1
|
Mallon JE, Altieri AH, Cyronak T, Melendez-Declet CV, Paul VJ, Johnson MD. Sublethal changes to coral metabolism in response to deoxygenation. J Exp Biol 2025; 228:JEB249638. [PMID: 39835824 DOI: 10.1242/jeb.249638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Coastal deoxygenation poses a critical threat to tropical coral reefs. Dissolved oxygen (DO) depletion can cause hypoxia-induced stress and mortality in scleractinian corals. Coral hypoxic responses are species-specific and likely modulated by the duration and severity of low-DO conditions, although the physiological mechanisms driving hypoxia tolerance are not fully understood. In this study, the Caribbean corals Acropora cervicornis, Porites astreoides and Siderastrea siderea were exposed to either severe (1.5 mg l-1 DO) or moderate (3.5 mg l-1 DO) deoxygenation or a control treatment (6 mg l-1 DO). All corals survived 2 weeks of deoxygenation but exhibited sublethal changes to coral metabolism after 1- and 2-week exposures, compared with controls. Maximum quantum yield (Fv/Fm) was suppressed after 1 week in both deoxygenation treatments in A. cervicornis, and after 2 weeks in S. siderea and P. astreoides exposed to severe or moderate treatments, respectively. Respiration rates were lower than controls in A. cervicornis and S. siderea after 1 and 2 weeks of severe deoxygenation. The reduced respiration of P. astreoides after 1 week of moderate deoxygenation returned to control levels in week 2. Overall coral metabolic budgets, assessed by ratios of gross photosynthesis to respiration (Pg:R), were more autotrophic, or photosynthesis-dominant, after 1 week of severe deoxygenation in S. siderea and P. astreoides, whereas Pg:R was not significantly different in A. cervicornis between treatments. These results reveal that some corals shift their metabolism to tolerate low-oxygen conditions and avoid bleaching or mortality, indicating that metabolic plasticity is an important aspect of coral resistance to deoxygenation.
Collapse
Affiliation(s)
- J E Mallon
- Smithsonian Marine Station, Fort Pierce, FL 34949, USA
- National Coral Reef Institute, Nova Southeastern University, Dania Beach, FL 33004, USA
| | - A H Altieri
- Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL 32611, USA
| | - T Cyronak
- Coastal Carbon Laboratory, Institute for Coastal Plain Science, Georgia Southern University, Statesboro, GA 30460, USA
| | | | - V J Paul
- Smithsonian Marine Station, Fort Pierce, FL 34949, USA
| | - M D Johnson
- Marine Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
2
|
Pezner AK, Courtney TA, Chou WC, Chu HC, Frable BW, Kekuewa SAH, Soong K, Wei Y, Andersson AJ. Coral growth along a natural gradient of seawater temperature, pH, and oxygen in a nearshore seagrass bed on Dongsha Atoll, Taiwan. PLoS One 2024; 19:e0312263. [PMID: 39441875 PMCID: PMC11498697 DOI: 10.1371/journal.pone.0312263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Coral reefs are facing threats from a variety of global change stressors, including ocean warming, acidification, and deoxygenation. It has been hypothesized that growing corals near primary producers such as macroalgae or seagrass may help to ameliorate acidification and deoxygenation stress, however few studies have explored this effect in situ. Here, we investigated differences in coral growth rates across a natural gradient in seawater temperature, pH, and dissolved oxygen (DO) variability in a nearshore seagrass bed on Dongsha Atoll, Taiwan, South China Sea. We observed strong spatial gradients in temperature (5°C), pH (0.29 pH units), and DO (129 μmol O2 kg-1) across the 1-kilometer wide seagrass bed. Similarly, diel variability recorded by an autonomous sensor in the shallow seagrass measured diel ranges in temperature, pH, and DO of up to 2.6°C, 0.55, and 204 μmol O2 kg-1, respectively. Skeletal cores collected from 15 massive Porites corals growing in the seagrass bed at 4 sites revealed no significant differences in coral calcification rates between sites along the gradients. However, significant differences in skeletal extension rate and density suggest that the dynamic temperature, pH, and/or DO variability may have influenced these properties. The lack of differences in coral growth between sites may be because favorable calcification conditions during the day (high temperature, pH, and DO) were proportionally balanced by unfavorable conditions during the night (low temperature, pH, and DO). Alternatively, other factors were simply more important in controlling coral calcification and/or corals were acclimated to the prevailing conditions at each site.
Collapse
Affiliation(s)
- Ariel K. Pezner
- Scripps Institution of Oceanography, University of California San Diego, San Diego, CA, United States of America
| | - Travis A. Courtney
- Scripps Institution of Oceanography, University of California San Diego, San Diego, CA, United States of America
- Department of Marine Sciences, University of Puerto Rico Mayagüez, Mayagüez, Puerto Rico
| | - Wen-Chen Chou
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Hui-Chuan Chu
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan
| | - Benjamin W. Frable
- Scripps Institution of Oceanography, University of California San Diego, San Diego, CA, United States of America
| | - Samuel A. H. Kekuewa
- Scripps Institution of Oceanography, University of California San Diego, San Diego, CA, United States of America
| | - Keryea Soong
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yi Wei
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Andreas J. Andersson
- Scripps Institution of Oceanography, University of California San Diego, San Diego, CA, United States of America
| |
Collapse
|
3
|
Rinkevich B. A conceptual approach for an innovative marine animal forest apparatus that facilitates carbon sequestration and biodiversity enhancement. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174353. [PMID: 38944304 DOI: 10.1016/j.scitotenv.2024.174353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/06/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Climate change, mainly caused by the indiscriminate usage of fossil fuels, is an urgent global challenge which endangers lives and livelihood of billions of people, the integrity of environmental well-being and the composition and functioning of terrestrial/marine ecosystems alike. To address this pressing concern, climate mitigation and adaptation solutions that target "carbon neutrality by 2050" becomes a crucial global mission. Yet, numerous emerged broad solutions that support biological approaches, such as tree planting, are less stable under enhanced climate change impacts (e.g., forests go on fire). Targeting to achieve the Paris Agreement goals, a wide range of blue carbon sequestering (BCS) approaches have been suggested, since they may contribute considerably to carbon neutrality. Unfortunately, most biological solutions, neglect the employment of marine animal-forests. Here I discuss the potential significance of a novel approach for marine animal forests' BCS, converting the commonly used coral nursery tool into a carbon sequestering floating reef device, a modular device that may accommodate carbon and biodiversity credits.
