1
|
Yang B, Yang L, Kang L, You L, Chen H, Xiao H, Qian L, Rao Y, Liu Z. Integrated analysis of BSA-seq and RNA-seq identified the candidate genes for seed weight in Brassica juncea. FRONTIERS IN PLANT SCIENCE 2024; 15:1458294. [PMID: 39698460 PMCID: PMC11654836 DOI: 10.3389/fpls.2024.1458294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024]
Abstract
Introduction Brassica juncea is a major oilseed crop of Brassica. The seed weight is one of yield components in oilseed Brassica crops. Research on the genetic mechanism of seed weight is not only directly related to the yield and economic value of Brassica juncea but also can provide a theory foundation for studying other Brassica crops. Methods To map the genes for seed weight, the parental and F2 extreme bulks derived were constructed from the cross between the heavy-seeded accession 7981 and the light-seeded one Sichuan yellow (SY) of B. juncea, and used in bulk segregant sequencing (BSA-seq). Meanwhile, RNA-sequencing (RNA-seq) was performed for both parents at six seed development stages. Results Our results showed that a total of thirty five SNPs were identified in thirty two genes located on chromosomes A02 and A10, while fifty eight InDels in fifty one genes located on A01, A03, A05, A07, A09, A10, B01, B02 and B04. The 7,679 differentially expressed genes were identified in developing seeds between the parents. Furthermore, integrated analysis of BSA-seq and RNA-seq data revealed a cluster of nine genes on chromosome A10 and one gene on chromosome A05 that are putative candidate genes controlling seed weight in B. juncea. Discussion This study provides a new reference for research on Brassica seed weight and lays a solid foundation for the examination of seed in other Brassica crops.
Collapse
Affiliation(s)
- Bin Yang
- College of Agriculture, Hunan Agricultural University, Changsha, China
- Guizhou Institute of Oil Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Liu Yang
- College of Agriculture, Hunan Agricultural University, Changsha, China
| | - Lei Kang
- College of Agriculture, Hunan Agricultural University, Changsha, China
| | - Liang You
- Hunan University of Humanities, Science and Technology, College of Agriculture and Biotechnology, Loudi, China
| | - Hao Chen
- College of Agriculture, Hunan Agricultural University, Changsha, China
| | - Huagui Xiao
- Guizhou Institute of Oil Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Lunwen Qian
- College of Agriculture, Hunan Agricultural University, Changsha, China
| | - Yong Rao
- Guizhou Institute of Oil Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Zhongsong Liu
- College of Agriculture, Hunan Agricultural University, Changsha, China
| |
Collapse
|
2
|
Kim WJ, Yang B, Kim DG, Kim SH, Lee YJ, Kim J, Baek SH, Kang SY, Ahn JW, Choi YJ, Bae CH, Iwar K, Kim SH, Ryu J. Genotyping-by-Sequencing Analysis Reveals Associations between Agronomic and Oil Traits in Gamma Ray-Derived Mutant Rapeseed ( Brassica napus L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:1576. [PMID: 38891384 PMCID: PMC11174930 DOI: 10.3390/plants13111576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Rapeseed (Brassica napus L.) holds significant commercial value as one of the leading oil crops, with its agronomic features and oil quality being crucial determinants. In this investigation, 73,226 single nucleotide polymorphisms (SNPs) across 95 rapeseed mutant lines induced by gamma rays, alongside the original cultivar ('Tamra'), using genotyping-by-sequencing (GBS) analysis were examined. This study encompassed gene ontology (GO) analysis and a genomewide association study (GWAS), thereby concentrating on agronomic traits (e.g., plant height, ear length, thousand-seed weight, and seed yield) and oil traits (including fatty acid composition and crude fat content). The GO analysis unveiled a multitude of genes with SNP variations associated with cellular processes, intracellular anatomical structures, and organic cyclic compound binding. Through GWAS, we detected 320 significant SNPs linked to both agronomic (104 SNPs) and oil traits (216 SNPs). Notably, two novel candidate genes, Bna.A05p02350D (SFGH) and Bna.C02p22490D (MDN1), are implicated in thousand-seed weight regulation. Additionally, Bna.C03p14350D (EXO70) and Bna.A09p05630D (PI4Kα1) emerged as novel candidate genes associated with erucic acid and crude fat content, respectively. These findings carry implications for identifying superior genotypes for the development of new cultivars. Association studies offer a cost-effective means of screening mutants and selecting elite rapeseed breeding lines, thereby enhancing the commercial viability of this pivotal oil crop.
