1
|
Mamaeva A, Makeeva A, Ganaeva D. The Small Key to the Treasure Chest: Endogenous Plant Peptides Involved in Symbiotic Interactions. PLANTS (BASEL, SWITZERLAND) 2025; 14:378. [PMID: 39942939 PMCID: PMC11820598 DOI: 10.3390/plants14030378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/25/2024] [Accepted: 01/23/2025] [Indexed: 02/16/2025]
Abstract
Plant growth and development are inextricably connected with rhizosphere organisms. Plants have to balance between strong defenses against pathogens while modulating their immune responses to recruit beneficial organisms such as bacteria and fungi. In recent years, there has been increasing evidence that regulatory peptides are essential in establishing these symbiotic relationships, orchestrating processes that include nutrient acquisition, root architecture modification, and immune modulation. In this review, we provide a comprehensive summary of the peptide families that facilitate beneficial relationships between plants and rhizosphere organisms.
Collapse
Affiliation(s)
- Anna Mamaeva
- Laboratory of System Analysis of Proteins and Peptides, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (A.M.)
| | | | | |
Collapse
|
2
|
Ghanbarzadeh Z, Mohagheghzadeh A, Hemmati S. The Roadmap of Plant Antimicrobial Peptides Under Environmental Stress: From Farm to Bedside. Probiotics Antimicrob Proteins 2024; 16:2269-2304. [PMID: 39225894 DOI: 10.1007/s12602-024-10354-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Antimicrobial peptides (AMPs) are the most favorable alternatives in overcoming multidrug resistance, alone or synergistically with conventional antibiotics. Plant-derived AMPs, as cysteine-rich peptides, widely compensate the pharmacokinetic drawbacks of peptide therapeutics. Compared to the putative genes encrypted in the genome, AMPs that are produced under stress are active forms with the ability to combat resistant microbial species. Within this study, plant-derived AMPs, namely, defensins, nodule-specific cysteine-rich peptides, snakins, lipid transfer proteins, hevein-like proteins, α-hairpinins, and aracins, expressed under biotic and abiotic stresses, are classified. We could observe that while α-hairpinins and snakins display a helix-turn-helix structure, conserved motif patterns such as β1αβ2β3 and β1β2β3 exist in plant defensins and hevein-like proteins, respectively. According to the co-expression data, several plant AMPs are expressed together to trigger synergistic effects with membrane disruption mechanisms such as toroidal pore, barrel-stave, and carpet models. The application of AMPs as an eco-friendly strategy in maintaining agricultural productivity through the development of transgenes and bio-pesticides is discussed. These AMPs can be consumed in packaging material, wound-dressing products, coating catheters, implants, and allergology. AMPs with cell-penetrating properties are verified for the clearance of intracellular pathogens. Finally, the dominant pharmacological activities of bioactive peptides derived from the gastrointestinal digestion of plant AMPs, namely, inhibitors of renin and angiotensin-converting enzymes, dipeptidyl peptidase IV and α-glucosidase inhibitors, antioxidants, anti-inflammatory, immunomodulating, and hypolipidemic peptides, are analyzed. Conclusively, as phytopathogens and human pathogens can be affected by plant-derived AMPs, they provide a bright perspective in agriculture, breeding, food, cosmetics, and pharmaceutical industries, translated as farm to bedside.
Collapse
Affiliation(s)
- Zohreh Ghanbarzadeh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolali Mohagheghzadeh
- Department of Phytopharmaceuticals, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, Cheras, 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
3
|
Deja-Sikora E, Gołębiewski M, Hrynkiewicz K. Transcriptomic responses of Solanum tuberosum cv. Pirol to arbuscular mycorrhiza and potato virus Y (PVY) infection. PLANT MOLECULAR BIOLOGY 2024; 114:123. [PMID: 39527333 PMCID: PMC11554710 DOI: 10.1007/s11103-024-01519-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) serve as both plant symbionts and allies in resisting pathogens and environmental stresses. Mycorrhizal colonization of plant roots can influence the outcomes of plant-pathogen interactions by enhancing specific host defense mechanisms. The transcriptional responses induced by AMF in virus-infected plants remain largely unexplored. In the presented study, we employed a comprehensive transcriptomic approach and qPCR to investigate the molecular determinants underlying the interaction between AMF and potato virus Y (PVY) in Solanum tuberosum L. Our primary goal was to identify the symbiosis- and defense-related determinants activated in mycorrhizal potatoes facing PVY. Through a comparative analysis of mRNA transcriptomes in experimental treatments comprising healthy and PVY-infected potatoes colonized by two AMF species, Rhizophagus regularis or Funneliformis mosseae, we unveiled the overexpression of genes associated with mycorrhiza, including nutrient exchange, lipid transfer, and cell wall remodeling. Furthermore, we identified several differentially expressed genes upregulated in all mycorrhizal treatments that encoded pathogenesis-related proteins involved in plant immune responses, thus verifying the bioprotective role of AMF. We investigated the relationship between mycorrhiza levels and PVY levels in potato leaves and roots. We found accumulation of the virus in the leaves of mycorrhizal plants, but our studies additionally showed a reduced PVY content in potato roots colonized by AMF, which has not been previously demonstrated. Furthermore, we observed that a virus-dependent reduction in nutrient exchange could occur in mycorrhizal roots in the presence of PVY. These findings provide an insights into the interplay between virus and AMF.
