1
|
Shah RG, Salafia CM, Girardi T, Rukat C, Brunner J, Barrett ES, O'Connor TG, Misra DP, Miller RK. Maternal affective symptoms and sleep quality have sex-specific associations with placental topography. J Affect Disord 2024; 360:62-70. [PMID: 38806063 DOI: 10.1016/j.jad.2024.05.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/10/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND The impacts of prenatal maternal affective symptoms on the placental structure are not well-established. Employing Geographic Information System (GIS) spatial autocorrelation, Moran's I, can help characterize placental thickness uniformity/variability and evaluate the impacts of maternal distress on placental topography. METHODS This study (N = 126) utilized cohort data on prenatal maternal affective symptoms and placental 2D and 3D morphology. Prenatal maternal depression, stress, anxiety and sleep quality were scored for each trimester using the Edinburgh Postnatal Depression Scale (EPDS), Stressful Life Event Scale (SLE), Penn State Worry Questionnaire (PSWQ), and Pittsburgh Sleep Quality Index (PSQI), respectively. Placental shape was divided into Voronoi cells and thickness variability among these cells was computed using Moran's I for 4-nearest neighbors and neighbors within a 10 cm radius. Sex-stratified Spearman correlations and linear regression were used to study associations between mean placental thickness, placental GIS variables, placental weight and the average score of each maternal variable. RESULTS For mothers carrying boys, poor sleep was associated with higher mean thickness (r = 0.308,p = 0.035) and lower placental thickness uniformity (r = -0.36,p = 0.012). Lower placental weight (r = 0.395,p = 0.003), higher maternal depression (r = -0.318,p = 0.019) and worry/anxiety (r = -0.362,p = 0.007) were associated with lower placental thickness uniformity for mothers carrying girls. LIMITATIONS The study is exploratory and not all GIS models were developed. Excluding high-risk pregnancies prevented investigating pregnancy complications related hypotheses. A larger sample size is needed for greater confidence for clinical application. CONCLUSIONS Placental topography can be studied using GIS theory and has shown that prenatal maternal affective symptoms and sleep have sex-specific associations with placental thickness.
Collapse
Affiliation(s)
- Ruchit G Shah
- Placental Analytics, LLC, New Rochelle, USA and New York State Institute for Basic Research, Staten Island, USA.
| | - Carolyn M Salafia
- Placental Analytics, LLC, New Rochelle, USA and New York State Institute for Basic Research, Staten Island, USA
| | - Theresa Girardi
- Placental Analytics, LLC, New Rochelle, USA and New York State Institute for Basic Research, Staten Island, USA
| | - Cate Rukat
- Placental Analytics, LLC, New Rochelle, USA and New York State Institute for Basic Research, Staten Island, USA
| | - Jessica Brunner
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, USA
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health; Environmental and Occupational Health Sciences Institute, Piscataway, USA
| | - Thomas G O'Connor
- Departments of Psychiatry, Obstetrics/Gynecology, Pediatrics, University of Rochester, School of Medicine and Dentistry, Rochester, USA
| | - Dawn P Misra
- Department of Epidemiology and Biostatistics, Michigan State University, MI, USA
| | - Richard K Miller
- Departments of Obstetrics and Gynecology, Environmental Medicine, Pathology, and Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, USA
| |
Collapse
|
2
|
Tsompanidis A, Blanken L, Broere-Brown ZA, van Rijn BB, Baron-Cohen S, Tiemeier H. Sex differences in placenta-derived markers and later autistic traits in children. Transl Psychiatry 2023; 13:256. [PMID: 37443170 DOI: 10.1038/s41398-023-02552-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Autism is more prevalent in males and males on average score higher on measures of autistic traits. Placental function is affected significantly by the sex of the fetus. It is unclear if sex differences in placental function are associated with sex differences in the occurrence of autistic traits postnatally. To assess this, concentrations of angiogenesis-related markers, placental growth factor (PlGF) and soluble fms-like tyrosine kinase (sFlt-1) were assessed in maternal plasma of expectant women in the late 1st (mean= 13.5 [SD = 2.0] weeks gestation) and 2nd trimesters (mean=20.6 [SD = 1.2] weeks gestation), as part of the Generation R Study, Rotterdam, the Netherlands. Subsequent assessment of autistic traits in the offspring at age 6 was performed with the 18-item version of the Social Responsiveness Scale (SRS). Associations of placental protein concentrations with autistic traits were tested in sex-stratified and cohort-wide regression models. Cases with pregnancy complications or a later autism diagnosis (n = 64) were also assessed for differences in placenta-derived markers. sFlt-1 levels were significantly lower in males in both trimesters but showed no association with autistic traits. PlGF was significantly lower in male pregnancies in the 1st trimester, and significantly higher in the 2nd trimester, compared to female pregnancies. Higher PlGF levels in the 2nd trimester and the rate of PlGF increase were both associated with the occurrence of higher autistic traits (PlGF-2nd: n = 3469,b = 0.24 [SE = 0.11], p = 0.03) in both unadjusted and adjusted linear regression models that controlled for age, sex, placental weight and maternal characteristics. Mediation analyses showed that higher autistic traits in males compared to females were partly explained by higher PlGF or a faster rate of PlGF increase in the second trimester (PlGF-2nd: n = 3469, ACME: b = 0.005, [SE = 0.002], p = 0.004). In conclusion, higher PlGF levels in the 2nd trimester and a higher rate of PlGF increase are associated with both being male, and with a higher number of autistic traits in the general population.