Collapse
Affiliation(s)
- Woon Ji Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; (W.J.K.); (D.-G.K.); (S.H.K.); (Y.-J.L.); (J.K.); (J.-W.A.)
| | - Baul Yang
- Imsil Cheese & Food Research Institute, Imsil-gun 55918, Republic of Korea; (B.Y.); (Y.-J.C.)
| | - Dong-Gun Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; (W.J.K.); (D.-G.K.); (S.H.K.); (Y.-J.L.); (J.K.); (J.-W.A.)
| | - Sang Hoon Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; (W.J.K.); (D.-G.K.); (S.H.K.); (Y.-J.L.); (J.K.); (J.-W.A.)
| | - Ye-Jin Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; (W.J.K.); (D.-G.K.); (S.H.K.); (Y.-J.L.); (J.K.); (J.-W.A.)
| | - Juyoung Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; (W.J.K.); (D.-G.K.); (S.H.K.); (Y.-J.L.); (J.K.); (J.-W.A.)
| | - So Hyeon Baek
- Department of Plant Production Sciences, Graduate School, Sunchon National University, Suncheon 57922, Republic of Korea; (S.H.B.); (C.-H.B.)
| | - Si-Yong Kang
- Department of Horticulture, College of Industrial Sciences, Kongju National University, Yesan 32439, Republic of Korea;
| | - Joon-Woo Ahn
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; (W.J.K.); (D.-G.K.); (S.H.K.); (Y.-J.L.); (J.K.); (J.-W.A.)
| | - Yu-Jin Choi
- Imsil Cheese & Food Research Institute, Imsil-gun 55918, Republic of Korea; (B.Y.); (Y.-J.C.)
| | - Chang-Hyu Bae
- Department of Plant Production Sciences, Graduate School, Sunchon National University, Suncheon 57922, Republic of Korea; (S.H.B.); (C.-H.B.)
| | - Kanivalan Iwar
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 5487, Republic of Korea; (K.I.); (S.-H.K.)
| | - Seong-Hoon Kim
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 5487, Republic of Korea; (K.I.); (S.-H.K.)
| | - Jaihyunk Ryu
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; (W.J.K.); (D.-G.K.); (S.H.K.); (Y.-J.L.); (J.K.); (J.-W.A.)
| |
Collapse
|
3
|
Zhao X, Zhu H, Liu F, Wang J, Zhou C, Yuan M, Zhao X, Li Y, Teng W, Han Y, Zhan Y. Integrating Genome-Wide Association Study, Transcriptome and Metabolome Reveal Novel QTL and Candidate Genes That Control Protein Content in Soybean. PLANTS (BASEL, SWITZERLAND) 2024; 13:1128. [PMID: 38674535 PMCID: PMC11054237 DOI: 10.3390/plants13081128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Protein content (PC) is crucial to the nutritional quality of soybean [Glycine max (L.) Merrill]. In this study, a total of 266 accessions were used to perform a genome-wide association study (GWAS) in three tested environments. A total of 23,131 high-quality SNP markers (MAF ≥ 0.02, missing data ≤ 10%) were identified. A total of 40 association signals were significantly associated with PC. Among them, five novel quantitative trait nucleotides (QTNs) were discovered, and another 32 QTNs were found to be overlapping with the genomic regions of known quantitative trait loci (QTL) related to soybean PC. Combined with GWAS, metabolome and transcriptome sequencing, 59 differentially expressed genes (DEGs) that might control the change in protein content were identified. Meantime, four commonly upregulated differentially abundant metabolites (DAMs) and 29 commonly downregulated DAMs were found. Remarkably, the soybean gene Glyma.08G136900, which is homologous with Arabidopsis hydroxyproline-rich glycoproteins (HRGPs), may play an important role in improving the PC. Additionally, Glyma.08G136900 was divided into two main haplotype in the tested accessions. The PC of haplotype 1 was significantly lower than that of haplotype 2. The results of this study provided insights into the genetic mechanisms regulating protein content in soybean.