Collapse
Affiliation(s)
- B Rinkevich
- Israel Oceanography and Limnological Research, National Institute of Oceanography, Tel Shikmona, P.O Box 9753, Haifa 3109701, Israel.
| |
Collapse
|
4
|
Fellowes TE, Vila-Concejo A, Byrne M, Bruce E, Baker E. Risk classification of low-lying coral reef islands and their exposure to climate threats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168787. [PMID: 38029987 DOI: 10.1016/j.scitotenv.2023.168787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/19/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
The bio-physical responses of low-lying coral islands to climate change are of concern. These islands exist across a broad range of bio-physical conditions, and vulnerabilities to rising and warming seas, ocean acidification and increased storminess. We propose a risk-based classification that scores 6 island eco-morphometric attributes and 6 bio-physical ocean/climate conditions from recent open-access data, to assign islands with respect to 5 risk classes (Very Low, Low, Moderate, High and Very High). The potential responses of 56 coral islands in Australia's jurisdiction (Coral Sea, NW Shelf and NE Indian Ocean) to climate change is considered with respect to their bio-physical attributes and eco-morphometrics. None of the islands were classed as Very Low risk, while 8 were classed as Low (14.3 %), 34 were Moderate (60.7 %), 11 were High (19.6 %), and 3 were Very High (5.4 %). Islands in the Very High risk class (located on the NW Shelf) are most vulnerable due to their small size (mean 10 Ha), low elevation (mean 2.6 m MSL), angular/elongated shape, unvegetated state, below average pH (mean 8.05), above average rates of sea-level rise (SLR; mean 4.6 mm/yr), isolation from other islands, and frequent tropical storms and marine heatwaves. In contrast, islands in the Low (and Very Low) risk class are less vulnerable due to their large size (mean 127 Ha), high elevation (mean 8.5 m MSL), sub-angular/round shape, vegetated state, near average pH (mean 8.06), near average SLR rates (mean 3.9 mm/yr), proximity to adjacent islands, and infrequent cyclones and marine heatwaves. Our method provides a risk matrix to assess coral island vulnerability to current climate change related risks and supports future research on the impacts of projected climate change scenarios. Findings have implications for communities living on coral islands, associated ecosystem services and coastal States that base their legal maritime zones on these islands.
Collapse
Affiliation(s)
- Thomas E Fellowes
- Geocoastal Research Group, School of Geosciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia; Marine Studies Institute, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Ana Vila-Concejo
- Geocoastal Research Group, School of Geosciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia; Marine Studies Institute, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Maria Byrne
- Marine Studies Institute, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Eleanor Bruce
- Geocoastal Research Group, School of Geosciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia; Marine Studies Institute, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Elaine Baker
- Marine Studies Institute, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia; UNEP/GRID-Arendal, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
5
|
Tomasetti SJ, Doall MH, Hallinan BD, Kraemer JR, Gobler CJ. Oyster reefs' control of carbonate chemistry-Implications for oyster reef restoration in estuaries subject to coastal ocean acidification. GLOBAL CHANGE BIOLOGY 2023; 29:6572-6590. [PMID: 37777480 DOI: 10.1111/gcb.16960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 10/02/2023]
Abstract
Globally, oyster reef restoration is one of the most widely applied coastal restoration interventions. While reefs are focal points of processes tightly linked to the carbonate system such as shell formation and respiration, how these processes alter reef carbonate chemistry relative to the surrounding seawater is unclear. Moreover, coastal systems are increasingly impacted by coastal acidification, which may affect reef carbonate chemistry. Here, we characterized the growth of multiple constructed reefs as well as summer variations in pH and carbonate chemistry of reef-influenced seawater (in the middle of reefs) and ambient seawater (at locations ~50 m outside of reefs) to determine how reef chemistry was altered by the reef community and, in turn, impacts resident oysters. High frequency monitoring across three subtidal constructed reefs revealed reductions of daily mean and minimum pH (by 0.05-0.07 and 0.07-0.12 units, respectively) in seawater overlying reefs relative to ambient seawater (p < .0001). The proportion of pH measurements below 7.5, a threshold shown to negatively impact post-larval oysters, were 1.8×-5.2× higher in reef seawater relative to ambient seawater. Most reef seawater samples (83%) were reduced in total alkalinity relative to ambient seawater samples, suggesting community calcification was a key driver of modified carbonate chemistry. The net metabolic influence of the reef community resulted in reductions of CaCO3 saturation state in 78% of discrete samples, and juvenile oysters placed on reefs exhibited slower shell growth (p < .05) compared to oysters placed outside of reefs. While differences in survival were not detected, reef oysters may benefit from enhanced survival or recruitment at the cost of slowed growth rates. Nevertheless, subtidal restored reef communities modified seawater carbonate chemistry in ways that likely increased oyster vulnerability to acidification, suggesting that carbonate chemistry dynamics warrant consideration when determining site suitability for oyster restoration, particularly under continued climate change.
Collapse
Affiliation(s)
- Stephen J Tomasetti
- Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, Maryland, USA
| | - Michael H Doall
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, New York, USA
| | - Brendan D Hallinan
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, New York, USA
| | - Jeffrey R Kraemer
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, New York, USA
| | - Christopher J Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, New York, USA
| |
Collapse
|
6
|
de Almeida M, da Fonseca LT, Pinheiro BR, Pereira NS, de Jesus Flores Montes M. Daily variability of pH and temperature in seawater from a near-pristine oceanic atoll, Southwest Atlantic. MARINE POLLUTION BULLETIN 2023; 196:115670. [PMID: 37871456 DOI: 10.1016/j.marpolbul.2023.115670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023]
Abstract
The study of pH and temperature variability in reef environments, and the underlying processes that control this variability, is of great importance for ocean acidification research. Therefore, in the reef environment of Rocas Atoll, we conducted continuous monitoring of pH and temperature and periodic sampling of carbonate chemistry, and we hypothesize that seawater temperature is not the determining factor in the daily variability of pH at this atoll. Our results showed that the seawater of the atoll presented a high daily variability in pH, [H+], and temperature. The cycles of variations occurred primarily with a periodicity of ∼24 h, related to the daily light cycle, and secondarily with a periodicity of ∼12 h, associated with the semi-diurnal tidal cycles of the atoll. The results indicate that the relative balance of net organic carbon metabolism is the main process modulating carbonate chemistry on the atoll throughout the day.
