1
|
Petit N, Chang YYJ, Lobianco FA, Hodgkinson T, Browne S. Hyaluronic acid as a versatile building block for the development of biofunctional hydrogels: In vitro models and preclinical innovations. Mater Today Bio 2025; 31:101596. [PMID: 40083836 PMCID: PMC11903855 DOI: 10.1016/j.mtbio.2025.101596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/07/2025] [Accepted: 02/17/2025] [Indexed: 03/16/2025] Open
Abstract
Hyaluronic acid (HyA) is a non-sulphated linear polysaccharide found abundantly in the extracellular matrix, known for its biocompatibility and versatility in tissue engineering. Chemical modifications of HyA, including methacrylate, acrylate, click chemistry, norbornene, or host-guest chemistry, are necessary for the formation of stable hydrogels with tuneable biophysical characteristics. These modifications enable precise control over stiffness, swelling, degradation, and advanced functionalities such as shear-thinning, self-healing, and injectability. Functionalisation further enhances hydrogel bioactivity, enabling controlled cell adhesion, modulation of cell behaviour, hydrogel degradation, and release profiles, as well as inflammation modulation or bacterial growth inhibition. These are achieved by conjugating proteins, peptides, antibodies, or reactive chemical groups. HyA hydrogels find broad applications both in vitro and in vivo. In vitro, HyA-based hydrogels can support the development of models to understand fundamental processes in health and mechanisms behind disease progression, serving as highly tuneable extracellular matrix mimetics. As therapeutic interventions, injectable or implantable HyA-based hydrogels have been developed to repair a range of tissues, including cartilage, bone, muscle, and skin defects. However, issues remain to be addressed before widespread adoption of HyA-based hydrogels as clinical options. Future innovations for HyA hydrogels include its establishment as an enabling technology for the delivery of novel therapeutics, with a particular focus on immunomodulatory molecules, and the development of more dynamic, tissue-mimetic HyA-based hydrogels.
Collapse
Affiliation(s)
- Noémie Petit
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland
- CÚRAM, Research Ireland Centre for Medical Devices, University of Galway, Galway, H91 W2TY, Ireland
| | - Yu-yin Joanne Chang
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland
- CÚRAM, Research Ireland Centre for Medical Devices, University of Galway, Galway, H91 W2TY, Ireland
| | - Franz Acker Lobianco
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland
| | - Tom Hodgkinson
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland
| | - Shane Browne
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland
- CÚRAM, Research Ireland Centre for Medical Devices, University of Galway, Galway, H91 W2TY, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
2
|
Johnson D, Ridolfo A, Mueller R, Chermack M, Brockhouse J, Tadiwala J, Jain A, Bertram K, Garg K. Biosponge-Encased Placental Stem Cells for Volumetric Muscle Loss Repair. Adv Wound Care (New Rochelle) 2025; 14:83-100. [PMID: 39171894 DOI: 10.1089/wound.2024.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
Objective: Volumetric muscle loss (VML) leads to permanent muscle mass and functional impairments. While mesenchymal stromal cells (MSCs) and their secreted factors can aid muscle regeneration, MSCs exhibit limited persistence in injured tissue post-transplantation. Human placental-derived stem cells (hPDSCs), sharing surface markers with MSCs, demonstrate superior regenerative potential due to their fetal origin. Previously, a biosponge (BS) scaffold was shown to augment muscle regeneration post-VML. This study aims to coapply BS therapy and hPDSCs to further enhance muscle recovery following VML. Approach: A VML defect was created by removing ∼20% of the tibialis anterior muscle mass in male Lewis rats. Injured muscles were either left untreated or treated with BS or BS-encapsulated hPDSCs cultured under normoxic or hypoxic conditions. On day 28 postinjury, peak isometric torque was measured, and the muscle was harvested for analysis. Results: BS encapsulated hPDSCs subjected to hypoxic preconditioning persisted in larger quantities and enhanced muscle mass at day 28 postinjury. BS encapsulated hPDSCs cultured under normoxic or hypoxic conditions increased small myofibers (<500 µm2) percentage, MyoD protein expression, and both pro- and anti-inflammatory macrophage marker expression. BS encapsulated hPDSCs also reduced fibrosis and BS remodeling rate. Innovation: This study is the first to examine the therapeutic effects of hPDSCs in a rat VML model. A BS carrier and hypoxic preconditioning were investigated to mitigate low cell survival postimplantation. Conclusion: hPDSCs augment the regenerative effect of BS. Combining hPDSCs and BS emerges as a promising strategy worthy of further investigation.
Collapse
Affiliation(s)
- David Johnson
- Department of Biomedical Engineering, School of Sciences and Engineering, St. Louis, Saint Louis, Missouri, USA
| | - Amelia Ridolfo
- Department of Biomedical Engineering, School of Sciences and Engineering, St. Louis, Saint Louis, Missouri, USA
| | - Ryan Mueller
- Department of Biomedical Engineering, School of Sciences and Engineering, St. Louis, Saint Louis, Missouri, USA
| | - Megan Chermack
- Department of Biomedical Engineering, School of Sciences and Engineering, St. Louis, Saint Louis, Missouri, USA
| | - Julia Brockhouse
- Department of Biomedical Engineering, School of Sciences and Engineering, St. Louis, Saint Louis, Missouri, USA
| | - Jamshid Tadiwala
- Department of Biomedical Engineering, School of Sciences and Engineering, St. Louis, Saint Louis, Missouri, USA
| | - Avantika Jain
- Department of Pharmacology and Physiology, School of Medicine, St. Louis, Saint Louis, Missouri, USA
| | - Kenneth Bertram
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina, USA
| | - Koyal Garg
- Department of Biomedical Engineering, School of Sciences and Engineering, St. Louis, Saint Louis, Missouri, USA
- Department of Pharmacology and Physiology, School of Medicine, St. Louis, Saint Louis, Missouri, USA
| |
Collapse
|
3
|
Hamer MS, Rossi FMV. Multitasking muscle: engineering iPSC-derived myogenic progenitors to do more. Front Cell Dev Biol 2025; 12:1526635. [PMID: 39911186 PMCID: PMC11794491 DOI: 10.3389/fcell.2024.1526635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/23/2024] [Indexed: 02/07/2025] Open
Abstract
The generation of myogenic progenitors from iPSCs (iMPs) with therapeutic potential for in vivo tissue regeneration has long been a goal in the skeletal muscle community. Today, protocols enable the production of potent, albeit immature, iMPs that resemble Pax7+ adult muscle stem cells. While muscular dystrophies are often the primary therapeutic target for these cells, an underexplored application is their use in treating traumatic muscle injuries. Notably absent from recent reviews on iMPs is the concept of engineering these cells to perform functions post-transplantation that non-transgenic cells cannot. Here, we highlight protocols to enhance the generation, purification, and maturation of iMPs, and introduce the idea of engineering these cells to perform functions beyond their normal capacities, envisioning novel therapeutic applications.
Collapse
Affiliation(s)
- Mark Stephen Hamer
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Fabio M. V. Rossi
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Zheng H, Yang Z, Zhou L, Zhang B, Cheng R, Zhang Q. Bioactive Nb 2C MXene-Functionalized Hydrogel with Microenvironment Remodeling and Enhanced Neurogenesis to Promote Skeletal Muscle Regeneration and Functional Restoration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310483. [PMID: 39254284 DOI: 10.1002/smll.202310483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/18/2024] [Indexed: 09/11/2024]
Abstract
The complete structure-functional repair of volumetric muscle loss (VML) remains a giant challenge and biomedical hydrogels to remodel microenvironment and enhance neurogenesis have appeared to be a promising direction. However, the current hydrogels for VML repair hardly achieve these two goals simultaneously due to their insufficient functionality and the challenge in high-cost of bioactive factors. In this study, a facile strategy using Nb2C MXene-functionalized hydrogel (OPTN) as a bioactive scaffold is proposed to promote VML repair with skeletal muscle regeneration and functional restoration. In vitro experiments show that OPTN scaffold can effectively scavenge reactive oxygen species (ROS), guide macrophages polarization toward M2 phenotype, and resist bacterial infection, providing a favorable microenvironment for myoblasts proliferation as well as the endothelial cells proliferation, migration, and tube formation. More importantly, OPTN scaffold with electroactive feature remarkably boosts myoblasts differentiation and mesenchymal stem cells neural differentiation. Animal experiments further confirm that OPTN scaffold can achieve a prominent structure-functional VML repair by attenuating ROS levels, alleviating inflammation, reducing fibrosis, and facilitating angiogenesis, newborn myotube formation, and neurogenesis. Collectively, this study provides a highly promising and effective strategy for the structure-functional VML repair through designing bioactive multifunctional hydrogel with microenvironment remodeling and enhanced neurogenesis.
Collapse
Affiliation(s)
- Hua Zheng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
- Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Zuoting Yang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
- Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Li Zhou
- Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Baoliang Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
- Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Ruidong Cheng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
- Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
- Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
5
|
Gahlawat S, Oruc D, Paul N, Ragheb M, Patel S, Fasasi O, Sharma P, Shreiber DI, Freeman JW. Tissue Engineered 3D Constructs for Volumetric Muscle Loss. Ann Biomed Eng 2024; 52:2325-2347. [PMID: 39085677 PMCID: PMC11329418 DOI: 10.1007/s10439-024-03541-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/08/2024] [Indexed: 08/02/2024]
Abstract
Severe injuries to skeletal muscles, including cases of volumetric muscle loss (VML), are linked to substantial tissue damage, resulting in functional impairment and lasting disability. While skeletal muscle can regenerate following minor damage, extensive tissue loss in VML disrupts the natural regenerative capacity of the affected muscle tissue. Existing clinical approaches for VML, such as soft-tissue reconstruction and advanced bracing methods, need to be revised to restore tissue function and are associated with limitations in tissue availability and donor-site complications. Advancements in tissue engineering (TE), particularly in scaffold design and the delivery of cells and growth factors, show promising potential for regenerating damaged skeletal muscle tissue and restoring function. This article provides a brief overview of the pathophysiology of VML and critiques the shortcomings of current treatments. The subsequent section focuses on the criteria for designing TE scaffolds, offering insights into various natural and synthetic biomaterials and cell types for effectively regenerating skeletal muscle. We also review multiple TE strategies involving both acellular and cellular scaffolds to encourage the development and maturation of muscle tissue and facilitate integration, vascularization, and innervation. Finally, the article explores technical challenges hindering successful translation into clinical applications.