Collapse
Affiliation(s)
- Edyta Deja-Sikora
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Torun, Poland.
| | - Marcin Gołębiewski
- Department of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100, Torun, Poland
| | - Katarzyna Hrynkiewicz
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Torun, Poland
| |
Collapse
|
4
|
Serrano K, Bezrutczyk M, Goudeau D, Dao T, O'Malley R, Malmstrom RR, Visel A, Scheller HV, Cole B. Spatial co-transcriptomics reveals discrete stages of the arbuscular mycorrhizal symbiosis. NATURE PLANTS 2024; 10:673-688. [PMID: 38589485 PMCID: PMC11035146 DOI: 10.1038/s41477-024-01666-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/06/2024] [Indexed: 04/10/2024]
Abstract
The symbiotic interaction of plants with arbuscular mycorrhizal (AM) fungi is ancient and widespread. Plants provide AM fungi with carbon in exchange for nutrients and water, making this interaction a prime target for crop improvement. However, plant-fungal interactions are restricted to a small subset of root cells, precluding the application of most conventional functional genomic techniques to study the molecular bases of these interactions. Here we used single-nucleus and spatial RNA sequencing to explore both Medicago truncatula and Rhizophagus irregularis transcriptomes in AM symbiosis at cellular and spatial resolution. Integrated, spatially registered single-cell maps revealed infected and uninfected plant root cell types. We observed that cortex cells exhibit distinct transcriptome profiles during different stages of colonization by AM fungi, indicating dynamic interplay between both organisms during establishment of the cellular interface enabling successful symbiosis. Our study provides insight into a symbiotic relationship of major agricultural and environmental importance and demonstrates a paradigm combining single-cell and spatial transcriptomics for the analysis of complex organismal interactions.
Collapse
Affiliation(s)
- Karen Serrano
- Joint Bioenergy Institute, Emeryville, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Margaret Bezrutczyk
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Danielle Goudeau
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Thai Dao
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ronan O'Malley
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Rex R Malmstrom
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Axel Visel
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- School of Natural Sciences, University of California Merced, Merced, CA, USA
| | - Henrik V Scheller
- Joint Bioenergy Institute, Emeryville, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Benjamin Cole
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
5
|
Roy S, Müller LM. A rulebook for peptide control of legume-microbe endosymbioses. TRENDS IN PLANT SCIENCE 2022; 27:870-889. [PMID: 35246381 DOI: 10.1016/j.tplants.2022.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/25/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Plants engage in mutually beneficial relationships with microbes, such as arbuscular mycorrhizal fungi or nitrogen-fixing rhizobia, for optimized nutrient acquisition. In return, the microbial symbionts receive photosynthetic carbon from the plant. Both symbioses are regulated by the plant nutrient status, indicating the existence of signaling pathways that allow the host to fine-tune its interactions with the beneficial microbes depending on its nutrient requirements. Peptide hormones coordinate a plethora of developmental and physiological processes and, recently, various peptide families have gained special attention as systemic and local regulators of plant-microbe interactions and nutrient homeostasis. In this review, we identify five 'rules' or guiding principles that govern peptide function during symbiotic plant-microbe interactions, and highlight possible points of integration with nutrient acquisition pathways.