Collapse
Affiliation(s)
- Marcos de Almeida
- Department of Oceanography, Federal University of Pernambuco, Recife, Pernambuco, Brazil.
| | | | - Bárbara Ramos Pinheiro
- Postgraduate Program in Water Resources and Sanitation, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Natan Silva Pereira
- Department of Exact and Earth Sciences, State University of Bahia, Salvador, Bahia, Brazil
| | | |
Collapse
|
7
|
Knebel O, Carvajal C, Kench P, Gehrels R. Spatial pH variability of coral reef flats of Kiritimati Island, Kiribati. MARINE ENVIRONMENTAL RESEARCH 2023; 185:105861. [PMID: 36709655 DOI: 10.1016/j.marenvres.2022.105861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/19/2022] [Accepted: 12/25/2022] [Indexed: 06/18/2023]
Abstract
Ocean acidification poses a threat to carbonate-dominated marine systems, such as tropical coral reefs, as it impacts the ability of organisms to calcify. For assessing the susceptibility of coral reef flats to open ocean acidification it is crucial to better understand the dynamics between the carbonate chemistry of open ocean waters flowing onto coral reef flats and the ecological and hydrodynamic processes that locally modify seawater conditions. In this study, variations in seawater pH and temperature were measured along cross-reef flat transects in high resolution (∼0.3 m) and complemented by surveys of the benthic community composition and reef flat bathymetry. Results represent a snapshot in time and suggest that reef flat hydrodynamic processes determine spatial pH modifications, with little influence of variations in benthic community composition. As mean reef flat pH largely equals ocean conditions, ocean acidification has had and will have an unhampered impact on narrow fringing reef flats.
Collapse
Affiliation(s)
- Oliver Knebel
- School of Environment, University of Auckland, New Zealand.
| | | | - Paul Kench
- Department of Geography, National University of Singapore, Singapore
| | - Roland Gehrels
- Department of Environment and Geography, University of York, UK
| |
Collapse
|
8
|
Mallon J, Banaszak AT, Donachie L, Exton D, Cyronak T, Balke T, Bass AM. A low-cost benthic incubation chamber for in-situ community metabolism measurements. PeerJ 2022; 10:e13116. [PMID: 35402104 PMCID: PMC8992662 DOI: 10.7717/peerj.13116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/23/2022] [Indexed: 01/12/2023] Open
Abstract
Benthic incubation chambers facilitate in-situ metabolism studies in shallow water environments. They are used to isolate the water surrounding a study organism or community so that changes in water chemistry can be quantified to characterise physiological processes such as photosynthesis, respiration, and calcification. Such field measurements capture the biological processes taking place within the benthic community while incorporating the influence of environmental variables that are often difficult to recreate in ex-situ settings. Variations in benthic chamber designs have evolved for a range of applications. In this study, we built upon previous designs to create a novel chamber, which is (1) low-cost and assembled without specialised equipment, (2) easily reproducible, (3) minimally invasive, (4) adaptable to varied substrates, and (5) comparable with other available designs in performance. We tested the design in the laboratory and field and found that it achieved the outlined objectives. Using non-specialised materials, we were able to construct the chamber at a low cost (under $20 USD per unit), while maintaining similar performance and reproducibility with that of existing designs. Laboratory and field tests demonstrated minimal leakage (2.08 ± 0.78% water exchange over 4 h) and acceptable light transmission (86.9 ± 1.9%), results comparable to those reported for other chambers. In the field, chambers were deployed in a shallow coastal environment in Akumal, Mexico, to measure productivity of seagrass, and coral-, algae-, and sand-dominated reef patches. In both case studies, production rates aligned with those of comparable benthic chamber deployments in the literature and followed established trends with light, the primary driver of benthic metabolism, indicating robust performance under field conditions. We demonstrate that our low-cost benthic chamber design uses locally accessible and minimal resources, is adaptable for a variety of field settings, and can be used to collect reliable and repeatable benthic metabolism data. This chamber has the potential to broaden accessibility and applications of in-situ incubations for future studies.
Collapse
Affiliation(s)
- Jennifer Mallon
- School of Geographical and Earth Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Anastazia T. Banaszak
- Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, Mexico
| | | | - Dan Exton
- Operation Wallacea, Spilsby, Lincolnshire, United Kingdom
| | - Tyler Cyronak
- Department of Marine and Environmental Sciences, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania Beach, Florida, United States
| | - Thorsten Balke
- School of Geographical and Earth Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Adrian M. Bass
- School of Geographical and Earth Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
9
|
Platz MC, Arias ME, Byrne RH. Reef Metabolism Monitoring Methods and Potential Applications for Coral Restoration. ENVIRONMENTAL MANAGEMENT 2022; 69:612-625. [PMID: 35079882 DOI: 10.1007/s00267-022-01597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Coral reef metabolism measurements have been used by scientists for decades to track reef responses to the globe's changing carbon budget and project shifts in reef function. Here, we propose that metabolism measurement tools and methods could also be used to monitor reef ecosystem change in response to coral restoration. This review paper provides a general introduction to net ecosystem metabolism and carbon chemistry for coral reef ecosystems, followed by a review of five metabolism monitoring methods with potential for application to coral reef restoration monitoring. Selected methodologies included those with measurement scales appropriate to assess outplant arrays and whole reef ecosystem outcomes associated with restoration interventions. Subsequently we discuss how water column and CO2 chemistry could be used to address coral restoration monitoring research gaps and scale up from biological, colony-level metrics to ecosystem-scale function and performance assessments. Such function-based measurements could potentially be used to inform several goal-based monitoring objectives highlighted in the Coral Reef Restoration Monitoring Guide. Lastly, this review discusses important methodological factors, such as scale, reef type, and flow environment, that should be considered when determining which metabolism monitoring technique would be most appropriate for a reef restoration project.