Collapse
Affiliation(s)
- A Tsompanidis
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK.
| | - L Blanken
- The Generation R Study Group, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Z A Broere-Brown
- The Generation R Study Group, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - B B van Rijn
- The Generation R Study Group, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - S Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - H Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Harvard University, Boston, USA
| |
Collapse
|
3
|
Saeed H, Lu YC, Andescavage N, Kapse K, Andersen NR, Lopez C, Quistorff J, Barnett S, Henderson D, Bulas D, Limperopoulos C. Influence of maternal psychological distress during COVID-19 pandemic on placental morphometry and texture. Sci Rep 2023; 13:7374. [PMID: 37164993 PMCID: PMC10172401 DOI: 10.1038/s41598-023-33343-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/12/2023] [Indexed: 05/12/2023] Open
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic has been accompanied by increased prenatal maternal distress (PMD). PMD is associated with adverse pregnancy outcomes which may be mediated by the placenta. However, the potential impact of the pandemic on in vivo placental development remains unknown. To examine the impact of the pandemic and PMD on in vivo structural placental development using advanced magnetic resonance imaging (MRI), acquired anatomic images of the placenta from 63 pregnant women without known COVID-19 exposure during the pandemic and 165 pre-pandemic controls. Measures of placental morphometry and texture were extracted. PMD was determined from validated questionnaires. Generalized estimating equations were utilized to compare differences in PMD placental features between COVID-era and pre-pandemic cohorts. Maternal stress and depression scores were significantly higher in the pandemic cohort. Placental volume, thickness, gray level kurtosis, skewness and run length non-uniformity were increased in the pandemic cohort, while placental elongation, mean gray level and long run emphasis were decreased. PMD was a mediator of the association between pandemic status and placental features. Altered in vivo placental structure during the pandemic suggests an underappreciated link between disturbances in maternal environment and perturbed placental development. The long-term impact on offspring is currently under investigation.
Collapse
Affiliation(s)
- Haleema Saeed
- Department of Obstetrics & Gynecology, MedStar Washington Hospital Center, Washington, DC, 20010, USA
| | - Yuan-Chiao Lu
- Developing Brain Institute, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Nickie Andescavage
- Developing Brain Institute, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
- Division of Neonatology, Children's National Hospital, Washington, DC, 20010, USA
| | - Kushal Kapse
- Developing Brain Institute, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Nicole R Andersen
- Developing Brain Institute, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Catherine Lopez
- Developing Brain Institute, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Jessica Quistorff
- Developing Brain Institute, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Scott Barnett
- Developing Brain Institute, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Diedtra Henderson
- Developing Brain Institute, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Dorothy Bulas
- Division of Radiology, Children's National Hospital, Washington, DC, 20010, USA
| | - Catherine Limperopoulos
- Developing Brain Institute, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA.
- Division of Radiology, Children's National Hospital, Washington, DC, 20010, USA.
| |
Collapse
|
4
|
Tsompanidis A, Warrier V, Baron-Cohen S. The genetics of autism and steroid-related traits in prenatal and postnatal life. Front Endocrinol (Lausanne) 2023; 14:1126036. [PMID: 37223033 PMCID: PMC10200920 DOI: 10.3389/fendo.2023.1126036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/18/2023] [Indexed: 05/25/2023] Open
Abstract
Background Autism likelihood is a largely heritable trait. Autism prevalence has a skewed sex ratio, with males being diagnosed more often than females. Steroid hormones play a mediating role in this, as indicated by studies of both prenatal biology and postnatal medical conditions in autistic men and women. It is currently unclear if the genetics of steroid regulation or production interact with the genetic liability for autism. Methods To address this, two studies were conducted using publicly available datasets, which focused respectively on rare genetic variants linked to autism and neurodevelopmental conditions (study 1) and common genetic variants (study 2) for autism. In Study 1 an enrichment analysis was conducted, between autism-related genes (SFARI database) and genes that are differentially expressed (FDR<0.1) between male and female placentas, in 1st trimester chorionic villi samples of viable pregnancies (n=39). In Study 2 summary statistics of genome wide association studies (GWAS) were used to investigate the genetic correlation between autism and bioactive testosterone, estradiol and postnatal PlGF levels, as well as steroid-related conditions such as polycystic ovaries syndrome (PCOS), age of menarche, and androgenic alopecia. Genetic correlation was calculated based on LD Score regression and results were corrected for multiple testing with FDR. Results In Study 1, there was significant enrichment of X-linked autism genes in male-biased placental genes, independently of gene length (n=5 genes, p<0.001). In Study 2, common genetic variance associated with autism did not correlate to the genetics for the postnatal levels of testosterone, estradiol or PlGF, but was associated with the genotypes associated with early age of menarche in females (b=-0.109, FDR-q=0.004) and protection from androgenic alopecia for males (b=-0.135, FDR-q=0.007). Conclusion The rare genetic variants associated with autism appear to interact with placental sex differences, while the common genetic variants associated with autism appear to be involved in the regulation of steroid-related traits. These lines of evidence indicate that the likelihood for autism is partly linked to factors mediating physiological sex differences throughout development.