Collapse
Affiliation(s)
- Sonali Roy
- College of Agriculture, Tennessee State University, Nashville, TN 37209, USA.
| | - Lena Maria Müller
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
6
|
Cope KR, Kafle A, Yakha JK, Pfeffer PE, Strahan GD, Garcia K, Subramanian S, Bücking H. Physiological and transcriptomic response of Medicago truncatula to colonization by high- or low-benefit arbuscular mycorrhizal fungi. MYCORRHIZA 2022; 32:281-303. [PMID: 35511363 DOI: 10.1007/s00572-022-01077-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi form a root endosymbiosis with many agronomically important crop species. They enhance the ability of their host to obtain nutrients from the soil and increase the tolerance to biotic and abiotic stressors. However, AM fungal species can differ in the benefits they provide to their host plants. Here, we examined the putative molecular mechanisms involved in the regulation of the physiological response of Medicago truncatula to colonization by Rhizophagus irregularis or Glomus aggregatum, which have previously been characterized as high- and low-benefit AM fungal species, respectively. Colonization with R. irregularis led to greater growth and nutrient uptake than colonization with G. aggregatum. These benefits were linked to an elevated expression in the roots of strigolactone biosynthesis genes (NSP1, NSP2, CCD7, and MAX1a), mycorrhiza-induced phosphate (PT8), ammonium (AMT2;3), and nitrate (NPF4.12) transporters and the putative ammonium transporter NIP1;5. R. irregularis also stimulated the expression of photosynthesis-related genes in the shoot and the upregulation of the sugar transporters SWEET1.2, SWEET3.3, and SWEET 12 and the lipid biosynthesis gene RAM2 in the roots. In contrast, G. aggregatum induced the expression of biotic stress defense response genes in the shoots, and several genes associated with abiotic stress in the roots. This suggests that either the host perceives colonization by G. aggregatum as pathogen attack or that G. aggregatum can prime host defense responses. Our findings highlight molecular mechanisms that host plants may use to regulate their association with high- and low-benefit arbuscular mycorrhizal symbionts.
Collapse
Affiliation(s)
- Kevin R Cope
- Biology and Microbiology Department, South Dakota State University, Brookings, SD, 57007, USA
- Biosciences Division, Oak Ridge National Lab, Oak Ridge, TN, 37830, USA
| | - Arjun Kafle
- Biology and Microbiology Department, South Dakota State University, Brookings, SD, 57007, USA
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jaya K Yakha
- Biology and Microbiology Department, South Dakota State University, Brookings, SD, 57007, USA
| | - Philip E Pfeffer
- Agricultural Research Service, Eastern Regional Research Center, USDA, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Gary D Strahan
- Agricultural Research Service, Eastern Regional Research Center, USDA, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Kevin Garcia
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Senthil Subramanian
- Biology and Microbiology Department, South Dakota State University, Brookings, SD, 57007, USA
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Heike Bücking
- Biology and Microbiology Department, South Dakota State University, Brookings, SD, 57007, USA.
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
7
|
Vasan S, Srivastava D, Cahill D, Singh PP, Adholeya A. Important innate differences in determining symbiotic responsiveness in host and non-hosts of arbuscular mycorrhiza. Sci Rep 2021; 11:14444. [PMID: 34262100 PMCID: PMC8280126 DOI: 10.1038/s41598-021-93626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 06/29/2021] [Indexed: 11/09/2022] Open
Abstract
Genetic components that regulate arbuscular mycorrhizal (AM) interactions in hosts and non-hosts are not completely known. Comparative transcriptomic analysis was combined with phylogenetic studies to identify the factors that distinguish AM host from non-host. Mycorrhized host, non-mycorrhized host and non-host cultivars of tomato (Solanum lycopersicum) were subjected to RNA seq analysis. The top 10 differentially expressed genes were subjected to extensive in silico phylogenetic analysis along with 10 more candidate genes that have been previously reported for AM-plant interactions. Seven distantly related hosts and four non-hosts were selected to identify structural differences in selected gene/protein candidates. The screened genes/proteins were subjected to MEME, CODEML and DIVERGE analysis to identify evolutionary patterns that differentiate hosts from non-hosts. Based on the results, candidate genes were categorized as highly influenced (SYMRK and CCaMK), moderately influenced and minimally influenced by evolutionary constraints. We propose that the amino acid and nucleotide changes specific to non-hosts are likely to correspond to aberrations in functionality towards AM symbiosis. This study paves way for future research aimed at understanding innate differences in genetic make-up of AM hosts and non-hosts, in addition to the theory of gene losses from the "AM-symbiotic toolkit".