Collapse
Affiliation(s)
- Michelle C Platz
- University of South Florida, Department of Civil and Environmental Engineering, 4202 E. Fowler Avenue, ENG-030, Tampa, FL, 33620, USA
| | - Mauricio E Arias
- University of South Florida, Department of Civil and Environmental Engineering, 4202 E. Fowler Avenue, ENG-030, Tampa, FL, 33620, USA.
| | - Robert H Byrne
- University of South Florida, College of Marine Science, 830 1st St S, St. Petersburg, FL, 33701, USA
| |
Collapse
|
10
|
Westphal H, Murphy GN, Doo SS, Mann T, Petrovic A, Schmidt C, Stuhr M. Ecosystem design as an avenue for improving services provided by carbonate producing marine ecosystems. PeerJ 2022; 10:e12785. [PMID: 35116197 PMCID: PMC8784016 DOI: 10.7717/peerj.12785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/21/2021] [Indexed: 01/10/2023] Open
Abstract
Ecosystem Design (ED) is an approach for constructing habitats that places human needs for ecosystem services at the center of intervention, with the overarching goal of establishing self-sustaining habitats which require limited management. This concept was originally developed for use in mangrove ecosystems, and is understandably controversial, as it markedly diverges from other protection approaches that assign human use a minor priority or exclude it. However, the advantage of ED lies within the considered implementation of these designed ecosystems, thus preserving human benefits from potential later disturbances. Here, we outline the concept of ED in tropical carbonate depositional systems and discuss potential applications to aid ecosystem services such as beach nourishment and protection of coastlines and reef islands at risk from environmental and climate change, CO2 sequestration, food production, and tourism. Biological carbonate sediment production is a crucial source of stability of reef islands and reef-rimmed coastlines. Careful implementation of designed carbonate depositional ecosystems could help counterbalance sea-level rise and manage documented erosion effects of coastal constructions. Importantly, adhering to the core ethos of ED, careful dynamic assessments which provide a balanced approach to maximizing ecosystem services (e.g., carbonate production), should identify and avoid any potential damages to existing functioning ecosystems.
Collapse
Affiliation(s)
- Hildegard Westphal
- Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany,Geoscience Department, Universität Bremen, Bremen, Germany,King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Gary N. Murphy
- Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany
| | - Steve S. Doo
- Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany,King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Thomas Mann
- Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Hannover, Germany
| | - Alexander Petrovic
- King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | - Marleen Stuhr
- Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany,Inter-University Institute for Marine Sciences (IUI), Eilat, Israel,Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
11
|
Courtney TA, Cyronak T, Griffin AJ, Andersson AJ. Implications of salinity normalization of seawater total alkalinity in coral reef metabolism studies. PLoS One 2021; 16:e0261210. [PMID: 34965259 PMCID: PMC8716060 DOI: 10.1371/journal.pone.0261210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/28/2021] [Indexed: 11/18/2022] Open
Abstract
Salinity normalization of total alkalinity (TA) and dissolved inorganic carbon (DIC) data is commonly used to account for conservative mixing processes when inferring net metabolic modification of seawater by coral reefs. Salinity (S), TA, and DIC can be accurately and precisely measured, but salinity normalization of TA (nTA) and DIC (nDIC) can generate considerable and unrecognized uncertainties in coral reef metabolic rate estimates. While salinity normalization errors apply to nTA, nDIC, and other ions of interest in coral reefs, here, we focus on nTA due to its application as a proxy for net coral reef calcification and the importance for reefs to maintain calcium carbonate production under environmental change. We used global datasets of coral reef TA, S, and modeled groundwater discharge to assess the effect of different volumetric ratios of multiple freshwater TA inputs (i.e., groundwater, river, surface runoff, and precipitation) on nTA. Coral reef freshwater endmember TA ranged from -2 up to 3032 μmol/kg in hypothetical reef locations with freshwater inputs dominated by riverine, surface runoff, or precipitation mixing with groundwater. The upper bound of freshwater TA in these scenarios can result in an uncertainty in reef TA of up to 90 μmol/kg per unit S normalization if the freshwater endmember is erroneously assumed to have 0 μmol/kg alkalinity. The uncertainty associated with S normalization can, under some circumstances, even shift the interpretation of whether reefs are net calcifying to net dissolving, or vice versa. Moreover, the choice of reference salinity for normalization implicitly makes assumptions about whether biogeochemical processes occur before or after mixing between different water masses, which can add uncertainties of ±1.4% nTA per unit S normalization. Additional considerations in identifying potential freshwater sources of TA and their relative volumetric impact on seawater are required to reduce uncertainties associated with S normalization of coral reef carbonate chemistry data in some environments. However, at a minimum, researchers should minimize the range of salinities over which the normalization is applied, precisely measure salinity, and normalize TA values to a carefully selected reference salinity that takes local factors into account.
Collapse
Affiliation(s)
- Travis A. Courtney
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
- Department of Marine Sciences, University of Puerto Rico Mayagüez, Mayagüez, Puerto Rico, United States of America
- * E-mail:
| | - Tyler Cyronak
- Department of Marine and Environmental Sciences, Nova Southeastern University, Fort Lauderdale, Florida, United States of America
| | - Alyssa J. Griffin
- Bodega Marine Laboratory, University of California Davis, Davis, CA, United States of America
| | - Andreas J. Andersson
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
12
|
Renforth P, Campbell JS. The role of soils in the regulation of ocean acidification. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200174. [PMID: 34365827 PMCID: PMC8349639 DOI: 10.1098/rstb.2020.0174] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2021] [Indexed: 01/22/2023] Open
Abstract
Soils play an important role in mediating chemical weathering reactions and carbon transfer from the land to the ocean. Proposals to increase the contribution of alkalinity to the oceans through 'enhanced weathering' as a means to help prevent climate change are gaining increasing attention. This would augment the existing connection between the biogeochemical function of soils and alkalinity levels in the ocean. The feasibility of enhanced weathering depends on the combined influence of what minerals are added to soils, the formation of secondary minerals in soils and the drainage regime, and the partial pressure of respired CO2 around the dissolving mineral. Increasing the alkalinity levels in the ocean through enhanced weathering could help to ameliorate the effects of ocean acidification in two ways. First, enhanced weathering would slightly elevate the pH of drainage waters, and the receiving coastal waters. The elevated pH would result in an increase in carbonate mineral saturation states, and a partial reversal in the effects of elevated CO2. Second, the increase in alkalinity would help to replenish the ocean's buffering capacity by maintaining the 'Revelle Factor', making the oceans more resilient to further CO2 emissions. However, there is limited research on the downstream and oceanic impacts of enhanced weathering on which to base deployment decisions. This article is part of the theme issue 'The role of soils in delivering Nature's Contributions to People'.