Collapse
Affiliation(s)
- Alex Tsompanidis
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | | | | |
Collapse
|
5
|
Seymore TN, Rivera-Núñez Z, Stapleton PA, Adibi JJ, Barrett ES. Phthalate Exposures and Placental Health in Animal Models and Humans: A Systematic Review. Toxicol Sci 2022; 188:153-179. [PMID: 35686923 PMCID: PMC9333406 DOI: 10.1093/toxsci/kfac060] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Phthalates are ubiquitous compounds known to leach from the plastic products that contain them. Due to their endocrine-disrupting properties, a wide range of studies have elucidated their effects on reproduction, metabolism, neurodevelopment, and growth. Additionally, their impacts during pregnancy and on the developing fetus have been extensively studied. Most recently, there has been interest in the impacts of phthalates on the placenta, a transient major endocrine organ critical to maintenance of the uterine environment and fetal development. Phthalate-induced changes in placental structure and function may have significant impacts on the course of pregnancy and ultimately, child health. Prior reviews have described the literature on phthalates and placental health; however to date, there has been no comprehensive, systematic review on this topic. Here, we review 35 papers (24 human and 11 animal studies) and summarize phthalate exposures in relation to an extensive set of placental measures. Phthalate-related alterations were reported for placental morphology, hormone production, vascularization, histopathology, and gene/protein expression. The most consistent changes were observed in vascular and morphologic endpoints, including cell composition. These changes have implications for pregnancy complications such as preterm birth and intrauterine growth restriction as well as potential ramifications for children's health. This comprehensive review of the literature, including common sources of bias, will inform the future work in this rapidly expanding field.
Collapse
Affiliation(s)
- Talia N Seymore
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey 08854, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey 08854, USA
| | - Zorimar Rivera-Núñez
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey 08854, USA
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey 08854, USA
| | - Phoebe A Stapleton
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey 08854, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey 08854, USA
| | - Jennifer J Adibi
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Emily S Barrett
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey 08854, USA
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey 08854, USA
| |
Collapse
|
6
|
Zhong C, Shah R, Rando J, Park B, Girardi T, Walker CK, Croen LA, Fallin MD, Hertz-Picciotto I, Lee BK, Schmidt RJ, Volk HE, Newschaffer CJ, Salafia CM, Lyall K. Placental morphology in association with autism-related traits in the EARLI study. BMC Pregnancy Childbirth 2022; 22:525. [PMID: 35764940 PMCID: PMC9241175 DOI: 10.1186/s12884-022-04851-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/09/2022] [Indexed: 01/24/2023] Open
Abstract
Background In prior work we observed differences in morphology features in placentas from an autism-enriched cohort as compared to those from a general population sample. Here we sought to examine whether these differences associate with ASD-related outcomes in the child. Methods Participants (n = 101) were drawn from the Early Autism Risk Longitudinal Investigation (EARLI), a cohort following younger siblings of children with autism spectrum disorder (ASD). ASD-related outcomes, including the Social Responsiveness Scale (SRS), Mullen Scales of Early Learning (MSEL) Early Learning Composite, and ASD diagnosis, were assessed at age 3. Crude and adjusted linear regression was used to examine associations between placental morphological features (parametrized continuously and in quartiles) and SRS and MSEL scores; comparisons by ASD case status were explored as secondary analyses due to the small number of cases (n = 20). Results In adjusted analyses, we observed a modest positive association between umbilical cord eccentricity, defined as the ratio of the maximum:minimum radius from the cord insertion point, and SRS scores (Beta = 1.68, 95%CI = 0.45, 2.9). Positive associations were also suggested between placental maximum thickness and cord centrality and SRS scores, though these were estimated with little precision. Associations between other placental morphological features and outcomes were not observed. Conclusions Our analyses suggested a potential association between umbilical cord features and ASD-related traits, of interest as non-central cord insertion may reflect reduced placenta efficiency. Future studies with larger sample sizes are needed to further examine these and other placental features in association with ASD-related outcomes. Supplementary Information The online version contains supplementary material available at 10.1186/s12884-022-04851-4.
Collapse
Affiliation(s)
- Caichen Zhong
- Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, PA, 19104, USA.
