 2022; 139:3532-3545. [PMID: 35297980 DOI: 10.1182/blood.2021014308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/15/2022] [Indexed: 11/20/2022] Open
Abstract
Hemogen, also known as EDAG, is a hematopoietic tissue-specific gene that regulates the proliferation and differentiation of hematopoietic cells. However, the mechanism underlying hemogen function in erythropoiesis is unknown. We found that depletion of hemogen in human CD34+ erythroid progenitor cells and HUDEP2 cells significantly reduced the expression of genes associated with heme and hemoglobin synthesis, supporting a positive role of hemogen in erythroid maturation. In human K562 cells, hemogen antagonized the occupancy of co-repressors NuRD complex and facilitated LDB1 complex-mediated chromatin looping. Hemogen recruited SWI/SNF complex ATPase BRG1 as a co-activator to regulate nucleosome accessibility and H3K27ac enrichment for promoter and enhancer activity. To ask if hemogen/BRG1 cooperativity is conserved in mammalian systems, we generated hemogen KO/KI mice and investigated hemogen/BRG1 function in murine erythropoiesis. Loss of hemogen in E12.5-E16.5 fetal liver cells impeded erythroid differentiation through reducing the production of mature erythroblasts. ChIP-seq in WT and hemogen KO animal revealed BRG1 is largely dependent on hemogen to regulate chromatin accessibility at erythroid gene promoters and enhancers. In summary, hemogen/BRG1 interaction in mammals is essential for fetal erythroid maturation and hemoglobin production through its active role in promoter and enhancer activity and chromatin organization.
Collapse
|
4
|
Zhao K, Liu J, Zhu Y, Dong X, Yin R, Liu X, Gao H, Xiao F, Gao R, Wang Q, Zhan Y, Yu M, Chen H, Ning H, Zhang C, Yang X, Li C. Hemgn Protects Hematopoietic Stem and Progenitor Cells Against Transplantation Stress Through Negatively Regulating IFN-γ Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103838. [PMID: 34923767 PMCID: PMC8844507 DOI: 10.1002/advs.202103838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/14/2021] [Indexed: 06/14/2023]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) possess the remarkable ability to regenerate the whole blood system in response to ablated stress demands. Delineating the mechanisms that maintain HSPCs during regenerative stresses is increasingly important. Here, it is shown that Hemgn is significantly induced by hematopoietic stresses including irradiation and bone marrow transplantation (BMT). Hemgn deficiency does not disturb steady-state hematopoiesis in young mice. Hemgn-/- HSPCs display defective engraftment activity during BMT with reduced homing and survival and increased apoptosis. Transcriptome profiling analysis reveals that upregulated genes in transplanted Hemgn-/- HSPCs are enriched for gene sets related to interferon gamma (IFN-γ) signaling. Hemgn-/- HSPCs show enhanced responses to IFN-γ treatment and increased aging over time. Blocking IFN-γ signaling in irradiated recipients either pharmacologically or genetically rescues Hemgn-/- HSPCs engraftment defect. Mechanistical studies reveal that Hemgn deficiency sustain nuclear Stat1 tyrosine phosphorylation via suppressing T-cell protein tyrosine phosphatase TC45 activity. Spermidine, a selective activator of TC45, rescues exacerbated phenotype of HSPCs in IFN-γ-treated Hemgn-/- mice. Collectively, these results identify that Hemgn is a critical regulator for successful engraftment and reconstitution of HSPCs in mice through negatively regulating IFN-γ signaling. Targeted Hemgn may be used to improve conditioning regimens and engraftment during HSPCs transplantation.