Collapse
Affiliation(s)
- Xunchao Zhao
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China; (X.Z.); (H.Z.); (F.L.); (J.W.); (X.Z.); (Y.L.); (W.T.)
| | - Hanhan Zhu
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China; (X.Z.); (H.Z.); (F.L.); (J.W.); (X.Z.); (Y.L.); (W.T.)
| | - Fang Liu
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China; (X.Z.); (H.Z.); (F.L.); (J.W.); (X.Z.); (Y.L.); (W.T.)
| | - Jie Wang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China; (X.Z.); (H.Z.); (F.L.); (J.W.); (X.Z.); (Y.L.); (W.T.)
| | - Changjun Zhou
- Daqing Branch, Heilongjiang Academy of Agricultural Science, Daqing 163711, China;
| | - Ming Yuan
- Qiqihar Branch, Heilongjiang Academy of Agricultural Science, Qiqihar 161006, China;
| | - Xue Zhao
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China; (X.Z.); (H.Z.); (F.L.); (J.W.); (X.Z.); (Y.L.); (W.T.)
| | - Yongguang Li
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China; (X.Z.); (H.Z.); (F.L.); (J.W.); (X.Z.); (Y.L.); (W.T.)
| | - Weili Teng
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China; (X.Z.); (H.Z.); (F.L.); (J.W.); (X.Z.); (Y.L.); (W.T.)
| | - Yingpeng Han
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China; (X.Z.); (H.Z.); (F.L.); (J.W.); (X.Z.); (Y.L.); (W.T.)
| | - Yuhang Zhan
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China; (X.Z.); (H.Z.); (F.L.); (J.W.); (X.Z.); (Y.L.); (W.T.)
| |
Collapse
|
4
|
Wan W, Zhao H, Yu K, Xiang Y, Dai W, Du C, Tian E. Exploration into Natural Variation Genes Associated with Determinate and Capitulum-like Inflorescence in Brassica napus. Int J Mol Sci 2023; 24:12902. [PMID: 37629083 PMCID: PMC10454214 DOI: 10.3390/ijms241612902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Brassica napus is a globally important vegetable and oil crop. The research is meaningful for the yield and plant architecture of B. napus. In this study, one natural mutant line with determinate and capitulum-like inflorescence was chosen for further study. Genetic analysis indicated that the segregation patterns of inflorescences in the F2 populations supported a digenic inheritance model, which was further approved via the BSA-Seq technique. The BSA-Seq method detected two QTL regions on C02 (14.27-18.41 Mb) and C06 (32.98-33.68 Mb) for the genetic control of determinate inflorescences in MT plants. In addition, the expression profile in MT compared with WT was analyzed, and a total of 133 candidate genes for regulating the flower development (75 genes, 56.4%), shoot meristem development (29 genes, 21.8%), and inflorescence meristem development (13 genes, 9.8%) were identified. Then one joint analysis combing BSA-Seq and RNA-Seq identified two candidate genes of BnaTFL1 and BnaAP1 for regulating the MT phenotype. Furthermore, the potential utilization of the MT plants was also discussed.