Collapse
Affiliation(s)
- P. Renforth
- The Research Centre for Carbon Solutions, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - J. S. Campbell
- The Research Centre for Carbon Solutions, Heriot-Watt University, Edinburgh EH14 4AS, UK
| |
Collapse
|
13
|
Dellisanti W, Chung JTH, Chow CFY, Wu J, Wells ML, Chan LL. Experimental Techniques to Assess Coral Physiology in situ Under Global and Local Stressors: Current Approaches and Novel Insights. Front Physiol 2021; 12:656562. [PMID: 34163371 PMCID: PMC8215126 DOI: 10.3389/fphys.2021.656562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/09/2021] [Indexed: 11/19/2022] Open
Abstract
Coral reefs are declining worldwide due to global changes in the marine environment. The increasing frequency of massive bleaching events in the tropics is highlighting the need to better understand the stages of coral physiological responses to extreme conditions. Moreover, like many other coastal regions, coral reef ecosystems are facing additional localized anthropogenic stressors such as nutrient loading, increased turbidity, and coastal development. Different strategies have been developed to measure the health status of a damaged reef, ranging from the resolution of individual polyps to the entire coral community, but techniques for measuring coral physiology in situ are not yet widely implemented. For instance, while there are many studies of the coral holobiont response in single or limited-number multiple stressor experiments, they provide only partial insights into metabolic performance under more complex and temporally and spatially variable natural conditions. Here, we discuss the current status of coral reefs and their global and local stressors in the context of experimental techniques that measure core processes in coral metabolism (respiration, photosynthesis, and biocalcification) in situ, and their role in indicating the health status of colonies and communities. We highlight the need to improve the capability of in situ studies in order to better understand the resilience and stress response of corals under multiple global and local scale stressors.
Collapse
Affiliation(s)
- Walter Dellisanti
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, China.,Department of Biomedical Sciences, City University of Hong Kong, Kowloon, China
| | - Jeffery T H Chung
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, China
| | - Cher F Y Chow
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, China.,Centre for Biological Diversity, Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Jiajun Wu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, China
| | - Mark L Wells
- School of Marine Sciences, University of Maine, Orono, ME, United States.,State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Leo L Chan
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, China.,Department of Biomedical Sciences, City University of Hong Kong, Kowloon, China.,Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
14
|
Skinner C, Mill AC, Fox MD, Newman SP, Zhu Y, Kuhl A, Polunin NVC. Offshore pelagic subsidies dominate carbon inputs to coral reef predators. SCIENCE ADVANCES 2021; 7:7/8/eabf3792. [PMID: 33608282 PMCID: PMC7895429 DOI: 10.1126/sciadv.abf3792] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/04/2021] [Indexed: 05/04/2023]
Abstract
Coral reefs were traditionally perceived as productive hot spots in oligotrophic waters. While modern evidence indicates that many coral reef food webs are heavily subsidized by planktonic production, the pathways through which this occurs remain unresolved. We used the analytical power of carbon isotope analysis of essential amino acids to distinguish between alternative carbon pathways supporting four key reef predators across an oceanic atoll. This technique separates benthic versus planktonic inputs, further identifying two distinct planktonic pathways (nearshore reef-associated plankton and offshore pelagic plankton), and revealing that these reef predators are overwhelmingly sustained by offshore pelagic sources rather than by reef sources (including reef-associated plankton). Notably, pelagic reliance did not vary between species or reef habitats, emphasizing that allochthonous energetic subsidies may have system-wide importance. These results help explain how coral reefs maintain exceptional productivity in apparently nutrient-poor tropical settings, but also emphasize their susceptibility to future ocean productivity fluctuations.
Collapse
Affiliation(s)
- C Skinner
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering, Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - A C Mill
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - M D Fox
- Woods Hole Oceanographic Institution, 266 Woods Hole Rd, Woods Hole, MA 02543, USA
| | - S P Newman
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Banyan Tree Marine Lab, Vabbinfaru Resort, North Malé Atoll, Republic of Maldives
| | - Y Zhu
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - A Kuhl
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - N V C Polunin
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
15
|
Kim JH, Steller DL, Edwards MS. Variation in Photosynthetic Performance Relative to Thallus Microhabitat Heterogeneity in Lithothamnion australe (Rhodophyta, Corallinales) Rhodoliths. JOURNAL OF PHYCOLOGY 2021; 57:234-244. [PMID: 33020935 DOI: 10.1111/jpy.13080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/20/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
Rhodoliths are free-living, coralline algae that create heterogeneous structure over sedimentary habitats. These fragile ecosystems are threatened by anthropogenic disturbances that reduce their size and three-dimensional structural complexity. We investigated how physical disturbance from boat moorings affects photosynthetic performance in the rhodolith Lithothamnion australe. Photosynthetic parameters were measured for intact rhodoliths and crushed rhodolith fragments of two sizes (ca. 1 and 2 cm diameter), while chlorophyll fluorescence was measured at the surface of rhodoliths of these two sizes, between the interior branches of the larger rhodoliths, and at the surface of 52 various sized (0.4-3.5 cm diameter) rhodoliths. Gross productivity and net productivity were 15% and 36% higher, respectively, in the smaller L. australe, while respiration was 10% higher in the larger individuals. Thallus crushing reduced gross productivity by 20% and 41%, and net productivity by 9% and 14% in the smaller and larger rhodoliths, respectively. It also reduced respiration by 33% and 60% in the smaller and larger rhodoliths, respectively. Fluorescence parameters were all greater at the surface of the larger L. australe than the smaller individuals, and greater at the surface than in the interior parts of the larger individuals. Across a range of rhodolith sizes, surface fluorescence parameters were at their maxima in 1.54 to 2.32 cm diameter individuals. These results show that L. australe's complex structure creates heterogeneity in photosynthesis and respiration between their surface and interior parts and among rhodolith sizes. This information can help predict how rhodoliths may respond to disturbance and environmental stressors.