Collapse
Affiliation(s)
- Ke Zhao
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
| | - Jin‐Fang Liu
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
| | - Ya‐Xin Zhu
- School of Life SciencesHebei UniversityNo. 180 Wusi Dong Road, Lian Chi DistrictBaoding CityHebei Province071000China
| | - Xiao‐Ming Dong
- College of Life SciencesShanxi Normal UniversityNo. 199, South Chang'an Road, Yanta DistrictXi'an710062China
| | - Rong‐Hua Yin
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
| | - Xian Liu
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
| | - Hui‐Ying Gao
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
| | - Feng‐Jun Xiao
- Department of Experimental Hematology and BiochemistryBeijing Institute of Radiation MedicineBeijing100850China
| | - Rui Gao
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
| | - Qi Wang
- An Hui Medical UniversitySchool of Basic Medical SciencesHefei230032China
| | - Yi‐Qun Zhan
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
| | - Miao Yu
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
| | - Hui Chen
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
| | - Hong‐Mei Ning
- Department of Hematopoietic Stem Cell TransplantationThe Fifth Medical Center of Chinese PLA General HospitalBeijing100071China
| | - Cai‐Bo Zhang
- Department of Life SciencesQilu Normal UniversityNo. 2, Wenbo Road, Zhangqiu DistrictJinanShandong250013China
| | - Xiao‐Ming Yang
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
| | - Chang‐Yan Li
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
- School of Life SciencesHebei UniversityNo. 180 Wusi Dong Road, Lian Chi DistrictBaoding CityHebei Province071000China
- An Hui Medical UniversitySchool of Basic Medical SciencesHefei230032China
| |
Collapse
|
5
|
Dong XM, Zhao K, Zheng WW, Xu CW, Zhang MJ, Yin RH, Gao R, Tang LJ, Liu JF, Chen H, Zhan YQ, Yu M, Ge CH, Gao HY, Li X, Luo T, Ning HM, Yang XM, Li CY. EDAG mediates Hsp70 nuclear localization in erythroblasts and rescues dyserythropoiesis in myelodysplastic syndrome. FASEB J 2020; 34:8416-8427. [PMID: 32350948 DOI: 10.1096/fj.201902946r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/06/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022]
Abstract
During human erythroid maturation, Hsp70 translocates into the nucleus and protects GATA-1 from caspase-3 cleavage. Failure of Hsp70 to localize to the nucleus was found in Myelodysplastic syndrome (MDS) erythroblasts and can induce dyserythropoiesis, with arrest of maturation and death of erythroblasts. However, the mechanism of the nuclear trafficking of Hsp70 in erythroblasts remains unknown. Here, we found the hematopoietic transcriptional regulator, EDAG, to be a novel binding partner of Hsp70 that forms a protein complex with Hsp70 and GATA-1 during human normal erythroid differentiation. EDAG overexpression blocked the cytoplasmic translocation of Hsp70 induced by EPO deprivation, inhibited GATA-1 degradation, thereby promoting erythroid maturation in an Hsp70-dependent manner. Furthermore, in myelodysplastic syndrome (MDS) patients with dyserythropoiesis, EDAG is dramatically down-regulated, and forced expression of EDAG has been found to restore the localization of Hsp70 in the nucleus and elevate the protein level of GATA-1 to a significant extent. In addition, EDAG rescued the dyserythropoiesis of MDS patients by increasing erythroid differentiation and decreasing cell apoptosis. This study demonstrates the molecular mechanism of Hsp70 nuclear sustaining during erythroid maturation and establishes that EDAG might be a suitable therapeutic target for dyserythropoiesis in MDS patients.
Collapse
Affiliation(s)
- Xiao-Ming Dong
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China.,Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Ke Zhao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Wei-Wei Zheng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Cheng-Wang Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Mei-Jiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China.,Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Rong-Hua Yin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Rui Gao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Liu-Jun Tang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Jin-Fang Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Hui Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Yi-Qun Zhan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Miao Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Chang-Hui Ge
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hui-Ying Gao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Xiu Li
- School of Postgraduate, Anhui Medical University, Hefei, China
| | - Teng Luo
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Hong-Mei Ning
- Department of Hematopoietic Stem Cell Transplantation, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiao-Ming Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China.,Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,School of Postgraduate, Anhui Medical University, Hefei, China
| | - Chang-Yan Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China.,School of Postgraduate, Anhui Medical University, Hefei, China
| |
Collapse
|
6
|
Gene therapy of hematological disorders: current challenges. Gene Ther 2019; 26:296-307. [PMID: 31300728 DOI: 10.1038/s41434-019-0093-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 12/13/2022]
Abstract
Recent advances in genetic engineering technology and stem cell biology have spurred great interest in developing gene therapies for hereditary, as well as acquired hematological disorders. Currently, hematopoietic stem cell transplantation is used to cure disorders such as hemoglobinopathies and primary immunodeficiencies; however, this method is limited by the availability of immune-matched donors. Using autologous cells coupled with genome editing bypasses this limitation and therefore became the focus of many research groups aiming to develop efficient and safe genomic modification. Hence, gene therapy research has witnessed a noticeable growth in recent years with numerous successful achievements; however, several challenges have to be overcome before gene therapy becomes widely available for patients. In this review, I discuss tools used in gene therapy for hematological disorders, choices of target cells, and delivery vehicles with emphasis on current hurdles and attempts to solve them, and present examples of successful clinical trials to give a glimpse of current progress.