Collapse
Affiliation(s)
- Wei Wan
- Agricultural College, Guizhou University, Guiyang 550004, China; (W.W.); (H.Z.); (K.Y.)
| | - Haifei Zhao
- Agricultural College, Guizhou University, Guiyang 550004, China; (W.W.); (H.Z.); (K.Y.)
| | - Kunjiang Yu
- Agricultural College, Guizhou University, Guiyang 550004, China; (W.W.); (H.Z.); (K.Y.)
| | - Yang Xiang
- Guizhou Rapeseed Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China; (Y.X.); (W.D.); (C.D.)
| | - Wendong Dai
- Guizhou Rapeseed Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China; (Y.X.); (W.D.); (C.D.)
| | - Caifu Du
- Guizhou Rapeseed Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China; (Y.X.); (W.D.); (C.D.)
| | - Entang Tian
- Agricultural College, Guizhou University, Guiyang 550004, China; (W.W.); (H.Z.); (K.Y.)
| |
Collapse
|
5
|
Bilgrami S, Darzi Ramandi H, Farokhzadeh S, Rousseau-Gueutin M, Sobhani Najafabadi A, Ghaderian M, Huang P, Liu L. Meta-analysis of seed weight QTLome using a consensus and highly dense genetic map in Brassica napus L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:161. [PMID: 37354229 DOI: 10.1007/s00122-023-04401-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/02/2023] [Indexed: 06/26/2023]
Abstract
KEY MESSAGE We report here the discovery of high-confidence MQTL regions and of putative candidate genes associated with seed weight in B. napus using a highly dense consensus genetic map and by comparing various large-scale multiomics datasets. Seed weight (SW) is a direct determinant of seed yield in Brassica napus and is controlled by many loci. To unravel the main genomic regions associated with this complex trait, we used 13 available genetic maps to construct a consensus and highly dense map, comprising 40,401 polymorphic markers and 9191 genetic bins, harboring a cumulative length of 3047.8 cM. Then, we performed a meta-analysis using 639 projected SW quantitative trait loci (QTLs) obtained from studies conducted since 1999, enabling the identification of 57 meta-QTLS (MQTLs). The confidence intervals of our MQTLs were 9.8 and 4.3 times lower than the average CIs of the original QTLs for the A and C subgenomes, respectively, resulting in the detection of some key genes and several putative novel candidate genes associated with SW. By comparing the genes identified in MQTL intervals with multiomics datasets and coexpression analyses of common genes, we defined a more reliable and shorter list of putative candidate genes potentially involved in the regulation of seed maturation and SW. As an example, we provide a list of promising genes with high expression levels in seeds and embryos (e.g., BnaA03g04230D, BnaC03g08840D, BnaA10g29580D and BnaA03g27410D) that can be more finely studied through functional genetics experiments or that may be useful for MQTL-assisted breeding for SW. The high-density genetic consensus map and the single nucleotide polymorphism (SNP) physical map generated from the latest B. napus cv. Darmor-bzh v10 assembly will be a valuable resource for further mapping and map-based cloning of other important traits.
Collapse
Affiliation(s)
- Sayedehsaba Bilgrami
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
| | - Hadi Darzi Ramandi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Sara Farokhzadeh
- Department of Plant Production, College of Agriculture and Natural Resources of Darab, Shiraz University, Darab, Iran
| | | | - Ahmad Sobhani Najafabadi
- Department of Biotechnology, Agricultural Biotechnology Research Institute of Iran - Isfahan Branch, Agricultural Research, Education and Extension Organization (AREEO), Isfahan, Iran
| | - Mostafa Ghaderian
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
| | - Pu Huang
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
| | - Liezhao Liu
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China.