Collapse
Affiliation(s)
- Ju-Hyoung Kim
- Faculty of Marine Applied Biosciences, Kunsan National University, Gunsan, 54150, South Korea
| | - Diana L Steller
- Moss Landing Marine Laboratories, 8272 Moss Landing Road, Moss Landing, California, 95039, USA
| | - Matthew S Edwards
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, California, 92182, USA
| |
Collapse
|
16
|
Yamamoto S, Kayanne H, Fujita N, Sato Y, Kurihara H, Harii S, Hemmi A, Dickson AG. Development of an automated transportable continuous system to measure the total alkalinity of seawater. Talanta 2021; 221:121666. [PMID: 33076173 DOI: 10.1016/j.talanta.2020.121666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 11/25/2022]
Abstract
Anthropogenic CO2 emissions are contributing to global warming and ocean acidification. Rapid and accurate measurements of seawater carbonate chemistry are critical to understand current changes in the ocean and to predict future effects of such changes on marine organisms and ecosystems. Total alkalinity (AT) measurements can be used to directly determine the calcification rate, but they are time-consuming and require large sample volumes. Herein, we describe an automated and transportable flow-through system that can conduct continuous AT measurement using an ion sensitive field effect transistor (ISFET) - Ag/AgCl sensor and three different reference materials. The response time, stability, and uncertainty of our system were evaluated by comparing AT values of calibrated reference materials to those calculated by our system. Our system requires only small amounts of seawater (<10 mL) and a short time per sample (<5 min) to produce results with a relative uncertainty of less than 0.1% (approx. 2.2 μmol kg-1). This system is expected to facilitate easy and rapid in-situ measurement of AT. Continuous AT measurements would enable us to determine short-term calcification responses to changes in light or temperature and improve our understanding of the metabolic mechanisms of creatures such as corals.
Collapse
Affiliation(s)
- Shoji Yamamoto
- National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8563, Japan.
| | - Hajime Kayanne
- Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Nori Fujita
- Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yukari Sato
- National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8563, Japan
| | - Haruko Kurihara
- Department of Chemistry, Biology, and Marine Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, 903-0213, Japan
| | - Saki Harii
- Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa, 905-0227, Japan
| | - Akihide Hemmi
- Mebius Advanced Technology Ltd., 3-31-6 Nishiogi-kita, Suginami-ku, Tokyo, 167-0042, Japan
| | - Andrew G Dickson
- Scripps Institution of Oceanography (MC0244), University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0244, USA
| |
Collapse
|
17
|
Silbiger NJ, Donahue MJ, Lubarsky K. Submarine groundwater discharge alters coral reef ecosystem metabolism. Proc Biol Sci 2020; 287:20202743. [PMID: 33323091 DOI: 10.1098/rspb.2020.2743] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Submarine groundwater discharge (SGD) influences near-shore coral reef ecosystems worldwide. SGD biogeochemistry is distinct, typically with higher nutrients, lower pH, cooler temperature and lower salinity than receiving waters. SGD can also be a conduit for anthropogenic nutrients and other pollutants. Using Bayesian structural equation modelling, we investigate pathways and feedbacks by which SGD influences coral reef ecosystem metabolism at two Hawai'i sites with distinct aquifer chemistry. The thermal and biogeochemical environment created by SGD changed net ecosystem production (NEP) and net ecosystem calcification (NEC). NEP showed a nonlinear relationship with SGD-enhanced nutrients: high fluxes of moderately enriched SGD (Wailupe low tide) and low fluxes of highly enriched SGD (Kūpikipiki'ō high tide) increased NEP, but high fluxes of highly enriched SGD (Kūpikipiki'ō low tide) decreased NEP, indicating a shift toward microbial respiration. pH fluctuated with NEP, driving changes in the net growth of calcifiers (NEC). SGD enhances biological feedbacks: changes in SGD from land use and climate change will have consequences for calcification of coral reef communities, and thereby shoreline protection.
Collapse
Affiliation(s)
- Nyssa J Silbiger
- Biology Department, California State University, Northridge, CA 91330, USA
| | - Megan J Donahue
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI 96744, USA
| | - Katie Lubarsky
- Scripps Institution of Oceanography, University of California, San Diego, CA, 92037, USA
| |
Collapse
|
18
|
Wolfe K, Nguyen HD, Davey M, Byrne M. Characterizing biogeochemical fluctuations in a world of extremes: A synthesis for temperate intertidal habitats in the face of global change. GLOBAL CHANGE BIOLOGY 2020; 26:3858-3879. [PMID: 32239581 DOI: 10.1111/gcb.15103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 03/17/2020] [Indexed: 05/24/2023]
Abstract
Coastal and intertidal habitats are at the forefront of anthropogenic influence and environmental change. The species occupying these habitats are adapted to a world of extremes, which may render them robust to the changing climate or more vulnerable if they are at their physiological limits. We characterized the diurnal, seasonal and interannual patterns of flux in biogeochemistry across an intertidal gradient on a temperate sandstone platform in eastern Australia over 6 years (2009-2015) and present a synthesis of our current understanding of this habitat in context with global change. We used rock pools as natural mesocosms to determine biogeochemistry dynamics and patterns of eco-stress experienced by resident biota. In situ measurements and discrete water samples were collected night and day during neap low tide events to capture diurnal biogeochemistry cycles. Calculation of pHT using total alkalinity (TA) and dissolved inorganic carbon (DIC) revealed that the mid-intertidal habitat exhibited the greatest flux over the years (pHT 7.52-8.87), and over a single tidal cycle (1.11 pHT units), while the low-intertidal (pHT 7.82-8.30) and subtidal (pHT 7.87-8.30) were less variable. Temperature flux was also greatest in the mid-intertidal (8.0-34.5°C) and over a single tidal event (14°C range), as typical of temperate rocky shores. Mean TA and DIC increased at night and decreased during the day, with the most extreme conditions measured in the mid-intertidal owing to prolonged emersion periods. Temporal sampling revealed that net ecosystem calcification and production were highest during the day and lowest at night, particularly in the mid-intertidal. Characterization of biogeochemical fluctuations in a world of extremes demonstrates the variable conditions that intertidal biota routinely experience and highlight potential microhabitat-specific vulnerabilities and climate change refugia.