Collapse
|
7
|
Derakhshani M, Abbaszadeh H, Movassaghpour AA, Mehdizadeh A, Ebrahimi-Warkiani M, Yousefi M. Strategies for elevating hematopoietic stem cells expansion and engraftment capacity. Life Sci 2019; 232:116598. [PMID: 31247209 DOI: 10.1016/j.lfs.2019.116598] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/22/2019] [Accepted: 06/23/2019] [Indexed: 02/07/2023]
Abstract
Hematopoietic stem cells (HSCs) are a rare cell population in adult bone marrow, mobilized peripheral blood, and umbilical cord blood possessing self-renewal and differentiation capability into a full spectrum of blood cells. Bone marrow HSC transplantation has been considered as an ideal option for certain disorders treatment including hematologic diseases, leukemia, immunodeficiency, bone marrow failure syndrome, genetic defects such as thalassemia, sickle cell anemia, autoimmune disease, and certain solid cancers. Ex vivo proliferation of these cells prior to transplantation has been proposed as a potential solution against limited number of stem cells. In such culture process, MSCs have also been shown to exhibit high capacity for secretion of soluble mediators contributing to the principle biological and therapeutic activities of HSCs. In addition, endothelial cells have been introduced to bridge the blood and sub tissues in the bone marrow, as well as, HSCs regeneration induction and survival. Cell culture in the laboratory environment requires cell growth strict control to protect against contamination, symmetrical cell division and optimal conditions for maximum yield. In this regard, microfluidic systems provide culture and analysis capabilities in micro volume scales. Moreover, two-dimensional cultures cannot fully demonstrate extracellular matrix found in different tissues and organs as an abstract representation of three dimensional cell structure. Microfluidic systems can also strongly describe the effects of physical factors such as temperature and pressure on cell behavior.
Collapse
Affiliation(s)
- Mehdi Derakhshani
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Abbaszadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Movassaghpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ebrahimi-Warkiani
- School of Biomedical Engineering, University Technology of Sydney, Sydney, New South Wales, 2007, Australia
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Liver Sinusoidal Endothelial Cells Promote the Expansion of Human Cord Blood Hematopoietic Stem and Progenitor Cells. Int J Mol Sci 2019; 20:ijms20081985. [PMID: 31018542 PMCID: PMC6515002 DOI: 10.3390/ijms20081985] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/20/2019] [Accepted: 04/21/2019] [Indexed: 12/13/2022] Open
Abstract
Cord blood (CB) is an attractive source of hematopoietic stem cells (HSCs) for hematopoietic cell transplantation. However, its application remains limited due to the low number of HSCs/progenitors in a single CB unit and its notoriously difficulty in expanding ex vivo. Here, we demonstrated that the human fetal liver sinusoidal endothelial cells engineered to constitutively express the adenoviral E4orf1 gene (hFLSECs-E4orf1) is capable of efficient expansion ex vivo for human CB hematopoietic stem and progenitor cells (HSPCs). Coculture of CD34+ hCB cells with hFLSECs-E4orf1 resulted in generation of substantially more total nucleated cells, CD34+CD38− and CD34+ CD38−CD90+ HSPCs in comparison with that of cytokines alone after 14 days. The multilineage differentiation potential of the expanded hematopoietic cells in coculture condition, as assessed by in vitro colony formation, was also significantly heightened. The CD34+ hCB cells amplified on hFLSECs-E4orf1 were capable of engraftment in vivo. Furthermore, hFLSECs-E4orf1 highly expressed hematopoiesis related growth factor and Notch receptors. Accordingly, the CD34+ hCB cells amplified on hFLSECs-E4orf1 exhibited Notch signaling activation. Taken together, our findings indicated that FLSECs may potentially be the crucial component of the microenvironment to support recapitulation of embryonic HSC amplification in vitro and allow identification of new growth factors responsible for collective regulation of hematopoiesis.
Collapse
|