| |
Collapse
|
6
|
Xiong H, Wang R, Jia X, Sun H, Duan R. Transcriptomic analysis of rapeseed ( Brassica napus. L.) seed development in Xiangride, Qinghai Plateau, reveals how its special eco-environment results in high yield in high-altitude areas. FRONTIERS IN PLANT SCIENCE 2022; 13:927418. [PMID: 35982704 PMCID: PMC9379305 DOI: 10.3389/fpls.2022.927418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/01/2022] [Indexed: 06/12/2023]
Abstract
As one of the most important oil crops, rapeseed (Brassica napus) is cultivated worldwide to produce vegetable oil, animal feed, and biodiesel. As the population grows and the need for renewable energy increases, the breeding and cultivation of high-yield rapeseed varieties have become top priorities. The formation of a high rapeseed yield is so complex because it is influenced not only by genetic mechanisms but also by many environmental conditions, such as climatic conditions and different farming practices. Interestingly, many high-yield areas are located in special eco-environments, for example, in the high-altitude Xiangride area of the Qinghai Plateau. However, the molecular mechanisms underlying the formation of high yields in such a special eco-environment area remain largely unknown. Here, we conducted field yield analysis and transcriptome analysis in the Xiangride area. Compared with the yield and environmental factors in the Xinning area (a low-yielding area), we found that the relatively longer daylight length is the key to high rapeseed yield in the Xiangride area, which leads up to a 52.1% increase in rapeseed yield, especially the increase in thousand seed weight and silique number (SN). Combined with transcriptome H-cluster analysis and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional analyses, we can assume that the grain development of rapeseed in the Xiangride area is ahead of schedule and lasts for a long time, leading to the high-yield results in the Xiangride area, confirmed by the expression analysis by quantitative real-time polymerase chain reaction (qRT-PCR) of yield-related genes. Our results provide valuable information for further exploring the molecular mechanism underlying high yield in special ecological environments and provide a helpful reference for studying seed development characteristics in special-producing regions for Brassica napus.
Collapse
Affiliation(s)
- Huiyan Xiong
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Ruisheng Wang
- Academy of Agricultural and Forestry Sciences of Qinghai University, Key Laboratory of Spring Rape Genetic Improvement of Qinghai Province, Rapeseed Research and Development Center of Qinghai Province, Xining, China
| | - Xianqing Jia
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Hezhe Sun
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Ruijun Duan
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| |
Collapse
|
7
|
Mathur S, Paritosh K, Tandon R, Pental D, Pradhan AK. Comparative Analysis of Seed Transcriptome and Coexpression Analysis Reveal Candidate Genes for Enhancing Seed Size/Weight in Brassica juncea. Front Genet 2022; 13:814486. [PMID: 35281836 PMCID: PMC8907137 DOI: 10.3389/fgene.2022.814486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Seed size/weight is a multigenic trait that is governed by complex transcriptional regulatory pathways. An understanding of the genetic basis of seed size is of great interest in the improvement of seed yield and quality in oilseed crops. A global transcriptome analysis was performed at the initial stages of seed development in two lines of Brassica juncea, small-seeded EH-2 and large-seeded PJ. The anatomical analyses revealed significant differences in cell number and cell size in the outer layer of the seed coat between EH-2 and PJ. Pairwise comparisons at each developmental stage identified 5,974 differentially expressed genes (DEGs) between the two lines, of which 954 genes belong to different families of transcription factors. Two modules were found to be significantly correlated with an increased seed size using weighted gene coexpression network analysis. The DEG and coexpression datasets were integrated with the thousand seed weight (Tsw) quantitative trait loci (QTL) mapped earlier in the EPJ (EH-2 × PJ) doubled haploid (DH) population, which identified forty potential key components controlling seed size. The candidate genes included genes regulating the cell cycle, cell wall biogenesis/modification, solute/sugar transport, and hormone signaling. The results provide a valuable resource to widen the current understanding of regulatory mechanisms underlying seed size in B. juncea.
Collapse
Affiliation(s)
- Shikha Mathur
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Kumar Paritosh
- Centre of Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
| | - Rajesh Tandon
- Department of Botany, University of Delhi, New Delhi, India
| | - Deepak Pental
- Centre of Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
| | - Akshay K. Pradhan
- Centre of Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
- *Correspondence: Akshay K. Pradhan,
| |
Collapse
|
8
|
Canales J, Verdejo J, Carrasco-Puga G, Castillo FM, Arenas-M A, Calderini DF. Transcriptome Analysis of Seed Weight Plasticity in Brassica napus. Int J Mol Sci 2021; 22:4449. [PMID: 33923211 PMCID: PMC8123204 DOI: 10.3390/ijms22094449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/17/2022] Open
Abstract
A critical barrier to improving crop yield is the trade-off between seed weight (SW) and seed number (SN), which has been commonly reported in several crops, including Brassica napus. Despite the agronomic relevance of this issue, the molecular factors involved in the interaction between SW and SN are largely unknown in crops. In this work, we performed a detailed transcriptomic analysis of 48 seed samples obtained from two rapeseed spring genotypes subjected to different source-sink (S-S) ratios in order to examine the relationship between SW and SN under different field conditions. A multifactorial analysis of the RNA-seq data was used to identify a group of 1014 genes exclusively regulated by the S-S ratio. We found that a reduction in the S-S ratio during seed filling induces the expression of genes involved in sucrose transport, seed weight, and stress responses. Moreover, we identified five co-expression modules that are positively correlated with SW and negatively correlated with SN. Interestingly, one of these modules was significantly enriched in transcription factors (TFs). Furthermore, our network analysis predicted several NAC TFs as major hubs underlying SW and SN compensation. Taken together, our study provides novel insights into the molecular factors associated with the SW-SN relationship in rapeseed and identifies TFs as potential targets when improving crop yield.