Collapse
Affiliation(s)
- Kennedy Wolfe
- Marine Spatial Ecology Lab, School of Biological Sciences and ARC Centre of Excellence for Coral Reef Studies, University of Queensland, St Lucia, Qld, Australia
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Hong D Nguyen
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Madeline Davey
- Centre for Biodiversity and Conservation Science, School of Biological Sciences, University of Queensland, St Lucia, Qld, Australia
| | - Maria Byrne
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
19
|
Courtney TA, Barnes BB, Chollett I, Elahi R, Gross K, Guest JR, Kuffner IB, Lenz EA, Nelson HR, Rogers CS, Toth LT, Andersson AJ. Disturbances drive changes in coral community assemblages and coral calcification capacity. Ecosphere 2020. [DOI: 10.1002/ecs2.3066] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Travis A. Courtney
- Scripps Institution of Oceanography University of California San Diego La Jolla California 92093 USA
| | - Brian B. Barnes
- College of Marine Science University of South Florida St. Petersburg Florida 33701 USA
| | | | - Robin Elahi
- Hopkins Marine Station Stanford University Pacific Grove California 93950 USA
| | - Kevin Gross
- Department of Statistics North Carolina State University Raleigh North Carolina 27695 USA
| | - James R. Guest
- School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne NE17RU UK
| | - Ilsa B. Kuffner
- U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center St. Petersburg Florida 33701 USA
| | - Elizabeth A. Lenz
- Hawai'i Institute of Marine Biology University of Hawai'i Kāne'ohe Hawai'i 96744 USA
| | - Hannah R. Nelson
- Department of Biology California State University Northridge California 91330 USA
| | - Caroline S. Rogers
- U.S. Geological Survey, Wetland and Aquatic Research Center St John U.S. Virgin Islands USA
| | - Lauren T. Toth
- U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center St. Petersburg Florida 33701 USA
| | - Andreas J. Andersson
- Scripps Institution of Oceanography University of California San Diego La Jolla California 92093 USA
| |
Collapse
|
20
|
Schwaner C, Barbosa M, Connors P, Park TJ, de Silva D, Griffith A, Gobler CJ, Pales Espinosa E, Allam B. Experimental acidification increases susceptibility of Mercenaria mercenaria to infection by Vibrio species. MARINE ENVIRONMENTAL RESEARCH 2020; 154:104872. [PMID: 32056698 DOI: 10.1016/j.marenvres.2019.104872] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/27/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
Ocean acidification alters seawater carbonate chemistry, which can have detrimental impacts for calcifying organisms such as bivalves. This study investigated the physiological cost of resilience to acidification in Mercenaria mercenaria, with a focus on overall immune performance following exposure to Vibrio spp. Larval and juvenile clams reared in seawater with high pCO2 (~1200 ppm) displayed an enhanced susceptibility to bacterial pathogens. Higher susceptibility to infection in clams grown under acidified conditions was derived from a lower immunity to infection more so than an increase in growth of bacteria under high pCO2. A reciprocal transplant of juvenile clams demonstrated the highest mortality amongst animals transplanted from low pCO2/high pH to high pCO2/low pH conditions and then exposed to bacterial pathogens. Collectively, these results suggest that increased pCO2 will result in immunocompromised larvae and juveniles, which could have complex and pernicious effects on hard clam populations.
Collapse
Affiliation(s)
- Caroline Schwaner
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA.
| | - Michelle Barbosa
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA.
| | - Peter Connors
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA.
| | - Tae-Jin Park
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA.
| | - Darren de Silva
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, 11968, USA.
| | - Andrew Griffith
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, 11968, USA.
| | - Christopher J Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, 11968, USA.
| | | | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA.
| |
Collapse
|
21
|
Adler BL, DeLeo VA. Sunscreen Safety: a Review of Recent Studies on Humans and the Environment. CURRENT DERMATOLOGY REPORTS 2020. [DOI: 10.1007/s13671-020-00284-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Strong time dependence of ocean acidification mitigation by atmospheric carbon dioxide removal. Nat Commun 2019; 10:5592. [PMID: 31811135 PMCID: PMC6898155 DOI: 10.1038/s41467-019-13586-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 11/12/2019] [Indexed: 11/21/2022] Open
Abstract
In Paris in 2015, the global community agreed to limit global warming to well below 2 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${}^{\circ }$$\end{document}∘C, aiming at even 1.5 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${}^{\circ }$$\end{document}∘C. It is still uncertain whether these targets are sufficient to preserve marine ecosystems and prevent a severe alteration of marine biogeochemical cycles. Here, we show that stringent mitigation strategies consistent with the 1.5 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${}^{\circ }$$\end{document}∘C scenario could, indeed, provoke a critical difference for the ocean’s carbon cycle and calcium carbonate saturation states. Favorable conditions for calcifying organisms like tropical corals and polar pteropods, both of major importance for large ecosystems, can only be maintained if CO\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${}_{2}$$\end{document}2 emissions fall rapidly between 2025 and 2050, potentially requiring an early deployment of CO\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${}_{2}$$\end{document}2 removal techniques in addition to drastic emissions reduction. Furthermore, this outcome can only be achieved if the terrestrial biosphere remains a carbon sink during the entire 21st century. Carbon dioxide removal technologies are often touted as a potential strategy to combat ocean acidification. However, the authors show here that these strategies are only effective when included as part of aggressive and rapid climate-action, undermining the idea of geoengineering as a panacea.
Collapse
|
23
|
Ocean acidification effects on in situ coral reef metabolism. Sci Rep 2019; 9:12067. [PMID: 31427632 PMCID: PMC6700128 DOI: 10.1038/s41598-019-48407-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/05/2019] [Indexed: 12/30/2022] Open
Abstract
The Anthropocene climate has largely been defined by a rapid increase in atmospheric CO2, causing global climate change (warming) and ocean acidification (OA, a reduction in oceanic pH). OA is of particular concern for coral reefs, as the associated reduction in carbonate ion availability impairs biogenic calcification and promotes dissolution of carbonate substrata. While these trends ultimately affect ecosystem calcification, scaling experimental analyses of the response of organisms to OA to consider the response of ecosystems to OA has proved difficult. The benchmark of ecosystem-level experiments to study the effects of OA is provided through Free Ocean CO2 Enrichment (FOCE), which we use in the present analyses for a 21-d experiment on the back reef of Mo’orea, French Polynesia. Two natural coral reef communities were incubated in situ, with one exposed to ambient pCO2 (393 µatm), and one to high pCO2 (949 µatm). Our results show a decrease in 24-h net community calcification (NCC) under high pCO2, and a reduction in nighttime NCC that attenuated and eventually reversed over 21-d. This effect was not observed in daytime NCC, and it occurred without any effect of high pCO2 on net community production (NCP). These results contribute to previous studies on ecosystem-level responses of coral reefs to the OA conditions projected for the end of the century, and they highlight potential attenuation of high pCO2 effects on nighttime net community calcification.