Collapse
Affiliation(s)
- Sonal Gahlawat
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Doga Oruc
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Nikhil Paul
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Mark Ragheb
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Swati Patel
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Oyinkansola Fasasi
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Peeyush Sharma
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - David I Shreiber
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Joseph W Freeman
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA.
| |
Collapse
|
6
|
Nam S, Lou J, Lee S, Kartenbender JM, Mooney DJ. Dynamic injectable tissue adhesives with strong adhesion and rapid self-healing for regeneration of large muscle injury. Biomaterials 2024; 309:122597. [PMID: 38696944 PMCID: PMC11144078 DOI: 10.1016/j.biomaterials.2024.122597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/04/2024]
Abstract
Wounds often necessitate the use of instructive biomaterials to facilitate effective healing. Yet, consistently filling the wound and retaining the material in place presents notable challenges. Here, we develop a new class of injectable tissue adhesives by leveraging the dynamic crosslinking chemistry of Schiff base reactions. These adhesives demonstrate outstanding mechanical properties, especially in regard to stretchability and self-healing capacity, and biodegradability. Furthermore, they also form robust adhesion to biological tissues. Their therapeutic potential was evaluated in a rodent model of volumetric muscle loss (VML). Ultrasound imaging confirmed that the adhesives remained within the wound site, effectively filled the void, and degraded at a rate comparable to the healing process. Histological analysis indicated that the adhesives facilitated muscle fiber and blood vessel formation, and induced anti-inflammatory macrophages. Notably, the injured muscles of mice treated with the adhesives displayed increased weight and higher force generation than the control groups. This approach to adhesive design paves the way for the next generation of medical adhesives in tissue repair.
Collapse
Affiliation(s)
- Sungmin Nam
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA; Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Junzhe Lou
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Sangmin Lee
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Jan-Marc Kartenbender
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
7
|
Nie R, Zhang QY, Feng ZY, Huang K, Zou CY, Fan MH, Zhang YQ, Zhang JY, Li-Ling J, Tan B, Xie HQ. Hydrogel-based immunoregulation of macrophages for tissue repair and regeneration. Int J Biol Macromol 2024; 268:131643. [PMID: 38643918 DOI: 10.1016/j.ijbiomac.2024.131643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 04/23/2024]
Abstract
The rational design of hydrogel materials to modulate the immune microenvironment has emerged as a pivotal approach in expediting tissue repair and regeneration. Within the immune microenvironment, an array of immune cells exists, with macrophages gaining prominence in the field of tissue repair and regeneration due to their roles in cytokine regulation to promote regeneration, maintain tissue homeostasis, and facilitate repair. Macrophages can be categorized into two types: classically activated M1 (pro-inflammatory) and alternatively activated M2 (anti-inflammatory and pro-repair). By regulating the physical and chemical properties of hydrogels, the phenotypic transformation and cell behavior of macrophages can be effectively controlled, thereby promoting tissue regeneration and repair. A full understanding of the interaction between hydrogels and macrophages can provide new ideas and methods for future tissue engineering and clinical treatment. Therefore, this paper reviews the effects of hydrogel components, hardness, pore size, and surface morphology on cell behaviors such as macrophage proliferation, migration, and phenotypic polarization, and explores the application of hydrogels based on macrophage immune regulation in skin, bone, cartilage, and nerve tissue repair. Finally, the challenges and future prospects of macrophage-based immunomodulatory hydrogels are discussed.
Collapse
Affiliation(s)
- Rong Nie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Qing-Yi Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Zi-Yuan Feng
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Kai Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Chen-Yu Zou
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ming-Hui Fan
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yue-Qi Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ji-Ye Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jesse Li-Ling
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Medical Genetics, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Bo Tan
- Department of Orthopedic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, PR China
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan 610212, PR China.
| |
Collapse
|
8
|
Mazzucchelli L, Sarcon AK, Huang TCT, Li J, Berry CE, Houdek MT, Behfar A, Zhao C, Moran SL. A Ready-to-Use Purified Exosome Product for Volumetric Muscle Loss and Functional Recovery. Tissue Eng Part A 2023; 29:481-490. [PMID: 37537959 DOI: 10.1089/ten.tea.2023.0057] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023] Open
Abstract
Large skeletal muscle defects owing to trauma or following tumor extirpation can result in substantial functional impairment. Purified exosomes are now available clinically and have been used for wound healing. The objective of this study was to evaluate the regenerative capacity of commercially available exosomes on an animal model of volumetric muscle loss (VML) and its potential translation to human muscle injury. An established VML rat model was used. In the in vitro experiment, rat myoblasts were isolated and cocultured with 5% purified exosome product (PEP) to validate uptake. Myoblast proliferation and migration was evaluated with increasing concentrations of PEP (2.5%, 5%, and 10%) in comparison with control media (F10) and myoblast growth medium (MGM). In the in vivo experiment, a lateral gastrocnemius-VML defect was made in the rat hindlimb. Animals were randomized into four experimental groups; defects were treated with surgery alone, fibrin sealant, fibrin sealant and PEP, or platelet-rich plasma (PRP). The groups were further randomized into four recovery time points (14, 28, 45, or 90 days). The isometric tetanic force (ITF), which was measured as a percentage of force compared with normal limb, was used for functional evaluation. Florescence microscopy confirmed that 5% PEP demonstrated cellular uptake ∼8-12 h. Compared with the control, myoblasts showed faster proliferation with PEP irrespective of concentration. PEP concentrations of 2.5% and 5% promoted myoblast migration faster compared with the control (<0.05). At 90 days postop, both the PEP and fibrin sealant and PRP groups showed greater ITF compared with control and fibrin sealant alone (<0.05). At 45 days postop, PEP with fibrin sealant had greater cellularity compared with control (<0.05). At 90 days postop, both PEP with fibrin sealant and the PRP-treated groups had greater cellularity compared with fibrin sealant and control (<0.05). PEP promoted myoblast proliferation and migration. When delivered to a wound with a fibrin sealant, PEP allowed for muscle regeneration producing greater functional recovery and more cellularity in vivo compared with untreated animals. PEP may promote muscle regeneration in cases of VML; further research is warranted to evaluate PEP for the treatment of clinical muscle defects.
Collapse
Affiliation(s)
- Lorenzo Mazzucchelli
- Clinic for Plastic, Aesthetic, and Hand Surgery, University Hospital Magdeburg, Otto Von Guericke University, Magdeburg, Germany
| | - Aida K Sarcon
- Department of Surgery and Mayo Clinic, Rochester, Minnesota, USA
| | - Tony C T Huang
- Department of Plastic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Jialun Li
- Plastic Surgery, Pikeli Medical Aesthetics, Wuhan, China
| | | | - Matthew T Houdek
- Department of Orthopedic Surgery and Mayo Clinic, Rochester, Minnesota, USA
| | - Atta Behfar
- Department of Cardiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Chunfeng Zhao
- Department of Orthopedic Surgery and Mayo Clinic, Rochester, Minnesota, USA
| | - Steven L Moran
- Department of Plastic Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery and Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
9
|
Motherwell JM, Dolan CP, Kanovka SS, Edwards JB, Franco SR, Janakiram NB, Valerio MS, Goldman SM, Dearth CL. Effects of Adjunct Antifibrotic Treatment within a Regenerative Rehabilitation Paradigm for Volumetric Muscle Loss. Int J Mol Sci 2023; 24:3564. [PMID: 36834976 PMCID: PMC9964131 DOI: 10.3390/ijms24043564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
The use of a rehabilitation approach that promotes regeneration has the potential to improve the efficacy of pro-regenerative therapies and maximize functional outcomes in the treatment of volumetric muscle loss (VML). An adjunct antifibrotic treatment could further enhance functional gains by reducing fibrotic scarring. This study aimed to evaluate the potential synergistic effects of losartan, an antifibrotic pharmaceutical, paired with a voluntary wheel running rehabilitation strategy to enhance a minced muscle graft (MMG) pro-regenerative therapy in a rodent model of VML. The animals were randomly assigned into four groups: (1) antifibrotic with rehabilitation, (2) antifibrotic without rehabilitation, (3) vehicle treatment with rehabilitation, and (4) vehicle treatment without rehabilitation. At 56 days, the neuromuscular function was assessed, and muscles were collected for histological and molecular analysis. Surprisingly, we found that the losartan treatment decreased muscle function in MMG-treated VML injuries by 56 days, while the voluntary wheel running elicited no effect. Histologic and molecular analysis revealed that losartan treatment did not reduce fibrosis. These findings suggest that losartan treatment as an adjunct therapy to a regenerative rehabilitation strategy negatively impacts muscular function and fails to promote myogenesis following VML injury. There still remains a clinical need to develop a regenerative rehabilitation treatment strategy for traumatic skeletal muscle injuries. Future studies should consider optimizing the timing and duration of adjunct antifibrotic treatments to maximize functional outcomes in VML injuries.