Collapse
Affiliation(s)
- Javier Canales
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, 5110566 Valdivia, Chile; (F.M.C.); (A.A.-M.)
- ANID–Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), 8331150 Santiago, Chile
| | - José Verdejo
- Graduate School, Faculty of Agricultural Sciences, Universidad Austral de Chile, 5110566 Valdivia, Chile;
- Plant Production and Plant Protection Institute, Faculty of Agricultural Sciences, Universidad Austral de Chile, 5110566 Valdivia, Chile;
| | - Gabriela Carrasco-Puga
- Plant Production and Plant Protection Institute, Faculty of Agricultural Sciences, Universidad Austral de Chile, 5110566 Valdivia, Chile;
| | - Francisca M. Castillo
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, 5110566 Valdivia, Chile; (F.M.C.); (A.A.-M.)
- ANID–Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), 8331150 Santiago, Chile
| | - Anita Arenas-M
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, 5110566 Valdivia, Chile; (F.M.C.); (A.A.-M.)
- ANID–Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), 8331150 Santiago, Chile
| | - Daniel F. Calderini
- Plant Production and Plant Protection Institute, Faculty of Agricultural Sciences, Universidad Austral de Chile, 5110566 Valdivia, Chile;
| |
Collapse
|
9
|
Comparative transcriptome and metabolite profiling of four tissues from Alisma orientale (Sam.) Juzep reveals its inflorescence developmental and medicinal characteristics. Sci Rep 2019; 9:12310. [PMID: 31444376 PMCID: PMC6707231 DOI: 10.1038/s41598-019-48806-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 08/13/2019] [Indexed: 12/11/2022] Open
Abstract
Alisma orientale (Sam.) Juzep (A. orientale) is an important medicinal plant in traditional Chinese medicine. In this study, de novo RNA-seq of A. orientale was performed based on the cDNA libraries from four different tissues, roots, leaves, scapes and inflorescences. A total of 41,685 unigenes were assembled, 25,024 unigene functional annotations were obtained by searching against the five public sequence databases, and 3,411 simple sequence repeats in A. orientale were reported for the first time. 15,402 differentially expressed genes were analysed. The morphological characteristics showed that compared to the other tissues, the leaves had more chlorophyll, the scapes had more vascular bundles, and the inflorescences contained more starch granules and protein. In addition, the metabolic profiles of eight kinds of alisols metabolite profiling, which were measured by ultra-Performance liquid chromatography-triple quadrupole-mass spectrometry showed that alisol B 23-acetate and alisol B were the major components of the four tissues at amounts of 0.068~0.350 mg/g and 0.046~0.587 mg/g, respectively. In addition, qRT-PCR validated that farnesyl pyrophosphate synthase and 3-hydroxy-3-methylglutaryl-CoA reductase should be considered the critical candidate genes involved in alisol biosynthesis. These transcriptome and metabolic profiles of A. orientale may help clarify the molecular mechanisms underlying the medicinal characteristics of A. orientale.
Collapse
|
10
|
Geng X, Dong N, Wang Y, Li G, Wang L, Guo X, Li J, Wen Z, Wei W. Correction: RNA-seq transcriptome analysis of the immature seeds of two Brassica napus lines with extremely different thousand-seed weight to identify the candidate genes related to seed weight. PLoS One 2019; 14:e0218914. [PMID: 31237918 PMCID: PMC6592552 DOI: 10.1371/journal.pone.0218914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0191297.].