Collapse
|
24
|
Sirois J. Examine all available evidence before making decisions on sunscreen ingredient bans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 674:211-212. [PMID: 31004897 DOI: 10.1016/j.scitotenv.2019.04.137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/06/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
Coral bleaching is a worldwide problem and more needs to be done to determine causes and potential solutions. A myopic focus on sunscreen ingredients as the proximate cause of coral bleaching provides consumers a false belief that enacted bans of these ingredients will erase decades of coral reef decline. Instead, these bans will likely only lead to decreased sunscreen use and exposure to potentially harmful UV radiation. A closer examination of all available evidence on the causes of coral reef bleaching needs to be undertaken, including a more thorough appraisal of studies conducted under artificial conditions using higher concentrations of sunscreen ingredients.
Collapse
Affiliation(s)
- Jay Sirois
- Regulatory & Scientific Affairs, Consumer Healthcare Products Association, 1625 I St NW, Suite 600, Washington, DC 20006, United States of America..
| |
Collapse
|
25
|
Lowe AT, Bos J, Ruesink J. Ecosystem metabolism drives pH variability and modulates long-term ocean acidification in the Northeast Pacific coastal ocean. Sci Rep 2019; 9:963. [PMID: 30700764 PMCID: PMC6353961 DOI: 10.1038/s41598-018-37764-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/12/2018] [Indexed: 11/24/2022] Open
Abstract
Ocean acidification poses serious threats to coastal ecosystem services, yet few empirical studies have investigated how local ecological processes may modulate global changes of pH from rising atmospheric CO2. We quantified patterns of pH variability as a function of atmospheric CO2 and local physical and biological processes at 83 sites over 25 years in the Salish Sea and two NE Pacific estuaries. Mean seawater pH decreased significantly at −0.009 ± 0.0005 pH yr−1 (0.22 pH over 25 years), with spatially variable rates ranging up to 10 times greater than atmospheric CO2-driven ocean acidification. Dissolved oxygen saturation (%DO) decreased by −0.24 ± 0.036% yr−1, with site-specific trends similar to pH. Mean pH shifted from <7.6 in winter to >8.0 in summer concomitant to the seasonal shift from heterotrophy (%DO < 100) to autotrophy (%DO > 100) and dramatic shifts in aragonite saturation state critical to shell-forming organisms (probability of undersaturation was >80% in winter, but <20% in summer). %DO overwhelmed the influence of atmospheric CO2, temperature and salinity on pH across scales. Collectively, these observations provide evidence that local ecosystem processes modulate ocean acidification, and support the adoption of an ecosystem perspective to ocean acidification and multiple stressors in productive aquatic habitats.
Collapse
Affiliation(s)
- Alexander T Lowe
- Tennenbaum Marine Observatories Network, Smithsonian Institution, 647 Contees Wharf Road, Edgewater, MD, 21307, USA. .,Department of Biology, University of Washington, 24 Kincaid Hall, Seattle, WA, 98195, USA.
| | - Julia Bos
- Washington Department of Ecology, 300 Desmond Dr. SE, Lacey, WA, 98503, USA
| | - Jennifer Ruesink
- Department of Biology, University of Washington, 24 Kincaid Hall, Seattle, WA, 98195, USA
| |
Collapse
|
26
|
The Invisible Carbon Footprint as a hidden impact of peatland degradation inducing marine carbonate dissolution in Sumatra, Indonesia. Sci Rep 2018; 8:17403. [PMID: 30479397 PMCID: PMC6258705 DOI: 10.1038/s41598-018-35769-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/08/2018] [Indexed: 11/25/2022] Open
Abstract
In Indonesia, land use change (LUC) in the form of peatland degradation induces carbon loss through direct CO2 emissions, but also via soil leaching of which circa 50% is decomposed and emitted as CO2 from the rivers. However, the fate of the remaining exported leached carbon is uncertain. Here, we show that the majority of this carbon is respired in the estuaries and emitted to the atmosphere. However, a portion is adsorbed into the marine carbon pool where it favors CaCO3 dissolution and can therefore be seen as the invisible carbon footprint. We conclude that the effects of LUC stretch beyond the terrestrial realm and are not limited to CO2 emissions, but also affect marine ecosystems. Considering the ecological and economical importance of these ecosystems, it is important that this so far invisible carbon footprint, as well as the aquatic and marine CO2 emissions, are included in climate mitigation strategies.
Collapse
|
27
|
Steiner Z, Turchyn AV, Harpaz E, Silverman J. Water chemistry reveals a significant decline in coral calcification rates in the southern Red Sea. Nat Commun 2018; 9:3615. [PMID: 30190471 PMCID: PMC6127156 DOI: 10.1038/s41467-018-06030-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 08/03/2018] [Indexed: 11/21/2022] Open
Abstract
Experimental and field evidence support the assumption that global warming and ocean acidification is decreasing rates of calcification in the oceans. Local measurements of coral growth rates in reefs from various locations have suggested a decline of ~6–10% per decade since the late 1990's. Here, by measuring open water strontium-to-alkalinity ratios along the Red Sea, we show that the net contribution of hermatypic corals to the CaCO3 budget of the southern and central Red Sea declined by ~100% between 1998 and 2015 and remained low between 2015 and 2018. Measured differences in total alkalinity of the Red Sea surface water indicate a 26 ± 16% decline in total CaCO3 deposition rates along the basin. These findings suggest that coral reefs of the southern Red Sea are under severe stress and demonstrate the strength of geochemical measurements as cost-effective indicators for calcification trends on regional scales. Ocean acidification and warming threaten coral reefs globally. Here, the authors show that the net contribution of corals to the CaCO3 budget of the tropical Red Sea declined dramatically between 1998 and 2015 and remained low between 2015 and 2018.
Collapse
Affiliation(s)
- Zvi Steiner
- Department of Earth Sciences, University of Cambridge, CB2 3EQ, Cambridge, UK.
| | - Alexandra V Turchyn
- Department of Earth Sciences, University of Cambridge, CB2 3EQ, Cambridge, UK
| | - Eyal Harpaz
- ZIM Integrated Shipping Ltd., Haifa, 31016, Israel
| | - Jacob Silverman
- Israel Oceanographic & Limnological Research, Haifa, 31080, Israel.
| |
Collapse
|