Collapse
Affiliation(s)
- Jessica M. Motherwell
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Montgomery, MD 20815, USA
- Department of Surgery, Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Montgomery, MD 20815, USA
| | - Connor P. Dolan
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Montgomery, MD 20815, USA
- Department of Surgery, Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Montgomery, MD 20815, USA
| | - Sergey S. Kanovka
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Montgomery, MD 20815, USA
- Department of Surgery, Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Montgomery, MD 20815, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Montgomery, MD 20817, USA
| | - Jorge B. Edwards
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Montgomery, MD 20815, USA
- Department of Surgery, Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Montgomery, MD 20815, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Montgomery, MD 20817, USA
| | - Sarah R. Franco
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Montgomery, MD 20815, USA
- Department of Surgery, Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Montgomery, MD 20815, USA
| | - Naveena B. Janakiram
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Montgomery, MD 20815, USA
- Department of Surgery, Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Montgomery, MD 20815, USA
| | - Michael S. Valerio
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Montgomery, MD 20815, USA
- Department of Surgery, Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Montgomery, MD 20815, USA
| | - Stephen M. Goldman
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Montgomery, MD 20815, USA
- Department of Surgery, Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Montgomery, MD 20815, USA
| | - Christopher L. Dearth
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Montgomery, MD 20815, USA
- Department of Surgery, Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Montgomery, MD 20815, USA
| |
Collapse
|
10
|
Ege D, Nawaz Q, Beltrán AM, Boccaccini AR. Effect of Boron-Doped Mesoporous Bioactive Glass Nanoparticles on C2C12 Cell Viability and Differentiation: Potential for Muscle Tissue Application. ACS Biomater Sci Eng 2022; 8:5273-5283. [PMID: 36379050 PMCID: PMC9748944 DOI: 10.1021/acsbiomaterials.2c00876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022]
Abstract
Mesoporous bioactive glasses (MBGs) exhibit a high surface area and a highly ordered mesoporous structure. MBGs have potential for both hard and soft tissue engineering applications. MBGs may be doped with biologically active ions to tailor their biological activity. Boron is being widely studied as a dopant of bioactive glasses. Recently, research has demonstrated the potential of boron-containing bioactive glasses for muscle regeneration. In this study, boron-containing MBGs, 10B-MBG and 18B-MBG nanoparticles, were produced by a microemulsion-assisted sol-gel approach for potential muscle regeneration applications. First, X-ray diffraction (XRD), Fourier transform infrared (FTIR), and energy-dispersive X-ray spectroscopy (EDX) analyses were conducted to study the chemical structure and composition of the nanoparticles. To examine the nanoparticle morphology, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images were analyzed. Both SEM images and particle size distribution determined by dynamic light scattering (DLS) indicated a decrease of the average particle size after boron doping. TEM images indicated a slit-shaped mesoporous structure of nanoparticles for all compositions. The ζ potential was measured, and a negative surface charge was found for all study groups due to the presence of silanol groups. Cytocompatibility and fluorescence microscopy studies were also carried out. The results indicated that low concentrations (0.1 and 1 mg mL-1) of all MBG nanoparticles led to high viability of C2C12 cells. Fluorescence microscopy images indicated that at lower nanoparticle concentrations (0.1 and 1 mg mL-1), C2C12 cells appeared to differentiate into myotubes, which was indicated by a spindle-shaped morphology. For 10 mg mL-1 concentration of nanoparticles, C2C12 cells had a lower aspect ratio (estimated qualitatively by inspection of the images), which implied a lower degree of differentiation. Boron-doped MBG nanoparticles in reduced concentrations are suitable to induce differentiation of C2C12 cells into myotubes, indicating their potential for applications in muscle tissue repair.
Collapse
Affiliation(s)
- Duygu Ege
- Institute
of Biomedical Engineering, Boğaziçi
University, Rasathane Street, Kandilli, İstanbul34684, Turkey
- Department
of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058Erlangen, Germany
| | - Qaisar Nawaz
- Department
of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058Erlangen, Germany
| | - Ana M. Beltrán
- Departamento
de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Universidad de
Sevilla, 41011Seville, Spain
| | - Aldo R. Boccaccini
- Department
of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058Erlangen, Germany
| |
Collapse
|
11
|
Dolan CP, Clark AR, Motherwell JM, Janakiram NB, Valerio MS, Dearth CL, Goldman SM. The impact of bilateral injuries on the pathophysiology and functional outcomes of volumetric muscle loss. NPJ Regen Med 2022; 7:59. [PMID: 36243737 PMCID: PMC9569363 DOI: 10.1038/s41536-022-00255-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/05/2022] [Indexed: 11/09/2022] Open
Abstract
Volumetric muscle loss (VML)-defined as the irrecoverable loss of skeletal muscle tissue with associated persistent functional deficits-is among the most common and highly debilitating combat-related extremity injuries. This is particularly true in cases of severe polytrauma wherein multiple extremities may be involved as a result of high energy wounding mechanisms. As such, significant investment and effort has been made toward developing a clinically viable intervention capable of restoring the form and function of the affected musculature. While these investigations conducted to date have varied with respect to the species, breed, and sex of the chosen pre-clinical in-vivo model system, the majority of these studies have been performed in unilateral injury models, an aspect which may not fully exemplify the clinical representation of the multiply injured patient. Furthermore, while various components of the basal pathophysiology of VML (e.g., fibrosis and inflammation) have been investigated, relatively little effort has focused on how the pathophysiology and efficacy of pro-regenerative technologies is altered when there are multiple VML injuries. Thus, the purpose of this study was two-fold: (1) to investigate if/how the pathophysiology of unilateral VML injuries differs from bilateral VML injuries and (2) to interrogate the effect of bilateral VML injuries on the efficacy of a well-characterized regenerative therapy, minced muscle autograft (MMG). In contrast to our hypothesis, we show that bilateral VML injuries exhibit a similar systemic inflammatory response and improved muscle functional recovery, compared to unilateral injured animals. Furthermore, MMG treatment was found to only be effective at promoting an increase in functional outcomes in unilateral VML injuries. The findings presented herein add to the growing knowledge base of the pathophysiology of VML, and, importantly, reiterate the importance of comprehensively characterizing preclinical models which are utilized for early-stage screening of putative therapies as they can directly influence the translational research pipeline.
Collapse
Affiliation(s)
- Connor P Dolan
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD, USA.,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Andrew R Clark
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD, USA.,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Jessica M Motherwell
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD, USA.,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Naveena B Janakiram
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD, USA.,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Michael S Valerio
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD, USA.,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Christopher L Dearth
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD, USA.,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Stephen M Goldman
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD, USA. .,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, USA.
| |
Collapse
|
12
|
Retrospective characterization of a rat model of volumetric muscle loss. BMC Musculoskelet Disord 2022; 23:814. [PMID: 36008828 PMCID: PMC9414143 DOI: 10.1186/s12891-022-05760-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Volumetric muscle loss (VML) is a pervasive injury within contemporary combat and a primary driver of disability among injured Service members. As such, VML has been a topic of investigation over the past decade as the field has sought to understand the pathology of these injuries and to develop treatment strategies which restore the form and function of the involved musculature. To date, much of this work has been performed in disparate animal models that vary significantly in terms of the species utilized, the muscle (or muscle group) affected, and the volume of muscle lost. Moreover, variation exists in the reporting of anatomical and functional outcomes within these models. When taken together, the ability to successfully assess comparative efficacy of promising therapies is currently limited. As such, greater scrutiny on the characterization of these VML models is needed to better assess the quality of evidence supporting further translation of putative therapies. Thus, the objective of this study was to retrospectively characterize anatomical and functional outcomes associated with one such VML model – the 6 mm biopsy punch model of the rat tibialis anterior muscle. Through these efforts, it was shown that this model is highly reproducible and consistent across a large number of experiments. As such, the data presented herein represent a reasonable benchmark for the expected performance of this model with utility for drawing inferences across studies and identifying therapies which have shown promise within the preclinical domain, and thus are ready for further translation towards the clinic.
Collapse
|
13
|
Dolan CP, Motherwell JM, Franco SR, Janakiram NB, Valerio MS, Goldman SM, Dearth CL. Evaluating the potential use of functional fibrosis to facilitate improved outcomes following volumetric muscle loss injury. Acta Biomater 2022; 140:379-388. [PMID: 34843950 DOI: 10.1016/j.actbio.2021.11.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/04/2021] [Accepted: 11/23/2021] [Indexed: 11/01/2022]
Abstract
Volumetric muscle loss (VML) was defined as the frank loss of skeletal muscle tissue with associated chronic functional deficits. Significant effort has been dedicated to developing approaches for treating VML injuries, most of which have focused on stimulating regeneration of the affected musculature via a variety of approaches (e.g., biomaterials). VML injury induces a prolonged inflammatory response which causes fibrotic tissue deposition and is thought to inhibit de novo myofiber regeneration despite observed improvements in functional outcomes (i.e., functional fibrosis; FF). Recent approaches have sought to attenuate inflammation and/or fibrosis as a means to create a permissive environment for regenerative therapies. However, there are currently no clinically available interventions capable of facilitating full restoration of form and function following VML injury; thus, an unmet clinical need exists for a near-term interventional strategy to treat affected patients. FF could serve as an alternative approach to facilitate improved functional outcomes following VML injuries. We sought to investigate whether intentionally exploiting the concept of FF (i.e., induction of a supraphysiological fibrotic response via the delivery of a polypropylene mesh combined with TGFβ) would enhance the function of the VML affected musculature. We found that FF treatment induces enhanced fibrotic tissue deposition within the VML defect as evidenced by histological and molecular analysis. FF-treated animals exhibit improved in vivo muscle function compared to untreated control animals at 8 weeks post-injury, thus substantiating the concept that FF could serve as an efficacious approach for facilitating improved functional outcomes following VML injury. STATEMENT OF SIGNIFICANCE: VML injuries result in long-term functional impairments and reduced quality of life for affected individuals, namely combat injured US Service members, and no clinical interventions can restore the form and function of the injured limb. Extensive efforts have been aimed at developing therapeutics to address this critical gap; unfortunately, most interventions facilitate only modest regeneration. Interestingly, improved muscle function has been observed in VML studies following treatment with a therapeutic, despite a lack of myogenic tissue formation; a phenomenon termed Functional Fibrosis (FF). Herein we exploited the concept of FF to enhance the function of VML affected musculature. This finding is significant in that the commercially available interventions used to induce FF can be translated into the clinic near-term, thus improving the standard of care for VML injuries.