Collapse
|
11
|
Wang L, Jiang X, Wang L, Wang W, Fu C, Yan X, Geng X. A survey of transcriptome complexity using PacBio single-molecule real-time analysis combined with Illumina RNA sequencing for a better understanding of ricinoleic acid biosynthesis in Ricinus communis. BMC Genomics 2019; 20:456. [PMID: 31170917 PMCID: PMC6555039 DOI: 10.1186/s12864-019-5832-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 05/23/2019] [Indexed: 02/07/2023] Open
Abstract
Background Ricinus communis is a highly economically valuable oil crop plant from the spurge family, Euphorbiaceae. However, the available reference genomes are incomplete and to date studies on ricinoleic acid biosynthesis at the transcriptional level are limited. Results In this study, we combined PacBio single-molecule long read isoform and Illumina RNA sequencing to identify the alternative splicing (AS) events, novel isoforms, fusion genes, long non-coding RNAs (lncRNAs) and alternative polyadenylation (APA) sites to unveil the transcriptomic complexity of castor beans and identify critical genes related to ricinoleic acid biosynthesis. Here, we identified 11,285 AS-variants distributed in 21,448 novel genes and detected 520 fusion genes, 320 lncRNAs and 9511 (APA-sites). Furthermore, a total of 6067, 5983 and 4058 differentially expressed genes between developing beans of the R. communis lines 349 and 1115 with extremely different oil content were identified at 7, 14 and 21 days after flowering, respectively. Specifically, 14, 18 and 11 DEGs were annotated encoding key enzymes related to ricinoleic acid biosynthesis reflecting the higher castor oil content of 1115 compared than 349. Quantitative real-time RT-PCR further validated fifteen of these DEGs at three-time points. Conclusion Our results significantly improved the existed gene models of R. communis, and a putative model of key genes was built to show the differences between strains 349 and 1115, illustrating the molecular mechanism of castor oil biosynthesis. A multi-transcriptome database and candidate genes were provided to further improve the level of ricinoleic acid in transgenic crops. Electronic supplementary material The online version of this article (10.1186/s12864-019-5832-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lijun Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic, Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Xiaoling Jiang
- College of Life Science and Technology, Henan Institute of Science and Technology/Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, China
| | - Lei Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic, Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Wei Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic, Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Chunling Fu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic, Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Xingchu Yan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic, Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China.
| | - Xinxin Geng
- Applied Biotechnology Center, Wuhan University of Bioengineering, Wuhan, China.
| |
Collapse
|
12
|
Guan Y, Li G, Chu Z, Ru Z, Jiang X, Wen Z, Zhang G, Wang Y, Zhang Y, Wei W. Transcriptome analysis reveals important candidate genes involved in grain-size formation at the stage of grain enlargement in common wheat cultivar "Bainong 4199". PLoS One 2019; 14:e0214149. [PMID: 30908531 PMCID: PMC6433227 DOI: 10.1371/journal.pone.0214149] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/07/2019] [Indexed: 12/19/2022] Open
Abstract
Grain-size is one of the yield components, and the first 14 days after pollination (DAP) is a crucial stage for wheat grain-size formation. To understand the mechanism of grain-size formation at the whole gene expression level and to identify the candidate genes related to grain pattern formation, cDNA libraries from immature grains of 5 DAP and 14 DAP were constructed. According to transcriptome analysis, a total of 12,555 new genes and 9,358 differentially expressed genes (DEGs) were obtained. In DEGs, 2,876, 3,357 and 3,125 genes were located on A, B and D subgenome respectively. 9,937 (79.15%) new genes and 9,059 (96.80%) DEGs were successfully annotated. For DEGs, 4,453 were up-regulated and 4,905 were down-regulated at 14 DAP. The Gene Ontology (GO) database indicated that most of the grain-size-related genes were in the same cluster. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database analysis showed that 130, 129 and 20 DEGs were respectively involved in starch and sucrose metabolism, plant hormone signal transduction and ubiquitin-mediated proteolysis. Expression levels of 8 randomly selected genes were confirmed by qRT-PCR, which was consistent with the transcriptome data. The present database will help us understand the molecular mechanisms underlying early grain development and provide the foundation for increasing grain-size and yield in wheat breeding programs.