| | | | - Juliette Rando
- AJ Drexel Autism Institute, Drexel University, Philadelphia, PA, USA
| | - Bo Park
- Department of Public Health, California State University Fullerton, Fullerton, CA, USA
| | | | - Cheryl K Walker
- Department of Obstetrics and Gynecology, University of California Davis Health, Sacramento, CA, USA
| | - Lisa A Croen
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - M Daniele Fallin
- Department of Mental Health, Johns Hopkins University, Baltimore, MD, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences and the MIND Institute, School of Medicine, University of California Davis, Davis, CA, USA
| | - Brian K Lee
- Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, PA, 19104, USA
| | - Rebecca J Schmidt
- Department of Public Health Sciences and the MIND Institute, School of Medicine, University of California Davis, Davis, CA, USA
| | - Heather E Volk
- Department of Mental Health, Johns Hopkins University, Baltimore, MD, USA
| | - Craig J Newschaffer
- Department of Health and Human Development, Pennsylvania State University, University Park, PA, USA
| | | | - Kristen Lyall
- AJ Drexel Autism Institute, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
7
|
Soullane S, Spence AR, Abenhaim HA. Association of placental pathology and gross morphology with autism spectrum disorders. Autism Res 2021; 15:531-538. [DOI: 10.1002/aur.2658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Safiya Soullane
- Faculty of Medicine McGill University Montreal Quebec Canada
| | - Andrea R. Spence
- Centre for Clinical Epidemiology and Community Studies Jewish General Hospital Montreal Quebec Canada
| | - Haim A. Abenhaim
- Centre for Clinical Epidemiology and Community Studies Jewish General Hospital Montreal Quebec Canada
- Department of Obstetrics and Gynecology Jewish General Hospital, McGill University Montreal Quebec Canada
| |
Collapse
|
8
|
Bahado-Singh RO, Vishweswaraiah S, Aydas B, Radhakrishna U. Artificial intelligence and placental DNA methylation: newborn prediction and molecular mechanisms of autism in preterm children. J Matern Fetal Neonatal Med 2021; 35:8150-8159. [PMID: 34404318 DOI: 10.1080/14767058.2021.1963704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) represents a heterogeneous group of disorders with a complex genetic and epigenomic etiology. DNA methylation is the most extensively studied epigenomic mechanism and correlates with altered gene expression. Artificial intelligence (AI) is a powerful tool for group segregation and for handling the large volume of data generated in omics experiments. METHODS We performed genome-wide methylation analysis for differential methylation of cytosine nucleotide (CpG) was performed in 20 postpartum placental tissue samples from preterm births. Ten newborns went on to develop autism (Autistic Disorder subtype) and there were 10 unaffected controls. AI including Deep Learning (AI-DL) platforms were used to identify and rank cytosine methylation markers for ASD detection. Ingenuity Pathway Analysis (IPA) to identify genes and molecular pathways that were dysregulated in autism. RESULTS We identified 4870 CpG loci comprising 2868 genes that were significantly differentially methylated in ASD compared to controls. Of these 431 CpGs met the stringent EWAS threshold (p-value <5 × 10-8) along with ≥10% methylation difference between CpGs in cases and controls. DL accurately predicted autism with an AUC (95% CI) of 1.00 (1-1) and sensitivity and specificity of 100% using a combination of 5 CpGs [cg13858611 (NRN1), cg09228833 (ZNF217), cg06179765 (GPNMB), cg08814105 (NKX2-5), cg27092191 (ZNF267)] CpG markers. IPA identified five prenatally dysregulated molecular pathways linked to ASD. CONCLUSIONS The present study provides substantial evidence that epigenetic differences in placental tissue are associated with autism development and raises the prospect of early and accurate detection of the disorder.
Collapse
Affiliation(s)
- Ray O Bahado-Singh
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA
| | - Sangeetha Vishweswaraiah
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA
| | - Buket Aydas
- Department of Healthcare Analytics, Meridian Health Plans, Detroit, MI, USA
| | - Uppala Radhakrishna
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA
| |
Collapse
|
9
|
Andescavage N, Kapse K, Lu YC, Barnett SD, Jacobs M, Gimovsky AC, Ahmadzia H, Quistorff J, Lopez C, Andersen NR, Bulas D, Limperopoulos C. Normative placental structure in pregnancy using quantitative Magnetic Resonance Imaging. Placenta 2021; 112:172-179. [PMID: 34365206 DOI: 10.1016/j.placenta.2021.07.296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/08/2021] [Accepted: 07/27/2021] [Indexed: 11/29/2022]
Abstract
INTRODUCTION To characterize normative morphometric, textural and microstructural placental development by applying advanced and quantitative magnetic resonance imaging (qMRI) techniques to the in-vivo placenta. METHODS We enrolled 195 women with uncomplicated, healthy singleton pregnancies in a prospective observational study. Women underwent MRI between 16- and 40-weeks' gestation. Morphometric and textural metrics of placental growth were calculated from T2-weighted (T2W) images, while measures of microstructural development were calculated from diffusion-weighted images (DWI). Normative tables and reference curves were constructed for each measured index across gestation and according to fetal sex. RESULTS Data from 269 MRI studies from 169 pregnant women were included in the analyses. During the study period, placentas undergo significant increases in morphometric measures of volume, thickness, and elongation. Placental texture reveals increasing variability with advancing gestation as measured by grey level non uniformity, run length non uniformity and long run high grey level emphasis. Placental microstructure did not vary with gestational age. Placental elongation was the only metric that differed significantly between male and female fetuses. DISCUSSION We report quantitative metrics of placental morphometry, texture and microstructure in a large cohort of healthy controls during the second and third trimesters of pregnancy. These measures can serve as normative references of in-vivo placental development to better understand placental function in high-risk conditions and allow for the early detection of placental mal-development.