Collapse
|
14
|
Kim JT, Roberts K, Dunlap G, Perry R, Washington T, Wolchok JC. Nandrolone supplementation does not improve functional recovery in an aged animal model of volumetric muscle loss injury. J Tissue Eng Regen Med 2022; 16:367-379. [PMID: 35113494 DOI: 10.1002/term.3286] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/12/2022] [Accepted: 01/20/2022] [Indexed: 11/12/2022]
Abstract
Aging hinders the effectiveness of regenerative medicine strategies targeting the repair of volumetric muscle loss (VML) injury. Anabolic steroids have been shown to improve several factors which contribute to the age-related decline in muscle's regenerative capacity. In this study, the impact of exogenous nandrolone decanoate (ND) administration on the effectiveness of a VML regenerative repair strategy was explored using an aged animal model. Unilateral tibialis anterior VML injuries were repaired in 18-month-aged animal models (male Fischer 344 rat) using decellularized human skeletal muscle scaffolds supplemented with autologous minced muscle. The contralateral limb was left untreated/uninjured. Following repair, ND(+) or a carrier control (ND-) was delivered via weekly injection for a period of 8 weeks. At 8 weeks, muscle isometric torque, gene expression, and tissue structure were assessed. ND(+) treatment did not improve contractile torque recovery following VML repair when compared to carrier only ND(-) injection controls. Peak isometric torque in the ND(+) VML repair group remained significantly below contralateral uninjured control values (4.69 ± 1.18vs. 7.46 ± 1.53 N mm/kg) and was statistically indistinguishable from carrier only ND(-) VML repair controls (4.47 ± 1.18 N mm/kg). Gene expression for key myogenic genes (Pax7, MyoD, MyoG, IGF-1) were not significantly elevated in response to ND injection, suggesting continued age related myogenic impairment even in the presence of ND(+) treatment. ND injection did reduce the histological appearance of fibrosis at the site of VML repair, and increased expression of the collagen III gene, suggesting some positive effects on repair site matrix regulation. Overall, the results presented in this study suggest that a decline in regenerative capacity with aging may present an obstacle to regenerative medicine strategies targeting VML injury and that the delivery of anabolic stimuli via ND administration was unable to overcome this decline.
Collapse
Affiliation(s)
- John T Kim
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Kevin Roberts
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Grady Dunlap
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Richard Perry
- Department of Health, Human Performance, and Recreation, College of Education and Health Professions, University of Arkansas, Fayetteville, Arkansas, USA
| | - Tyrone Washington
- Department of Health, Human Performance, and Recreation, College of Education and Health Professions, University of Arkansas, Fayetteville, Arkansas, USA
| | - Jeffrey C Wolchok
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
15
|
Minai L, Yelin D. Plasmonic fusion between fibroblasts and skeletal muscle cells for skeletal muscle regeneration. BIOMEDICAL OPTICS EXPRESS 2022; 13:608-619. [PMID: 35284171 PMCID: PMC8884231 DOI: 10.1364/boe.445290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Normal regeneration of skeletal muscle takes place by the differentiation of muscle-specific stem cells into myoblasts that fuse with existing myofibers for muscle repair. This natural repair mechanism could be ineffective in some cases, for example in patients with genetic muscular dystrophies or massive musculoskeletal injuries that lead to volumetric muscle loss. In this study we utilize the effect of plasmonic cell fusion, i.e. the fusion between cells conjugated by gold nanospheres and irradiated by resonant femtosecond laser pulses, for generating human heterokaryon cells of myoblastic and fibroblastic origin, which further develop into viable striated myotubes. The heterokaryon cells were found to express the myogenic transcription factors MyoD and Myogenin, as well as the Desmin protein that is essential in the formation of sarcomeres, and could be utilized in various therapeutic approaches that involve transplantation of cells or engineered tissue into the damaged muscle.
Collapse
|
16
|
Carton F, Di Francesco D, Fusaro L, Zanella E, Apostolo C, Oltolina F, Cotella D, Prat M, Boccafoschi F. Myogenic Potential of Extracellular Matrix Derived from Decellularized Bovine Pericardium. Int J Mol Sci 2021; 22:ijms22179406. [PMID: 34502309 PMCID: PMC8431302 DOI: 10.3390/ijms22179406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscles represent 40% of body mass and its native regenerative capacity can be permanently lost after a traumatic injury, congenital diseases, or tumor ablation. The absence of physiological regeneration can hinder muscle repair preventing normal muscle tissue functions. To date, tissue engineering (TE) represents one promising option for treating muscle injuries and wasting. In particular, hydrogels derived from the decellularized extracellular matrix (dECM) are widely investigated in tissue engineering applications thanks to their essential role in guiding muscle regeneration. In this work, the myogenic potential of dECM substrate, obtained from decellularized bovine pericardium (Tissuegraft Srl), was evaluated in vitro using C2C12 murine muscle cells. To assess myotubes formation, the width, length, and fusion indexes were measured during the differentiation time course. Additionally, the ability of dECM to support myogenesis was assessed by measuring the expression of specific myogenic markers: α-smooth muscle actin (α-sma), myogenin, and myosin heavy chain (MHC). The results obtained suggest that the dECM niche was able to support and enhance the myogenic potential of C2C12 cells in comparison of those grown on a plastic standard surface. Thus, the use of extracellular matrix proteins, as biomaterial supports, could represent a promising therapeutic strategy for skeletal muscle tissue engineering.
Collapse
Affiliation(s)
- Flavia Carton
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (F.C.); (D.D.F.); (E.Z.); (C.A.); (F.O.); (D.C.); (M.P.)
| | - Dalila Di Francesco
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (F.C.); (D.D.F.); (E.Z.); (C.A.); (F.O.); (D.C.); (M.P.)
| | | | - Emma Zanella
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (F.C.); (D.D.F.); (E.Z.); (C.A.); (F.O.); (D.C.); (M.P.)
| | - Claudio Apostolo
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (F.C.); (D.D.F.); (E.Z.); (C.A.); (F.O.); (D.C.); (M.P.)
| | - Francesca Oltolina
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (F.C.); (D.D.F.); (E.Z.); (C.A.); (F.O.); (D.C.); (M.P.)
| | - Diego Cotella
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (F.C.); (D.D.F.); (E.Z.); (C.A.); (F.O.); (D.C.); (M.P.)
| | - Maria Prat
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (F.C.); (D.D.F.); (E.Z.); (C.A.); (F.O.); (D.C.); (M.P.)
| | - Francesca Boccafoschi
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (F.C.); (D.D.F.); (E.Z.); (C.A.); (F.O.); (D.C.); (M.P.)
- Correspondence: ; Tel.: +39-0321-660-556
| |
Collapse
|
17
|
Whitely ME, Collins PB, Iwamoto M, Wenke JC. Administration of a selective retinoic acid receptor-γ agonist improves neuromuscular strength in a rodent model of volumetric muscle loss. J Exp Orthop 2021; 8:58. [PMID: 34383202 PMCID: PMC8360252 DOI: 10.1186/s40634-021-00378-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/30/2021] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Volumetric muscle loss is a uniquely challenging pathology that results in irrecoverable functional deficits. Furthermore, a breakthrough drug or bioactive factor has yet to be established that adequately improves repair of these severe skeletal muscle injuries. This study sought to assess the ability of an orally administered selective retinoic acid receptor-γ agonist, palovarotene, to improve recovery of neuromuscular strength in a rat model of volumetric muscle loss. METHODS An irrecoverable, full thickness defect was created in the tibialis anterior muscle of Lewis rats and animals were survived for 4 weeks. Functional recovery of the tibialis anterior muscle was assessed in vivo via neural stimulation and determination of peak isometric torque. Histological staining was performed to qualitatively assess fibrous scarring of the defect site. RESULTS Treatment with the selective retinoic acid receptor-γ agonist, palovarotene, resulted in a 38% improvement of peak isometric torque in volumetric muscle loss affected limbs after 4 weeks of healing compared to untreated controls. Additionally, preliminary histological assessment suggests that oral administration of palovarotene reduced fibrous scarring at the defect site. CONCLUSIONS These results highlight the potential role of selective retinoic acid receptor-γ agonists in the design of regenerative medicine platforms to maximize skeletal muscle healing. Additional studies are needed to further elucidate cellular responses, optimize therapeutic delivery, and characterize synergistic potential with adjunct therapies.
Collapse
Affiliation(s)
- Michael E. Whitely
- Orthopaedic Trauma Department, United States Army Institute of Surgical Research, 3698 Chambers Pass, Building 3611, JBSA Fort Sam Houston, San Antonio, TX 78234 USA
| | - Patrick B. Collins
- Orthopaedic Trauma Department, United States Army Institute of Surgical Research, 3698 Chambers Pass, Building 3611, JBSA Fort Sam Houston, San Antonio, TX 78234 USA
| | - Masahiro Iwamoto
- Department of Orthopaedics, University of Maryland School of Medicine, 655 W Baltimore St, Baltimore, MD 21201 USA
| | - Joseph C. Wenke
- Orthopaedic Trauma Department, United States Army Institute of Surgical Research, 3698 Chambers Pass, Building 3611, JBSA Fort Sam Houston, San Antonio, TX 78234 USA
| |
Collapse
|
18
|
The War after War: Volumetric Muscle Loss Incidence, Implication, Current Therapies and Emerging Reconstructive Strategies, a Comprehensive Review. Biomedicines 2021; 9:biomedicines9050564. [PMID: 34069964 PMCID: PMC8157822 DOI: 10.3390/biomedicines9050564] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 04/30/2021] [Accepted: 05/14/2021] [Indexed: 11/25/2022] Open
Abstract
Volumetric muscle loss (VML) is the massive wasting of skeletal muscle tissue due to traumatic events or surgical ablation. This pathological condition exceeds the physiological healing process carried out by the muscle itself, which owns remarkable capacity to restore damages but only when limited in dimensions. Upon VML occurring, the affected area is severely compromised, heavily influencing the affected a person’s quality of life. Overall, this condition is often associated with chronic disability, which makes the return to duty of highly specialized professional figures (e.g., military personnel or athletes) almost impossible. The actual treatment for VML is based on surgical conservative treatment followed by physical exercise; nevertheless, the results, in terms of either lost mass and/or functionality recovery, are still poor. On the other hand, the efforts of the scientific community are focusing on reconstructive therapy aiming at muscular tissue void volume replenishment by exploiting biomimetic matrix or artificial tissue implantation. Reconstructing strategies represent a valid option to build new muscular tissue not only to recover damaged muscles, but also to better socket prosthesis in terms of anchorage surfaces and reinnervation substrates for reconstructed mass.