Collapse
Affiliation(s)
- Shalini Vasan
- TERI-Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute (TERI), Gurugram, Haryana, India
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, Australia
| | - Divya Srivastava
- TERI-Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute (TERI), Gurugram, Haryana, India
| | - David Cahill
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, Australia
| | - Pushplata Prasad Singh
- TERI-Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute (TERI), Gurugram, Haryana, India.
| | - Alok Adholeya
- TERI-Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute (TERI), Gurugram, Haryana, India.
| |
Collapse
|
8
|
Nguyen TD, Cavagnaro TR, Watts-Williams SJ. The effects of soil phosphorus and zinc availability on plant responses to mycorrhizal fungi: a physiological and molecular assessment. Sci Rep 2019; 9:14880. [PMID: 31619728 PMCID: PMC6795859 DOI: 10.1038/s41598-019-51369-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 09/30/2019] [Indexed: 12/28/2022] Open
Abstract
The positive effects of arbuscular mycorrhizal fungi (AMF) have been demonstrated for plant biomass, and zinc (Zn) and phosphorus (P) uptake, under soil nutrient deficiency. Additionally, a number of Zn and P transporter genes are affected by mycorrhizal colonisation or implicated in the mycorrhizal pathway of uptake. However, a comprehensive study of plant physiology and gene expression simultaneously, remains to be undertaken. Medicago truncatula was grown at different soil P and Zn availabilities, with or without inoculation of Rhizophagus irregularis. Measures of biomass, shoot elemental concentrations, mycorrhizal colonisation, and expression of Zn transporter (ZIP) and phosphate transporter (PT) genes in the roots, were taken. Mycorrhizal plants had a greater tolerance of both P and Zn soil deficiency; there was also evidence of AMF protecting plants against excessive Zn accumulation at high soil Zn. The expression of all PT genes was interactive with both P availability and mycorrhizal colonisation. MtZIP5 expression was induced both by AMF and soil Zn deficiency, while MtZIP2 was down-regulated in mycorrhizal plants, and up-regulated with increasing soil Zn concentration. These findings provide the first comprehensive physiological and molecular picture of plant-mycorrhizal fungal symbiosis with regard to soil P and Zn availability. Mycorrhizal fungi conferred tolerance to soil Zn and P deficiency and this could be linked to the induction of the ZIP transporter gene MtZIP5, and the PT gene MtPT4.
Collapse
Affiliation(s)
- Thi Diem Nguyen
- The School of Agriculture, Food & Wine and The Waite Research Institute, The University of Adelaide, Glen Osmond, South Australia, 5064, Australia
- The Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Adelaide, Glen Osmond, South Australia, 5064, Australia
- Institute of Biotechnology, Hue University, Provincial Road 10, Ngoc Anh, Phu Thuong, Phu Vang, Thua Thien Hue, 49000, Vietnam
| | - Timothy R Cavagnaro
- The School of Agriculture, Food & Wine and The Waite Research Institute, The University of Adelaide, Glen Osmond, South Australia, 5064, Australia
| | - Stephanie J Watts-Williams
- The School of Agriculture, Food & Wine and The Waite Research Institute, The University of Adelaide, Glen Osmond, South Australia, 5064, Australia.
- The Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Adelaide, Glen Osmond, South Australia, 5064, Australia.
| |
Collapse
|
9
|
Wong JWH, Plett JM. Root renovation: how an improved understanding of basic root biology could inform the development of elite crops that foster sustainable soil health. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:597-612. [PMID: 31029179 DOI: 10.1071/fp18200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 03/08/2019] [Indexed: 05/24/2023]
Abstract
A major goal in agricultural research is to develop 'elite' crops with stronger, resilient root systems. Within this context, breeding practices have focussed on developing plant varieties that are, primarily, able to withstand pathogen attack and, secondarily, able to maximise plant productivity. Although great strides towards breeding disease-tolerant or -resistant root stocks have been made, this has come at a cost. Emerging studies in certain crop species suggest that domestication of crops, together with soil management practices aimed at improving plant yield, may hinder beneficial soil microbial association or reduce microbial diversity in soil. To achieve more sustainable management of agricultural lands, we must not only shift our soil management practices but also our breeding strategy to include contributions from beneficial microbes. For this latter point, we need to advance our understanding of how plants communicate with, and are able to differentiate between, microbes of different lifestyles. Here, we present a review of the key findings on belowground plant-microbial interactions that have been made over the past decade, with a specific focus on how plants and microbes communicate. We also discuss the currently unresolved questions in this area, and propose plausible ways to use currently available research and integrate fast-emerging '-omics' technologies to tackle these questions. Combining past and developing research will enable the development of new crop varieties that will have new, value-added phenotypes belowground.