Collapse
Affiliation(s)
- Nickie Andescavage
- Division of Neonatology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA; Department of Pediatrics, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Kushal Kapse
- Division of Diagnostic Imaging & Radiology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Yuan-Chiao Lu
- Division of Diagnostic Imaging & Radiology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Scott D Barnett
- Division of Diagnostic Imaging & Radiology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Marni Jacobs
- Division of Biostatistics & Study Methodology, George Washington University School of Medicine, 2300 Eye St. NW, Washington, DC, 20037, USA
| | - Alexis C Gimovsky
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Homa Ahmadzia
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Jessica Quistorff
- Division of Diagnostic Imaging & Radiology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Catherine Lopez
- Division of Diagnostic Imaging & Radiology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Nicole Reinholdt Andersen
- Division of Diagnostic Imaging & Radiology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Dorothy Bulas
- Division of Diagnostic Imaging & Radiology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA; Department of Radiology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Catherine Limperopoulos
- Division of Diagnostic Imaging & Radiology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA; Department of Pediatrics, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA; Department of Radiology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA.
| |
Collapse
|
10
|
Bahado-Singh RO, Vishweswaraiah S, Aydas B, Radhakrishna U. Placental DNA methylation changes and the early prediction of autism in full-term newborns. PLoS One 2021; 16:e0253340. [PMID: 34260616 PMCID: PMC8279352 DOI: 10.1371/journal.pone.0253340] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/03/2021] [Indexed: 12/23/2022] Open
Abstract
Autism spectrum disorder (ASD) is associated with abnormal brain development during fetal life. Overall, increasing evidence indicates an important role of epigenetic dysfunction in ASD. The placenta is critical to and produces neurotransmitters that regulate fetal brain development. We hypothesized that placental DNA methylation changes are a feature of the fetal development of the autistic brain and importantly could help to elucidate the early pathogenesis and prediction of these disorders. Genome-wide methylation using placental tissue from the full-term autistic disorder subtype was performed using the Illumina 450K array. The study consisted of 14 cases and 10 control subjects. Significantly epigenetically altered CpG loci (FDR p-value <0.05) in autism were identified. Ingenuity Pathway Analysis (IPA) was further used to identify molecular pathways that were over-represented (epigenetically dysregulated) in autism. Six Artificial Intelligence (AI) algorithms including Deep Learning (DL) to determine the predictive accuracy of CpG markers for autism detection. We identified 9655 CpGs differentially methylated in autism. Among them, 2802 CpGs were inter- or non-genic and 6853 intragenic. The latter involved 4129 genes. AI analysis of differentially methylated loci appeared highly accurate for autism detection. DL yielded an AUC (95% CI) of 1.00 (1.00-1.00) for autism detection using intra- or intergenic markers by themselves or combined. The biological functional enrichment showed, four significant functions that were affected in autism: quantity of synapse, microtubule dynamics, neuritogenesis, and abnormal morphology of neurons. In this preliminary study, significant placental DNA methylation changes. AI had high accuracy for the prediction of subsequent autism development in newborns. Finally, biologically functional relevant gene pathways were identified that may play a significant role in early fetal neurodevelopmental influences on later cognition and social behavior.
Collapse
Affiliation(s)
- Ray O. Bahado-Singh
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, MI, United States of America
| | - Sangeetha Vishweswaraiah
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, MI, United States of America
| | - Buket Aydas
- Department of Healthcare Analytics, Meridian Health Plans, Detroit, MI, United States of America
| | - Uppala Radhakrishna
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, MI, United States of America
- * E-mail:
| |
Collapse
|
11
|
Katz J, Holzer PH, Kliman HJ. Genetics, not the uterine environment, drive the formation of trophoblast inclusions: Insights from a twin study. Placenta 2021; 114:133-138. [PMID: 33941390 DOI: 10.1016/j.placenta.2021.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/01/2021] [Accepted: 04/13/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Trophoblast inclusions (TIs) are associated with aneuploidy and pregnancy loss and have thus been considered to be a marker of genetic abnormality. However, to date, no study has specifically explored whether TIs are a manifestation of fetal genetics or, rather, the result of the intrauterine environment. The goal of this study was to compare the frequency of TIs in the placentas of monozygotic (MZ) and dizygotic (DZ) twin pairs in order to determine whether the formation of TIs is genetically driven or not. METHODS We performed a retrospective case series of placentas from 48 twin pairs. The placentas were grouped based on zygosity: MZ, DZ, or unknown (UZ). The average number of total TIs per slide was calculated for each twin individual and the mean absolute difference in the total TIs per slide between the twin pairs was calculated for each zygosity group and compared. RESULTS The mean difference in the total TIs per slide for DZ twins was significantly greater than the mean difference in the total TIs per slide for MZ twins (p = 0.003). The mean difference in the total TIs per slide for the UZ group was also significantly greater than the mean difference in total TIs per slide between MZ twin pairs (p = 0.028). DISCUSSION Our finding that MZ twins were significantly more concordant than DZ twins for the average number of TIs per slide supports the conclusion that TIs are intrinsic to the genetics of the fetus, not the uterine environment.