Collapse
|
19
|
Westman AM, Peirce SM, Christ GJ, Blemker SS. Agent-based model provides insight into the mechanisms behind failed regeneration following volumetric muscle loss injury. PLoS Comput Biol 2021; 17:e1008937. [PMID: 33970905 PMCID: PMC8110270 DOI: 10.1371/journal.pcbi.1008937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/01/2021] [Indexed: 12/22/2022] Open
Abstract
Skeletal muscle possesses a remarkable capacity for repair and regeneration following a variety of injuries. When successful, this highly orchestrated regenerative process requires the contribution of several muscle resident cell populations including satellite stem cells (SSCs), fibroblasts, macrophages and vascular cells. However, volumetric muscle loss injuries (VML) involve simultaneous destruction of multiple tissue components (e.g., as a result of battlefield injuries or vehicular accidents) and are so extensive that they exceed the intrinsic capability for scarless wound healing and result in permanent cosmetic and functional deficits. In this scenario, the regenerative process fails and is dominated by an unproductive inflammatory response and accompanying fibrosis. The failure of current regenerative therapeutics to completely restore functional muscle tissue is not surprising considering the incomplete understanding of the cellular mechanisms that drive the regeneration response in the setting of VML injury. To begin to address this profound knowledge gap, we developed an agent-based model to predict the tissue remodeling response following surgical creation of a VML injury. Once the model was able to recapitulate key aspects of the tissue remodeling response in the absence of repair, we validated the model by simulating the tissue remodeling response to VML injury following implantation of either a decellularized extracellular matrix scaffold or a minced muscle graft. The model suggested that the SSC microenvironment and absence of pro-differentiation SSC signals were the most important aspects of failed muscle regeneration in VML injuries. The major implication of this work is that agent-based models may provide a much-needed predictive tool to optimize the design of new therapies, and thereby, accelerate the clinical translation of regenerative therapeutics for VML injuries.
Collapse
Affiliation(s)
- Amanda M. Westman
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Shayn M. Peirce
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
- Ophthalmology, University of Virginia, Charlottesville, Virginia, United States of America
| | - George J. Christ
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
- Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail: (GJC); (SSB)
| | - Silvia S. Blemker
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
- Ophthalmology, University of Virginia, Charlottesville, Virginia, United States of America
- Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, United States of America
- Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail: (GJC); (SSB)
| |
Collapse
|
20
|
Goldman SM, Janakiram NB, Valerio MS, Dearth CL. Evaluation of licofelone as an adjunct anti-inflammatory therapy to biologic scaffolds in the treatment of volumetric muscle loss. Cell Tissue Res 2021; 385:149-159. [PMID: 33852076 DOI: 10.1007/s00441-021-03449-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/08/2021] [Indexed: 12/24/2022]
Abstract
Biologic scaffolds (BS) are the most widely studied therapeutics for the treatment of volumetric muscle loss (VML) owing to their purported effects on cell proliferation, chemotaxis, migration, and differentiation. Despite these claims, variability in reports on the nature of the immune response to their implantation suggests that BS-associated inflammation may be limiting their regenerative efficacy. To address this shortcoming, this study sought to evaluate licofelone (ML3000), a dual 5-LOX/COX inhibitor, as an anti-inflammatory adjunct therapy to a BS in the treatment of VML. Utilizing a well-established rat VML model, a micronized BS was used to treat the VML injury, with or without administration of licofelone. Functional, molecular, and histological outcomes were assessed at both 7- and 28-day post-injury time points. While the BS + licofelone group exhibited decreased transcription of pro-inflammatory markers (Tnf, Ccl5, Nos2) relative to the BS only control group, no differences in expression profile of a panel of inflammatory-related soluble factors were observed between groups. A modest reduction in type I collagen was observed in the licofelone-treated group, but no meaningful differences in histologic presentation of repaired tissue were observed between groups. Furthermore, no differences in end organ functional capacity were observed between groups. Moving forward, efforts related to modulating the wound healing environment of VML should focus on polypharmaceutical strategies that target multiple aspects of the early pathophysiology of VML so as to provide an environment that is sufficiently permissive for local regenerative therapies to promote restoration of myofiber number.
Collapse
Affiliation(s)
- Stephen M Goldman
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD, USA.,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Naveena Basa Janakiram
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD, USA.,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Michael S Valerio
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD, USA.,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Christopher L Dearth
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD, USA. .,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, USA.
| |
Collapse
|
21
|
Dienes J, Browne S, Farjun B, Amaral Passipieri J, Mintz EL, Killian G, Healy KE, Christ GJ. Semisynthetic Hyaluronic Acid-Based Hydrogel Promotes Recovery of the Injured Tibialis Anterior Skeletal Muscle Form and Function. ACS Biomater Sci Eng 2021; 7:1587-1599. [PMID: 33660968 DOI: 10.1021/acsbiomaterials.0c01751] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Volumetric muscle loss (VML) injuries are characterized by a degree of tissue loss that exceeds the endogenous regenerative capacity of muscle, resulting in permanent structural and functional deficits. Such injuries are a consequence of trauma, as well as a host of congenital and acquired diseases and disorders. Despite significant preclinical research with diverse biomaterials, as well as early clinical studies with implantation of decellularized extracellular matrices, there are still significant barriers to more complete restoration of muscle form and function following repair of VML injuries. In fact, identification of novel biomaterials with more advantageous regenerative profiles is a critical limitation to the development of improved therapeutics. As a first step in this direction, we evaluated a novel semisynthetic hyaluronic acid-based (HyA) hydrogel that embodies material features more favorable for robust muscle regeneration. This HyA-based hydrogel is composed of an acrylate-modified HyA (AcHyA) macromer, an AcHyA macromer conjugated with the bsp-RGD(15) peptide sequence to enhance cell adhesion, a high-molecular-weight heparin to sequester growth factors, and a matrix metalloproteinase-cleavable cross-linker to allow for cell-dependent remodeling. In a well-established, clinically relevant rat tibialis anterior VML injury model, we report observations of robust functional recovery, accompanied by volume reconstitution, muscle regeneration, and native-like vascularization following implantation of the HyA-based hydrogel at the site of injury. These findings have important implications for the development and clinical application of the improved biomaterials that will be required for stable and complete functional recovery from diverse VML injuries.
Collapse
Affiliation(s)
- Jack Dienes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Shane Browne
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States.,Department of Material Science and Engineering, University of California, Berkeley, Berkeley 94720, United States
| | - Bruna Farjun
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Juliana Amaral Passipieri
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Ellen L Mintz
- Pathology Department, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Grant Killian
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Kevin E Healy
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States.,Department of Material Science and Engineering, University of California, Berkeley, Berkeley 94720, United States
| | - George J Christ
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States.,Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia 22908, United States
| |
Collapse
|
22
|
Awad K, Ahuja N, Fiedler M, Peper S, Wang Z, Aswath P, Brotto M, Varanasi V. Ionic Silicon Protects Oxidative Damage and Promotes Skeletal Muscle Cell Regeneration. Int J Mol Sci 2021; 22:E497. [PMID: 33419056 PMCID: PMC7825403 DOI: 10.3390/ijms22020497] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/20/2022] Open
Abstract
Volumetric muscle loss injuries overwhelm the endogenous regenerative capacity of skeletal muscle, and the associated oxidative damage can delay regeneration and prolong recovery. This study aimed to investigate the effect of silicon-ions on C2C12 skeletal muscle cells under normal and excessive oxidative stress conditions to gain insights into its role on myogenesis during the early stages of muscle regeneration. In vitro studies indicated that 0.1 mM Si-ions into cell culture media significantly increased cell viability, proliferation, migration, and myotube formation compared to control. Additionally, MyoG, MyoD, Neurturin, and GABA expression were significantly increased with addition of 0.1, 0.5, and 1.0 mM of Si-ion for 1 and 5 days of C2C12 myoblast differentiation. Furthermore, 0.1-2.0 mM Si-ions attenuated the toxic effects of H2O2 within 24 h resulting in increased cell viability and differentiation. Addition of 1.0 mM of Si-ions significantly aid cell recovery and protected from the toxic effect of 0.4 mM H2O2 on cell migration. These results suggest that ionic silicon may have a potential effect in unfavorable situations where reactive oxygen species is predominant affecting cell viability, proliferation, migration, and differentiation. Furthermore, this study provides a guide for designing Si-containing biomaterials with desirable Si-ion release for skeletal muscle regeneration.
Collapse
Affiliation(s)
- Kamal Awad
- Department of Materials Science and Engineering, College of Engineering, University of Texas at Arlington, Arlington, TX 76019, USA; (K.A.); (P.A.)
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA; (N.A.); (M.F.); (S.P.); (Z.W.)
| | - Neelam Ahuja
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA; (N.A.); (M.F.); (S.P.); (Z.W.)
| | - Matthew Fiedler
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA; (N.A.); (M.F.); (S.P.); (Z.W.)
| | - Sara Peper
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA; (N.A.); (M.F.); (S.P.); (Z.W.)
- Department of Bioengineering, College of Engineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Zhiying Wang
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA; (N.A.); (M.F.); (S.P.); (Z.W.)
| | - Pranesh Aswath
- Department of Materials Science and Engineering, College of Engineering, University of Texas at Arlington, Arlington, TX 76019, USA; (K.A.); (P.A.)
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA; (N.A.); (M.F.); (S.P.); (Z.W.)
| | - Venu Varanasi
- Department of Materials Science and Engineering, College of Engineering, University of Texas at Arlington, Arlington, TX 76019, USA; (K.A.); (P.A.)
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA; (N.A.); (M.F.); (S.P.); (Z.W.)
| |
Collapse
|
23
|
Goldman SM, Feng JP, Corona BT. Volumetric muscle loss disrupts length-dependent architectural and functional characteristics of skeletal muscle. Connect Tissue Res 2021; 62:72-82. [PMID: 32660287 DOI: 10.1080/03008207.2020.1789608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose/Aim: Skeletal muscle architecture is a primary determinant of function. Volumetric muscle loss (VML) injury is destructive; however, the impact on muscle architecture is uncharacterized. Methods: Architectural and functional effects of VML were assessed in rat tibialis anterior (TA) muscle model 4 weeks post-injury. Results: VML caused a 31% and 33% reduction in muscle weight (p < 0.001) and fiber length (p = 0.002), respectively, culminating a 34% reduction of fiber to muscle length ratio (FL:ML; p < 0.001). Fiber pennation angle (+14%; p = 0.150) and physiological cross-sectional area (PCSA; -12%; p = 0.220) were unchanged. VML injury reduced peak isometric force (Po) by 36% (p < 0.001), specific force (sPo = Po/PCSA) by 41% (vs. Po, p > 0.999), and force per gram muscle weight (Po/mw) by 18% (vs. Po, p < 0.001). VML injury increased the length at which Po was produced (Lo) by 8% (p = 0.009), and reduced functional excursion by 35% (p = 0.035). Conclusion: The architectural changes after VML injury preserved PCSA, and therefore preserved "potential" maximal force-producing capacity. At most, only half the Po deficit was due directly to the cumulative effect of horizontal and longitudinal tissue loss. Highlighting the impact of longitudinal muscle loss, VML injury reduced fiber length, and FL:ML and grossly disrupted length-dependent functional properties. These findings raise the importance of augmenting length-dependent muscle properties to optimize functional recovery after VML injury.