Collapse
Affiliation(s)
- Yuanyuan Guan
- College of Life Science and Technology, Henan Institute of Science and Technology / Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang, China
| | - Gan Li
- College of Life Science and Technology, Henan Institute of Science and Technology / Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang, China
| | - Zongli Chu
- Xinyang Agriculture and Forestry University, Xinyang, China
| | - Zhengang Ru
- College of Life Science and Technology, Henan Institute of Science and Technology / Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang, China
| | - Xiaoling Jiang
- College of Life Science and Technology, Henan Institute of Science and Technology / Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang, China
| | - Zhaopu Wen
- College of Life Science and Technology, Henan Institute of Science and Technology / Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang, China
| | - Guang Zhang
- College of Life Science and Technology, Henan Institute of Science and Technology / Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang, China
| | - Yuquan Wang
- College of Life Science and Technology, Henan Institute of Science and Technology / Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang, China
| | - Yang Zhang
- College of Life Science and Technology, Henan Institute of Science and Technology / Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang, China
| | - Wenhui Wei
- College of Life Science and Technology, Henan Institute of Science and Technology / Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang, China
| |
Collapse
|
13
|
Wei W, Li G, Jiang X, Wang Y, Ma Z, Niu Z, Wang Z, Geng X. Small RNA and degradome profiling involved in seed development and oil synthesis of Brassica napus. PLoS One 2018; 13:e0204998. [PMID: 30332454 PMCID: PMC6192625 DOI: 10.1371/journal.pone.0204998] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 09/18/2018] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs (miRNAs) play a prominent role in post-transcriptional gene expression regulation and have been involved in various biological and metabolic processes to regulate gene expression. For Brassica napus, improving seed-weight and oil-content is the main breeding goal. In order to better understand the regulation mechanism of miRNAs during seed-weight formation and oil-content accumulation in B. napus, in this study, a high-throughput sequencing technology was used to profile miRNAs expression of Brassica napus immature seeds from one to six weeks after flowering. A total of 1,276 miRNAs, including 1,248 novel and 28 known miRNAs, were obtained from both the high-seed-weight with low-oil-content RNA pool (S03) and the low-seed-weight with high-oil-content RNA pool (S04). Analysis of their expression profiles disclosed that 300 novel and two known miRNAs were differentially expressed between S03 and S04. For degradome analysis, 57 genes with 64 degradation sites were predicted to be targeted for degradation by these miRNAs. Further bioinformatics analysis indicated that these differentially expressed miRNAs might participate in regulation of myriad cellular and molecular processes, during seed development and oil synthesis. Finally, 6 target genes with potential roles in regulation of seed development and 9 other targets in seed oil synthesis, were further confirmed as candidate genes from small RNA and degradome sequencing.
Collapse
Affiliation(s)
- Wenhui Wei
- College of Life Science and Technology, Henan Institute of Science and Technology / Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang, China
| | - Gan Li
- College of Life Science and Technology, Henan Institute of Science and Technology / Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang, China
| | - Xiaoling Jiang
- College of Life Science and Technology, Henan Institute of Science and Technology / Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang, China
| | - Yuquan Wang
- College of Life Science and Technology, Henan Institute of Science and Technology / Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang, China
| | - Zhihui Ma
- College of Life Science and Technology, Henan Institute of Science and Technology / Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang, China
| | - Zhipeng Niu
- College of Life Science and Technology, Henan Institute of Science and Technology / Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang, China
| | - Zhiwei Wang
- College of Life Science and Technology, Henan Institute of Science and Technology / Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang, China
| | - Xinxin Geng
- Applied Biotechnology Center, Wuhan Institute of Bioengineering, Wuhan, China
- * E-mail:
| |
Collapse
|