Collapse
Affiliation(s)
- Julia Katz
- Yale College, Yale University, New Haven, CT, USA
| | - Parker H Holzer
- Department of Statistics & Data Science, Yale University, New Haven, CT, USA
| | - Harvey J Kliman
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
12
|
O'Connor T, Best M, Brunner J, Ciesla AA, Cunning A, Kapula N, Kautz A, Khoury L, Macomber A, Meng Y, Miller RK, Murphy H, Salafia CM, Vallejo Sefair A, Serrano J, Barrett E. Cohort profile: Understanding Pregnancy Signals and Infant Development (UPSIDE): a pregnancy cohort study on prenatal exposure mechanisms for child health. BMJ Open 2021; 11:e044798. [PMID: 33795306 PMCID: PMC8021752 DOI: 10.1136/bmjopen-2020-044798] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/08/2021] [Accepted: 03/04/2021] [Indexed: 01/28/2023] Open
Abstract
PURPOSE Extensive research suggests that maternal prenatal distress is reliably related to perinatal and child health outcomes-which may persist into adulthood. However, basic questions remain regarding mechanisms involved. To better understand these mechanisms, we developed the Understanding Pregnancy Signals and Infant Development (UPSIDE) cohort study, which has several distinguishing features, including repeated assessments across trimesters, analysis of multiple biological pathways of interest, and incorporation of placental structure and function as mediators of child health outcomes. PARTICIPANTS Women with normal risk pregnancies were recruited at <14 weeks gestation. Study visits occurred in each trimester and included extensive psychological, sociodemographic, health behaviour and biospecimen collection. Placenta and cord blood were collected at birth. Child visits (ongoing) occur at birth and 1, 6, 12, 24, 36 and 48 months of age and use standard anthropometric, clinical, behavioural, biological and neuroimaging methods to assess child physical and neurodevelopment. FINDINGS TO DATE We recruited 326 pregnancies; 294 (90%) were retained through birth. Success rates for prenatal biospecimen collection were high across all trimesters (96%-99% for blood, 94%-97% for urine, 96%-99% for saliva, 96% of placentas, 88% for cord blood and 93% for buccal swab). Ninety-four per cent of eligible babies (n=277) participated in a birth examination; postnatal visits are ongoing. FUTURE PLANS The current phase of the study follows children through age 4 to examine child neurodevelopment and physical development. In addition, the cohort participates in the National Institutes of Health's Environmental influences on Child Health Outcomes programme, a national study of 50 000 families examining early environmental influences on perinatal outcomes, neurodevelopment, obesity and airway disease. Future research will leverage the rich repository of biological samples and clinical data to expand research on the mechanisms of child health outcomes in relation to environmental chemical exposures, genetics and the microbiome.
Collapse
Affiliation(s)
- Thomas O'Connor
- Psychiatry, University of Rochester, Rochester, New York, USA
- Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York, USA
- Neuroscience, University of Rochester Medical Center, Rochester, New York, USA
- Wynne Center for Family Research, University of Rochester Medical Center, Rochester, New York, USA
- Psychology, University of Rochester, Rochester, New York, USA
| | - Meghan Best
- Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York, USA
| | - Jessica Brunner
- Psychiatry, University of Rochester, Rochester, New York, USA
- Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York, USA
- School of Nursing, University of Rochester Medical Center, Rochester, New York, USA
| | | | - Allison Cunning
- Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York, USA
| | - Ntemena Kapula
- Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York, USA
- School of Nursing, University of Rochester Medical Center, Rochester, New York, USA
| | - Amber Kautz
- Public Health Sciences, University of Rochester Medical Center, Rochester, New York, USA
| | - Leena Khoury
- Psychiatry, University of Rochester, Rochester, New York, USA
- Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York, USA
| | - Allison Macomber
- Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York, USA
| | - Ying Meng
- School of Nursing, University of Rochester Medical Center, Rochester, New York, USA
| | - Richard K Miller
- Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York, USA
| | - Hannah Murphy
- Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York, USA
| | - Carolyn M Salafia
- Placental Modulation Laboratory, Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
- Placental Analytics LLC, Larchmont, New York, USA
| | | | - Jishyra Serrano
- Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York, USA
| | - Emily Barrett
- Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York, USA
- Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
13
|
Gilbertson PK, Forrester S, Andrews L, McCann K, Rogers L, Park C, Moye J. The National Children's Study Archive Model: A 3-Tier Framework for Dissemination of Data and Specimens for General Use and Secondary Analysis. Front Public Health 2021; 9:526286. [PMID: 33748052 PMCID: PMC7973013 DOI: 10.3389/fpubh.2021.526286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 01/26/2021] [Indexed: 01/12/2023] Open
Abstract
The National Children's Study (NCS) Archive was created as a repository of samples, data, and information from the NCS Vanguard Study-a longitudinal pregnancy and birth cohort evaluating approaches to study influence of environmental exposures on child health and development-to provide qualified researchers with access to NCS materials for use in secondary research. The National Children's Study Archive (NCSA) model is a 3-tiered access model designed to make the wealth of information and materials gathered during the NCS Vanguard Study available at a user appropriate level. The NCSA model was developed as a 3-tier framework, for users of varying access levels, providing intuitive data exploration and visualization tools, an end-to-end data and sample request management system, and a restricted portal for participant-level data access with a team of experts available to assist users. This platform provides a model to accelerate transformation of information and materials from existing studies into new scientific discoveries. Trial Registration: ClinicalTrials.gov Identifier: NCT00852904 (first posted February 27, 2009).