Collapse
Affiliation(s)
- Stephen M Goldman
- Extremity Trauma and Regenerative Medicine Task Area, United States Army Institute of Surgical Research , Fort Sam Houston, TX, USA.,DoD-VA Extremity Trauma and Amputation Center of Excellence , Fort Sam Houston, TX, USA.,Department of Surgery, Uniformed Services University of the Health Sciences , Bethesda, MD, USA.,Department of Surgery, Walter Reed National Military Medical Center , Bethesda, MD, USA
| | - Jonathan P Feng
- Extremity Trauma and Regenerative Medicine Task Area, United States Army Institute of Surgical Research , Fort Sam Houston, TX, USA
| | - Benjamin T Corona
- Extremity Trauma and Regenerative Medicine Task Area, United States Army Institute of Surgical Research , Fort Sam Houston, TX, USA
| |
Collapse
|
24
|
Goldman SM, Valerio MS, Janakiram NB, Dearth CL. COX‐2 inhibition does not alter wound healing outcomes of a volumetric muscle loss injury treated with a biologic scaffold. J Tissue Eng Regen Med 2020; 14:1929-1938. [DOI: 10.1002/term.3144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/21/2020] [Accepted: 10/06/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Stephen M. Goldman
- Research & Surveillance Division DoD‐VA Extremity Trauma and Amputation Center of Excellence Bethesda Maryland USA
- Department of Surgery Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center Bethesda Maryland USA
| | - Michael S. Valerio
- Research & Surveillance Division DoD‐VA Extremity Trauma and Amputation Center of Excellence Bethesda Maryland USA
- Department of Surgery Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center Bethesda Maryland USA
| | - Naveena B. Janakiram
- Research & Surveillance Division DoD‐VA Extremity Trauma and Amputation Center of Excellence Bethesda Maryland USA
- Department of Surgery Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center Bethesda Maryland USA
| | - Christopher L. Dearth
- Research & Surveillance Division DoD‐VA Extremity Trauma and Amputation Center of Excellence Bethesda Maryland USA
- Department of Surgery Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center Bethesda Maryland USA
| |
Collapse
|
25
|
Narayanan N, Jia Z, Kim KH, Kuang L, Lengemann P, Shafer G, Bernal-Crespo V, Kuang S, Deng M. Biomimetic glycosaminoglycan-based scaffolds improve skeletal muscle regeneration in a Murine volumetric muscle loss model. Bioact Mater 2020; 6:1201-1213. [PMID: 33163701 PMCID: PMC7599371 DOI: 10.1016/j.bioactmat.2020.10.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/17/2020] [Accepted: 10/18/2020] [Indexed: 12/20/2022] Open
Abstract
Volumetric muscle loss (VML) injuries characterized by critical loss of skeletal muscle tissues result in severe functional impairment. Current treatments involving use of muscle grafts are limited by tissue availability and donor site morbidity. In this study, we designed and synthesized an implantable glycosaminoglycan-based hydrogel system consisting of thiolated hyaluronic acid (HA) and thiolated chondroitin sulfate (CS) cross-linked with poly(ethylene glycol) diacrylate to promote skeletal muscle regeneration of VML injuries in mice. The HA-CS hydrogels were optimized with suitable biophysical properties by fine-tuning degree of thiol group substitution to support C2C12 myoblast proliferation, myogenic differentiation and expression of myogenic markers MyoD, MyoG and MYH8. Furthermore, in vivo studies using a murine quadriceps VML model demonstrated that the HA-CS hydrogels supported integration of implants with the surrounding host tissue and facilitated migration of Pax7+ satellite cells, de novo myofiber formation, angiogenesis, and innervation with minimized scar tissue formation during 4-week implantation. The hydrogel-treated and autograft-treated mice showed similar functional improvements in treadmill performance as early as 1-week post-implantation compared to the untreated groups. Taken together, our results demonstrate the promise of HA-CS hydrogels as regenerative engineering matrices to accelerate healing of skeletal muscle injuries.
Collapse
Key Words
- AChR, Acetyl choline receptors
- CS, Chondroitin Sulfate
- Chondroitin sulfate
- ECM, Extracellular matrix
- EDC, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide
- GAG, Glycosaminoglycan
- HA, Hyaluronic acid
- Hyaluronic acid
- Hydrogels
- MES, 2-(N-morpholino) ethanesulfonic acid
- MHC, Myosin heavy chain
- Myoblasts
- NHS, N-hydroxysuccinimide
- PEGDA, Poly(ethylene glycol) diacrylate
- Skeletal muscle tissue engineering
- VML, Volumetric muscle loss
- Volumetric muscle loss
- eMHC, embryonic myosin heavy chain
Collapse
Affiliation(s)
- Naagarajan Narayanan
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47906, United States.,Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47906, United States
| | - Zhihao Jia
- Department of Animal Science, Purdue University, West Lafayette, IN, 47906, United States
| | - Kun Ho Kim
- Department of Animal Science, Purdue University, West Lafayette, IN, 47906, United States
| | - Liangju Kuang
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47906, United States.,Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47906, United States
| | - Paul Lengemann
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47906, United States.,Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47906, United States
| | - Gabrielle Shafer
- Center for Comparative Translational Research, Purdue University, West Lafayette, IN, 47906, United States
| | - Victor Bernal-Crespo
- Center for Comparative Translational Research, Purdue University, West Lafayette, IN, 47906, United States
| | - Shihuan Kuang
- Department of Animal Science, Purdue University, West Lafayette, IN, 47906, United States
| | - Meng Deng
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47906, United States.,Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47906, United States.,School of Materials Engineering, Purdue University, West Lafayette, IN, 47906, United States.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47906, United States
| |
Collapse
|
26
|
Alcazar CA, Hu C, Rando TA, Huang NF, Nakayama KH. Transplantation of insulin-like growth factor-1 laden scaffolds combined with exercise promotes neuroregeneration and angiogenesis in a preclinical muscle injury model. Biomater Sci 2020; 8:5376-5389. [PMID: 32996916 DOI: 10.1039/d0bm00990c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The regeneration of skeletal muscle can be permanently impaired by traumatic injuries, despite the high regenerative capacity of native muscle. An attractive therapeutic approach for treating severe muscle inuries is the implantation of off-the-shelf engineered biomimetic scaffolds into the site of tissue damage to enhance muscle regeneration. Anisotropic nanofibrillar scaffolds provide spatial patterning cues to create organized myofibers, and growth factors such as insulin-like growth factor-1 (IGF-1) are potent inducers of both muscle regeneration as well as angiogenesis. The aim of this study was to test the therapeutic efficacy of anisotropic IGF-1-releasing collagen scaffolds combined with voluntary exercise for the treatment of acute volumetric muscle loss, with a focus on histomorphological effects. To enhance the angiogenic and regenerative potential of injured murine skeletal muscle, IGF-1-laden nanofibrillar scaffolds with aligned topography were fabricated using a shear-mediated extrusion approach, followed by growth factor adsorption. Individual scaffolds released a cumulative total of 1244 ng ± 153 ng of IGF-1 over the course of 21 days in vitro. To test the bioactivity of IGF-1-releasing scaffolds, the myotube formation capacity of murine myoblasts was quantified. On IGF-1-releasing scaffolds seeded with myoblasts, the resulting myotubes formed were 1.5-fold longer in length and contained 2-fold greater nuclei per myotube, when compared to scaffolds without IGF-1. When implanted into the ablated murine tibialis anterior muscle, the IGF-1-laden scaffolds, in conjunction with voluntary wheel running, significantly increased the density of perfused microvessels by greater than 3-fold, in comparison to treatment with scaffolds without IGF-1. Enhanced myogenesis was also observed in animals treated with the IGF-1-laden scaffolds combined with exercise, compared to control scaffolds transplanted into mice that did not receive exercise. Furthermore, the abundance of mature neuromuscular junctions was greater by approximately 2-fold in muscles treated with IGF-1-laden scaffolds, when paired with exercise, in comparison to the same treatment without exercise. These findings demonstrate that voluntary exercise improves the regenerative effect of growth factor-laden scaffolds by augmenting neurovascular regeneration, and have important translational implications in the design of off-the-shelf therapeutics for the treatment of traumatic muscle injury.
Collapse
Affiliation(s)
- Cynthia A Alcazar
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA.
| | | | | | | | | |
Collapse
|
27
|
Skeletal Muscle Tissue Engineering: Biomaterials-Based Strategies for the Treatment of Volumetric Muscle Loss. Bioengineering (Basel) 2020; 7:bioengineering7030085. [PMID: 32751847 PMCID: PMC7552659 DOI: 10.3390/bioengineering7030085] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/17/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Millions of Americans suffer from skeletal muscle injuries annually that can result in volumetric muscle loss (VML), where extensive musculoskeletal damage and tissue loss result in permanent functional deficits. In the case of small-scale injury skeletal muscle is capable of endogenous regeneration through activation of resident satellite cells (SCs). However, this is greatly reduced in VML injuries, which remove native biophysical and biochemical signaling cues and hinder the damaged tissue's ability to direct regeneration. The current clinical treatment for VML is autologous tissue transfer, but graft failure and scar tissue formation leave patients with limited functional recovery. Tissue engineering of instructive biomaterial scaffolds offers a promising approach for treating VML injuries. Herein, we review the strategic engineering of biophysical and biochemical cues in current scaffold designs that aid in restoring function to these preclinical VML injuries. We also discuss the successes and limitations of the three main biomaterial-based strategies to treat VML injuries: acellular scaffolds, cell-delivery scaffolds, and in vitro tissue engineered constructs. Finally, we examine several innovative approaches to enhancing the design of the next generation of engineered scaffolds to improve the functional regeneration of skeletal muscle following VML injuries.
Collapse
|
28
|
Jia W, Hu H, Li A, Deng H, Hogue CL, Mauro JC, Zhang C, Fu Q. Glass-activated regeneration of volumetric muscle loss. Acta Biomater 2020; 103:306-317. [PMID: 31830584 DOI: 10.1016/j.actbio.2019.12.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022]
Abstract
Volumetric muscle loss (VML) resulting from injuries to skeletal muscles has profound consequences in healthcare. Current VML treatment based on the use of soft materials including biopolymers and decellularized extracellular matrix (dECM) is challenging due to their incapability of stimulating the formation of satellite cells (SCs), muscle stem cells, which are required for muscle regeneration. Additional stem cells and/or growth factors have to be incorporated in these constructs for improved efficacy. Here we report an approach by using bioactive glasses capable of regenerating VML without growth factors or stem cells. One silicate and two borate compositions with different degradation rates (2.4% for silicate 45S5; 5.3% and 30.4% for borate 8A3B and 13-93B3, respectively, in simulated body fluid (SBF) at 37 °C for 30 days) were used for this study. Our in vitro models demonstrate the ability of ions released from bioactive glasses in promoting angiogenesis and stimulating cells to secrete critical muscle-related growth factors. We further show the activation of SCs and the regeneration of skeletal muscles in a rat VML model. Considering these promising results, this work reveals a potentially simple and safe approach to regenerating skeletal muscle defects. STATEMENT OF SIGNIFICANCE: (1) This is the first report on an inorganic material used in skeletal muscle regeneration through in vitro and in vivo models. (2) Bioactive glass is found to activate the production of satellite cells (SCs), muscle stem cells, without the incorporation of extra stem cells or growth factors. (3) The work represents a simple, safe, low-cost yet efficient means for healing muscle defects.
Collapse
|
29
|
|
30
|
Kim JT, Kasukonis B, Dunlap G, Perry R, Washington T, Wolchok JC. Regenerative Repair of Volumetric Muscle Loss Injury is Sensitive to Age. Tissue Eng Part A 2020; 26:3-14. [PMID: 31064280 PMCID: PMC6983754 DOI: 10.1089/ten.tea.2019.0034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/25/2019] [Indexed: 12/20/2022] Open
Abstract
In this study, the influence of age on effectiveness of regenerative repair for the treatment of volumetric muscle loss (VML) injury was explored. Tibialis anterior (TA) VML injuries were repaired in both 3- and 18-month-old animal models (Fischer 344 rat) using allogeneic decellularized skeletal muscle (DSM) scaffolds supplemented with autologous minced muscle (MM) paste. Within the 3-month animal group, TA peak contractile force was significantly improved (79% of normal) in response to DSM+MM repair. However, within the 18-month animal group, muscle force following repair (57% of normal) was not significantly different from unrepaired VML controls (59% of normal). Within the 3-month animal group, repair with DSM+MM generally reduced scarring at the site of VML repair, whereas scarring and a loss of contractile tissue was notable at the site of repair within the 18-month group. Within 3-month animals, expression of myogenic genes (MyoD, MyoG), extracellular matrix genes (Col I, Col III, TGF-β), and key wound healing genes (TNF-α and IL-1β) were increased. Alternatively, expression was unchanged across all genes examined within the 18-month animal group. The findings suggest that a decline in regenerative capacity and increased fibrosis with age may present an obstacle to regenerative medicine strategies targeting VML injury. Impact Statement This study compared the recovery following volumetric muscle loss (VML) injury repair using a combination of minced muscle paste and decellularized muscle extracellular matrix carrier in both a younger (3 months) and older (18 months) rat population. Currently, VML repair research is being conducted with the young patient population in mind, but our group is the first to look at the effects of age on the efficacy of VML repair. Our findings highlight the importance of considering age-related changes in response to VML when developing repair strategies targeting an elderly patient population.
Collapse
Affiliation(s)
- John T. Kim
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas
| | - Benjamin Kasukonis
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas
| | - Grady Dunlap
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas
| | - Richard Perry
- Department of Health, Human Performance, and Recreation, College of Education and Health Professions, University of Arkansas, Fayetteville, Arkansas
| | - Tyrone Washington
- Department of Health, Human Performance, and Recreation, College of Education and Health Professions, University of Arkansas, Fayetteville, Arkansas
| | - Jeffrey C. Wolchok
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
31
|
Gilbert-Honick J, Grayson W. Vascularized and Innervated Skeletal Muscle Tissue Engineering. Adv Healthc Mater 2020; 9:e1900626. [PMID: 31622051 PMCID: PMC6986325 DOI: 10.1002/adhm.201900626] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/27/2019] [Indexed: 12/12/2022]
Abstract
Volumetric muscle loss (VML) is a devastating loss of muscle tissue that overwhelms the native regenerative properties of skeletal muscle and results in lifelong functional deficits. There are currently no treatments for VML that fully recover the lost muscle tissue and function. Tissue engineering presents a promising solution for VML treatment and significant research has been performed using tissue engineered muscle constructs in preclinical models of VML with a broad range of defect locations and sizes, tissue engineered construct characteristics, and outcome measures. Due to the complex vascular and neural anatomy within skeletal muscle, regeneration of functional vasculature and nerves is vital for muscle recovery following VML injuries. This review aims to summarize the current state of the field of skeletal muscle tissue engineering using 3D constructs for VML treatment with a focus on studies that have promoted vascular and neural regeneration within the muscle tissue post-VML.
Collapse
Affiliation(s)
- Jordana Gilbert-Honick
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Warren Grayson
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Material Sciences & Engineering, Johns Hopkins University, School of Engineering, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology (INBT), Johns Hopkins University School of Engineering, Baltimore, MD 21218, USA
| |
Collapse
|
32
|
Greising SM, Corona BT, McGann C, Frankum JK, Warren GL. Therapeutic Approaches for Volumetric Muscle Loss Injury: A Systematic Review and Meta-Analysis. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:510-525. [PMID: 31578930 DOI: 10.1089/ten.teb.2019.0207] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Our goal was to understand the impact of regenerative therapies on the functional capacity of skeletal muscle following volumetric muscle loss (VML) injury. An extensive database search (e.g., PubMed, Cochrane Library, and ClinicalTrials.gov) was conducted up through January 2019 to evaluate the following: "In humans or animals with VML injury, is treatment better than no treatment at recovering functional capacity?" Study eligibility criteria required studies to have both an untreated and at least one treated VML injury group. From 2312 study reports, 44 studies met the inclusion criteria. Quantitative functional capacity data (absolute and/or normalized strength) or proportional measures (histological analysis quantifying viable muscle tissue, mitochondrial function, and/or exhaustive treadmill running) were extracted for use. While both human and animal studies were included in the searches, only animal studies met the eligibility criteria. Using a random-effects model, Hedges' g was used as the effect size (ES) and calculated such that a positive ES indicated treatment efficacy. The overall ES was 0.75 (95% confidence interval: 0.53-0.96; p < 0.0000001), indicating that the treatments, on average, resulted in a significant improvement in functional capacity. From network meta-analyses, it was determined that an acellular biomaterial combined with stem and/or progenitor cells had the greatest treatment effectiveness. The findings indicate that various treatments in animal models of VML improve the functional capacity of muscle compared to leaving the injury untreated; however, the ∼16% beneficial effect is small. Our results suggest that current regenerative therapy paradigms require further maturation to achieve clinically meaningful improvements in the functional capacity of the muscle. Impact Statement Our most salient findings are that (1) various treatment approaches used in animal models of volumetric muscle loss (VML) injury improve functional capacity compared to leaving the injury untreated and (2) an acellular biomaterial in combination with cellular components was the most effective treatment to improve functional capacity following VML injury to date. The nature of our findings has substantial implications for regenerative medicine, biomedical engineering, and rehabilitative techniques currently being evaluated and developed for VML injury repair, and are pivotal to the progression of the regenerative medicine effort aimed at restoring maximal function to traumatized and disabled limbs.
Collapse
Affiliation(s)
- Sarah M Greising
- School of Kinesiology, University of Minnesota, Minneapolis, Minnesota
| | - Benjamin T Corona
- School of Medicine, Wake Forest University, Winston-Salem, North Carolina
| | - Christopher McGann
- Department of Physical Therapy, Georgia State University, Atlanta, Georgia
| | - Jeremy K Frankum
- Department of Physical Therapy, Georgia State University, Atlanta, Georgia
| | - Gordon L Warren
- Department of Physical Therapy, Georgia State University, Atlanta, Georgia
| |
Collapse
|
33
|
Marcinczyk M, Dunn A, Haas G, Madsen J, Scheidt R, Patel K, Talovic M, Garg K. The Effect of Laminin-111 Hydrogels on Muscle Regeneration in a Murine Model of Injury. Tissue Eng Part A 2019; 25:1001-1012. [PMID: 30426851 PMCID: PMC9839345 DOI: 10.1089/ten.tea.2018.0200] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
IMPACT STATEMENT Extremity injuries make up the most common survivable injuries in vehicular accidents and modern military conflicts. A majority of these injuries involve volumetric muscle loss (VML). The potential for donor site morbidity may limit the clinical use of autologous muscle grafts for VML injuries. Treatments that can improve the regeneration of functional muscle tissue are critically needed to improve limb salvage and reduce the rate of delayed amputations. The development of a laminin-111-enriched fibrin hydrogel will offer a potentially transformative and "off-the-shelf" clinically relevant therapy for functional skeletal muscle regeneration.