Collapse
Affiliation(s)
| | - Susan Forrester
- Social & Scientific Systems Inc., Silver Spring, MD, United States
| | - Linda Andrews
- Social & Scientific Systems Inc., Silver Spring, MD, United States
| | - Kathleen McCann
- Social & Scientific Systems Inc., Silver Spring, MD, United States
| | - Lydia Rogers
- Social & Scientific Systems Inc., Silver Spring, MD, United States
| | - Christina Park
- National Institutes of Health, Office of the Director, Bethesda, MD, United States
| | - Jack Moye
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
14
|
Lyall K, Windham GC, Snyder NW, Kuskovsky R, Xu P, Bostwick A, Robinson L, Newschaffer CJ. Association Between Midpregnancy Polyunsaturated Fatty Acid Levels and Offspring Autism Spectrum Disorder in a California Population-Based Case-Control Study. Am J Epidemiol 2021; 190:265-276. [PMID: 33524118 DOI: 10.1093/aje/kwaa171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/16/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are critical for brain development and have been linked with neurodevelopmental outcomes. We conducted a population-based case-control study in California to examine the association between PUFAs measured in midpregnancy serum samples and autism spectrum disorder (ASD) in offspring. ASD cases (n = 499) were identified through the California Department of Developmental Services and matched to live-birth population controls (n = 502) on birth month, year (2010 or 2011), and sex. Logistic regression models were used to examine crude and adjusted associations. In secondary analyses, we examined ASD with and without co-occurring intellectual disability (ID; n = 67 and n = 432, respectively) and effect modification by sex and ethnicity. No clear patterns emerged, though there was a modest inverse association with the top quartile of linoleic acid level (highest quartile vs. lowest: adjusted odds ratio = 0.74, 95% confidence interval: 0.49, 1.11; P for trend = 0.10). Lower levels of total and ω-3 PUFAs were associated with ASD with ID (lowest decile of total PUFAs vs. deciles 4-7: adjusted odds ratio = 2.78, 95% confidence interval: 1.13, 6.82) but not ASD without ID. We did not observe evidence of effect modification by the factors examined. These findings do not suggest a strong association between midpregnancy PUFA levels and ASD. In further work, researchers should consider associations with ASD with ID and in other time windows.
Collapse
|
15
|
Worsham W, Dalton S, Bilder DA. The Prenatal Hormone Milieu in Autism Spectrum Disorder. Front Psychiatry 2021; 12:655438. [PMID: 34276434 PMCID: PMC8280339 DOI: 10.3389/fpsyt.2021.655438] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/17/2021] [Indexed: 01/03/2023] Open
Abstract
Though the etiology of autism spectrum disorder (ASD) remains largely unknown, recent findings suggest that hormone dysregulation within the prenatal environment, in conjunction with genetic factors, may alter fetal neurodevelopment. Early emphasis has been placed on the potential role of in utero exposure to androgens, particularly testosterone, to theorize ASD as the manifestation of an "extreme male brain." The relationship between autism risk and obstetric conditions associated with inflammation and steroid dysregulation merits a much broader understanding of the in utero steroid environment and its potential influence on fetal neuroendocrine development. The exploration of hormone dysregulation in the prenatal environment and ASD development builds upon prior research publishing associations with obstetric conditions and ASD risk. The insight gained may be applied to the development of chronic adult metabolic diseases that share prenatal risk factors with ASD. Future research directions will also be discussed.
Collapse
Affiliation(s)
- Whitney Worsham
- University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Susan Dalton
- Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, UT, United States
| | - Deborah A Bilder
- Division of Child & Adolescent Psychiatry, Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
16
|
Traccis F, Frau R, Melis M. Gender Differences in the Outcome of Offspring Prenatally Exposed to Drugs of Abuse. Front Behav Neurosci 2020; 14:72. [PMID: 32581736 PMCID: PMC7291924 DOI: 10.3389/fnbeh.2020.00072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/21/2020] [Indexed: 12/17/2022] Open
Abstract
Despite great efforts to warn pregnant women that drugs of abuse impact development of the embryo and the fetus, the use of legal and illegal drugs by childbearing women is still a major public health concern. In parallel with well-established teratogenic effects elicited by some drugs of abuse, epidemiological studies show that certain psychoactive substances do not induce birth defects but lead to subtle neurobehavioral alterations in the offspring that manifest as early as during infancy. Although gender differences in offspring susceptibility have not been fully investigated, a number of longitudinal studies indicate that male and female progeny exposed in utero to drugs of abuse show different vulnerabilities to deleterious effects of these substances in cognitive, executive, and behavioral domains. Here, we briefly review the existing literature focusing on gender differences in the neurobehavioral consequences of maternal exposure to drugs of abuse. Overall, the data strongly indicate that male exposed progeny are more susceptible than female to dysfunctions in cognitive processing and emotional regulation. However, insights into the mechanisms determining this natural phenomenon are not currently available. Our analysis prompts future investigations to implement clinical studies including the influence of gender/sex as a biological variable in the outcome of offspring prenatally exposed to drugs of abuse.