Collapse
Affiliation(s)
- Madison Marcinczyk
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, St. Louis, Missouri
| | - Andrew Dunn
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, St. Louis, Missouri
| | - Gabriel Haas
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, St. Louis, Missouri
| | - Josh Madsen
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, St. Louis, Missouri
| | - Robert Scheidt
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, St. Louis, Missouri
| | - Krishna Patel
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, St. Louis, Missouri
| | - Muhamed Talovic
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, St. Louis, Missouri
| | - Koyal Garg
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, St. Louis, Missouri.,Address correspondence to: Koyal Garg, PhD, Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, 3507 Lindell Boulevard, St. Louis, MO 63103
| |
Collapse
|
34
|
Dunn A, Talovic M, Patel K, Patel A, Marcinczyk M, Garg K. Biomaterial and stem cell-based strategies for skeletal muscle regeneration. J Orthop Res 2019; 37:1246-1262. [PMID: 30604468 DOI: 10.1002/jor.24212] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/13/2018] [Indexed: 02/04/2023]
Abstract
Adult skeletal muscle can regenerate effectively after mild physical or chemical insult. Muscle trauma or disease can overwhelm this innate capacity for regeneration and result in heightened inflammation and fibrotic tissue deposition resulting in loss of structure and function. Recent studies have focused on biomaterial and stem cell-based therapies to promote skeletal muscle regeneration following injury and disease. Many stem cell populations besides satellite cells are implicated in muscle regeneration. These stem cells include but are not limited to mesenchymal stem cells, adipose-derived stem cells, hematopoietic stem cells, pericytes, fibroadipogenic progenitors, side population cells, and CD133+ stem cells. However, several challenges associated with their isolation, availability, delivery, survival, engraftment, and differentiation have been reported in recent studies. While acellular scaffolds offer a relatively safe and potentially off-the-shelf solution to cell-based therapies, they are often unable to stimulate host cell migration and activity to a level that would result in clinically meaningful regeneration of traumatized muscle. Combining stem cells and biomaterials may offer a viable therapeutic strategy that may overcome the limitations associated with these therapies when they are used in isolation. In this article, we review the stem cell populations that can stimulate muscle regeneration in vitro and in vivo. We also discuss the regenerative potential of combination therapies that utilize both stem cell and biomaterials for the treatment of skeletal muscle injury and disease. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1246-1262, 2019.
Collapse
Affiliation(s)
- Andrew Dunn
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| | - Muhamed Talovic
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| | - Krishna Patel
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| | - Anjali Patel
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| | - Madison Marcinczyk
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| | - Koyal Garg
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| |
Collapse
|
35
|
Southern WM, Nichenko AS, Tehrani KF, McGranahan MJ, Krishnan L, Qualls AE, Jenkins NT, Mortensen LJ, Yin H, Yin A, Guldberg RE, Greising SM, Call JA. PGC-1α overexpression partially rescues impaired oxidative and contractile pathophysiology following volumetric muscle loss injury. Sci Rep 2019; 9:4079. [PMID: 30858541 PMCID: PMC6411870 DOI: 10.1038/s41598-019-40606-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/20/2019] [Indexed: 12/26/2022] Open
Abstract
Volumetric muscle loss (VML) injury is characterized by a non-recoverable loss of muscle fibers due to ablative surgery or severe orthopaedic trauma, that results in chronic functional impairments of the soft tissue. Currently, the effects of VML on the oxidative capacity and adaptability of the remaining injured muscle are unclear. A better understanding of this pathophysiology could significantly shape how VML-injured patients and clinicians approach regenerative medicine and rehabilitation following injury. Herein, the data indicated that VML-injured muscle has diminished mitochondrial content and function (i.e., oxidative capacity), loss of mitochondrial network organization, and attenuated oxidative adaptations to exercise. However, forced PGC-1α over-expression rescued the deficits in oxidative capacity and muscle strength. This implicates physiological activation of PGC1-α as a limiting factor in VML-injured muscle's adaptive capacity to exercise and provides a mechanistic target for regenerative rehabilitation approaches to address the skeletal muscle dysfunction.
Collapse
Affiliation(s)
- William M Southern
- Department of Kinesiology, University of Georgia, Athens, GA, 30602, USA.,Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA
| | - Anna S Nichenko
- Department of Kinesiology, University of Georgia, Athens, GA, 30602, USA.,Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA
| | - Kayvan F Tehrani
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA
| | | | - Laxminarayanan Krishnan
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Anita E Qualls
- Department of Kinesiology, University of Georgia, Athens, GA, 30602, USA.,Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA
| | - Nathan T Jenkins
- Department of Kinesiology, University of Georgia, Athens, GA, 30602, USA
| | - Luke J Mortensen
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA
| | - Hang Yin
- Center for Molecular Medicine, University of Georgia, Athens, GA, 30602, USA.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Amelia Yin
- Center for Molecular Medicine, University of Georgia, Athens, GA, 30602, USA.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Robert E Guldberg
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, 97403, USA
| | - Sarah M Greising
- School of Kinesiology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jarrod A Call
- Department of Kinesiology, University of Georgia, Athens, GA, 30602, USA. .,Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
36
|
Haas GJ, Dunn AJ, Marcinczyk M, Talovic M, Schwartz M, Scheidt R, Patel AD, Hixon KR, Elmashhady H, McBride-Gagyi SH, Sell SA, Garg K. Biomimetic sponges for regeneration of skeletal muscle following trauma. J Biomed Mater Res A 2018; 107:92-103. [PMID: 30394640 DOI: 10.1002/jbm.a.36535] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 01/09/2023]
Abstract
Skeletal muscle is inept in regenerating after traumatic injuries due to significant loss of basal lamina and the resident satellite cells. To improve regeneration of skeletal muscle, we have developed biomimetic sponges composed of collagen, gelatin, and laminin (LM)-111 that were crosslinked with 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC). Collagen and LM-111 are crucial components of the muscle extracellular matrix and were chosen to impart bioactivity whereas gelatin and EDC were used to provide mechanical strength to the scaffold. Morphological and mechanical evaluation of the sponges showed porous structure, water-retention capacity and a compressive modulus of 590-808 kPa. The biomimetic sponges supported the infiltration and viability of C2 C12 myoblasts over 5 days of culture. The myoblasts produced higher levels of myokines such as VEGF, IL-6, and IGF-1 and showed higher expression of myogenic markers such as MyoD and myogenin on the biomimetic sponges. Biomimetic sponges implanted in a mouse model of volumetric muscle loss (VML) supported satellite, endothelial, and inflammatory cell infiltration but resulted in limited myofiber regeneration at 2 weeks post-injury. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 92-103, 2019.
Collapse
Affiliation(s)
- Gabriel J Haas
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri, 63103
| | - Andrew J Dunn
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri, 63103
| | - Madison Marcinczyk
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri, 63103
| | - Muhamed Talovic
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri, 63103
| | - Mark Schwartz
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri, 63103
| | - Robert Scheidt
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri, 63103
| | - Anjali D Patel
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri, 63103
| | - Katherine R Hixon
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri, 63103
| | - Hady Elmashhady
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri, 63103
| | - Sarah H McBride-Gagyi
- Department of Orthopedic Surgery, Saint Louis University, St. Louis, Missouri, 63103
| | - Scott A Sell
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri, 63103
| | - Koyal Garg
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri, 63103
| |
Collapse
|
37
|
Ziemkiewicz N, Talovic M, Madsen J, Hill L, Scheidt R, Patel A, Haas G, Marcinczyk M, Zustiak SP, Garg K. Laminin-111 functionalized polyethylene glycol hydrogels support myogenic activity in vitro. ACTA ACUST UNITED AC 2018; 13:065007. [PMID: 30089708 DOI: 10.1088/1748-605x/aad915] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Skeletal muscle has a remarkable regenerative capability following mild physical or chemical insult. However, following a critical loss of muscle tissue, the regeneration process is impaired due to the inadequate myogenic activity of muscle resident stem cells (i.e., satellite cells). Laminin (LM) is a heterotrimeric structural protein in the satellite cell niche that is crucial for maintaining its function. In this study, we created hydrogels composed of poly (ethylene glycol) (PEG) and LM-111 to provide an elastic substrate for satellite cell proliferation at the site of injury. The PEG-LM111 conjugates were mixed with 5% and 10% (w/v) pure PEG-diacrylate (PEGDA) and photopolymerized to form 5% and 10% PEGLM gels. Pure 5% and 10% PEGDA gels were used as controls. The modulus of both hydrogels containing 10% (w/v) PEGDA was significantly higher than the hydrogels containing 5% (w/v) PEGDA. The 5% PEGLM hydrogels showed significantly higher swelling in aqueous medium suggesting a more porous structure. C2C12 myoblasts cultured on the softer 5% PEGLM hydrogels showed a flat and spread-out morphology when compared to the rounded, multicell clusters formed on the 5% PEGDA, 10% PEGDA, and 10% PEGLM hydrogels. The 5% PEGLM hydrogels also promoted a significant increase in both vascular endothelial growth factor and interleukin-6 (IL-6) production from the myoblasts. Additionally, the expression of MyoD was significantly higher while that of myogenin and α-actinin trended higher on the 5% PEGLM hydrogels compared to 5% PEGDA on day 5. Our data suggests that the introduction of LM-111 into compliant PEG hydrogels promoted myoblast adhesion, survival, pro-regenerative growth factor production, and myogenic activity.
Collapse
Affiliation(s)
- Natalia Ziemkiewicz
- Parks College of Engineering, Aviation and Technology, Saint Louis University, St Louis, MO 63103, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Decellularized Tissue for Muscle Regeneration. Int J Mol Sci 2018; 19:ijms19082392. [PMID: 30110909 PMCID: PMC6121250 DOI: 10.3390/ijms19082392] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/03/2018] [Accepted: 08/10/2018] [Indexed: 12/21/2022] Open
Abstract
Several acquired or congenital pathological conditions can affect skeletal muscle leading to volumetric muscle loss (VML), i.e., an irreversible loss of muscle mass and function. Decellularized tissues are natural scaffolds derived from tissues or organs, in which the cellular and nuclear contents are eliminated, but the tridimensional (3D) structure and composition of the extracellular matrix (ECM) are preserved. Such scaffolds retain biological activity, are biocompatible and do not show immune rejection upon allogeneic or xenogeneic transplantation. An increase number of reports suggest that decellularized tissues/organs are promising candidates for clinical application in patients affected by VML. Here we explore the different strategies used to generate decellularized matrix and their therapeutic outcome when applied to treat VML conditions, both in patients and in animal models. The wide variety of VML models, source of tissue and methods of decellularization have led to discrepant results. Our review study evaluates the biological and clinical significance of reported studies, with the final aim to clarify the main aspects that should be taken into consideration for the future application of decellularized tissues in the treatment of VML conditions.
Collapse
|