Collapse
Affiliation(s)
| | | | - Miriam Melis
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| |
Collapse
|
17
|
Rosenfeld CS. The placenta-brain-axis. J Neurosci Res 2020; 99:271-283. [PMID: 32108381 DOI: 10.1002/jnr.24603] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/25/2020] [Accepted: 02/12/2020] [Indexed: 12/18/2022]
Abstract
All mammalian species depend on the placenta, a transient organ, for exchange of gases, nutrients, and waste between the mother and conceptus. Besides serving as a conduit for such exchanges, the placenta produces hormones and other factors that influence maternal physiology and fetal development. To meet all of these adaptations, the placenta has evolved to become the most structurally diverse organ within all mammalian taxa. However, commonalities exist as to how placental responses promote survival against in utero threats and can alter the trajectory of fetal development, in particular the brain. Increasing evidence suggests that reactions of the placenta to various in utero stressors may lead to long-standing health outcomes, otherwise considered developmental origin of health and disease effects. Besides transferring nutrients and gases, the placenta produces neurotransmitters, including serotonin, dopamine, norepinephrine/epinephrine, that may circulate and influence brain development. Neurobehavioral disorders, such as autism spectrum disorders, likely trace their origins back to placental disturbances. This intimate relationship between the placenta and brain has led to coinage of the term, the placenta-brain-axis. This axis will be the focus herein, including how conceptus sex might influence it, and technologies employed to parse out the effects of placental-specific transcript expression changes on later neurobehavioral disorders. Ultimately, the placenta might provide a historical record of in utero threats the fetus confronted and a roadmap to understand how placenta responses to such encounters impacts the placental-brain-axis. Improved early diagnostic and preventative approaches may thereby be designed to mitigate such placental disruptions.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Biomedical Sciences, University of Missouri, Columbia, MO, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,MU Informatics Institute, University of Missouri, Columbia, MO, USA.,Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, USA.,Genetics Area Program, University of Missouri, Columbia, MO, USA
| |
Collapse
|
18
|
Abstract
Elevated latent prenatal steroidogenic activity has been found in the amniotic fluid of autistic boys, based on measuring prenatal androgens and other steroid hormones. To date, it is unclear if other prenatal steroids also contribute to autism likelihood. Prenatal oestrogens need to be investigated, as they play a key role in synaptogenesis and corticogenesis during prenatal development, in both males and females. Here we test whether levels of prenatal oestriol, oestradiol, oestrone and oestrone sulphate in amniotic fluid are associated with autism, in the same Danish Historic Birth Cohort, in which prenatal androgens were measured, using univariate logistic regression (n = 98 cases, n = 177 controls). We also make a like-to-like comparison between the prenatal oestrogens and androgens. Oestradiol, oestrone, oestriol and progesterone each related to autism in univariate analyses after correction with false discovery rate. A comparison of standardised odds ratios showed that oestradiol, oestrone and progesterone had the largest effects on autism likelihood. These results for the first time show that prenatal oestrogens contribute to autism likelihood, extending the finding of elevated prenatal steroidogenic activity in autism. This likely affects sexual differentiation, brain development and function.
Collapse
|
19
|
Kratimenos P, Penn AA. Placental programming of neuropsychiatric disease. Pediatr Res 2019; 86:157-164. [PMID: 31003234 PMCID: PMC11906117 DOI: 10.1038/s41390-019-0405-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/05/2019] [Accepted: 04/11/2019] [Indexed: 12/24/2022]
Abstract
The placenta is vital for fetal growth, and compromised function is associated with abnormal development, especially of the brain. Linking placental function to brain development is a new field we have dubbed neuroplacentology. Approximately 380,000 infants in the United States each year abruptly lose placental support upon premature birth, and more than 10% of pregnancies are affected by more insidious placental dysfunction such as preeclampsia or infection. Abnormal fetal brain development or injury can lead to life-long neurological impairments, including psychiatric disorders. The majority of research connecting placental compromise to fetal brain injury has focused on gas exchange or nutritional programming, neglecting the placenta's essential neuroendocrine role. We will review the current evidence that placental dysfunction, particularly endocrine dysfunction, secretion of pro-inflammatory cytokines, or barrier breakdown may place many thousands of fetuses at risk for life-long neurodevelopmental impairments each year. Understanding how specific placental factors shape brain development and increase the risk for later psychiatric disorders, including autism, attention deficit disorder, and schizophrenia, paves the way for novel treatment strategies to maintain the normal developmental milieu and protect from further injury.
Collapse
Affiliation(s)
- Panagiotis Kratimenos
- Dept. of Pediatrics, George Washington University, Washington, DC, USA
- Neonatology, Children's National Health System, Washington, DC, USA
- Center for Neuroscience Research, Children's Research Institute at Children's National Health System, Washington, DC, USA
| | - Anna A Penn
- Dept. of Pediatrics, George Washington University, Washington, DC, USA.
- Neonatology, Children's National Health System, Washington, DC, USA.
- Center for Neuroscience Research, Children's Research Institute at Children's National Health System, Washington, DC, USA.
- Fetal and Transitional Medicine, Children's National Health System, Washington, DC, USA.
| |
Collapse
|
20
|
O'Connor TG, Miller RK, Salafia C. Placental Studies for Child Development. CHILD DEVELOPMENT PERSPECTIVES 2019; 13:193-198. [PMID: 31413725 DOI: 10.1111/cdep.12338] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Research on children's psychological and behavioral development readily incorporates changing biological models and techniques. In this article, we suggest that, in response to increasing evidence of robust influences of prenatal exposures on children's neurodevelopment and mental and physical health, developmental science also needs to consider the placenta's role in development. We argue why placental mechanisms are plausible targets in developmental science, and suggest initial and practical steps toward integrating placenta markers and mechanisms into research on child development.
Collapse
|