Collapse
Affiliation(s)
- Johanna W-H Wong
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia
| | - Jonathan M Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia; and Corresponding author.
| |
Collapse
|
10
|
Hartmann RM, Schaepe S, Nübel D, Petersen AC, Bertolini M, Vasilev J, Küster H, Hohnjec N. Insights into the complex role of GRAS transcription factors in the arbuscular mycorrhiza symbiosis. Sci Rep 2019; 9:3360. [PMID: 30833646 PMCID: PMC6399340 DOI: 10.1038/s41598-019-40214-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/12/2019] [Indexed: 12/19/2022] Open
Abstract
To improve access to limiting nutrients, the vast majority of land plants forms arbuscular mycorrhizal (AM) symbioses with Glomeromycota fungi. We show here that AM-related GRAS transcription factors from different subgroups are upregulated during a time course of mycorrhization. Based on expression studies in mutants defective in arbuscule branching (ram1-1, with a deleted MtRam1 GRAS transcription factor gene) or in the formation of functional arbuscules (pt4-2, mutated in the phosphate transporter gene MtPt4), we demonstrate that the five AM-related GRAS transcription factor genes MtGras1, MtGras4, MtGras6, MtGras7, and MtRad1 can be differentiated by their dependency on MtRAM1 and MtPT4, indicating that the network of AM-related GRAS transcription factors consists of at least two regulatory modules. One module involves the MtRAM1- and MtPT4-independent transcription factor MtGRAS4 that activates MtGras7. Another module is controlled by the MtRAM1- and MtPT4-dependent transcription factor MtGRAS1. Genome-wide expression profiles of mycorrhized MtGras1 knockdown and ram1-1 roots differ substantially, indicating different targets. Although an MtGras1 knockdown reduces transcription of AM-related GRAS transcription factor genes including MtRam1 and MtGras7, MtGras1 overexpression alone is not sufficient to activate MtGras genes. MtGras1 knockdown roots display normal fungal colonization, with a trend towards the formation of smaller arbuscules.
Collapse
Affiliation(s)
- Rico M Hartmann
- Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany
| | - Sieke Schaepe
- Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany
| | - Daniel Nübel
- Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany
| | - Arne C Petersen
- Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany
| | - Martina Bertolini
- Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany.,Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milano, Italy
| | - Jana Vasilev
- Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany
| | - Helge Küster
- Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany.
| | - Natalija Hohnjec
- Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, Hannover, Germany
| |
Collapse
|
11
|
Rey T, André O, Nars A, Dumas B, Gough C, Bottin A, Jacquet C. Lipo-chitooligosaccharide signalling blocks a rapid pathogen-induced ROS burst without impeding immunity. THE NEW PHYTOLOGIST 2019; 221:743-749. [PMID: 30378690 DOI: 10.1111/nph.15574] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 10/23/2018] [Indexed: 06/08/2023]
Abstract
Molecular signals released by microbes at the surface of plant roots and leaves largely determine host responses, notably by triggering either immunity or symbiosis. How these signalling pathways cross-talk upon coincident perception of pathogens and symbionts is poorly described in plants forming symbiosis. Nitrogen fixing symbiotic Rhizobia spp. and arbuscular mycorrhizal fungi produce lipo-chitooligosaccharides (LCOs) to initiate host symbiotic programmes. In Medicago truncatula roots, the perception of LCOs leads to reduced efflux of reactive oxygen species (ROS). By contrast, pathogen perception generally triggers a strong ROS burst and activates defence gene expression. Here we show that incubation of M. truncatula seedlings with culture filtrate (CF) of the legume pathogen Aphanomyces euteiches alone or simultaneously with Sinorhizobium meliloti LCOs, resulted in a strong ROS release. However, this response was completely inhibited if CF was added after pre-incubation of seedlings with LCOs. By contrast, expression of immunity-associated genes in response to CF and disease resistance to A. euteiches remained unaffected by LCO treatment of M. truncatula roots. Our findings suggest that symbiotic plants evolved ROS inhibition response to LCOs to facilitate early steps of symbiosis whilst maintaining a parallel defence mechanisms toward pathogens.
Collapse
Affiliation(s)
- Thomas Rey
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet Tolosan, France
| | - Olivier André
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet Tolosan, France
| | - Amaury Nars
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet Tolosan, France
| | - Bernard Dumas
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet Tolosan, France
| | - Clare Gough
- Laboratory of Plant-Microbe Interactions (LIPM), Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan, France
| | - Arnaud Bottin
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet Tolosan, France
| | - Christophe Jacquet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet Tolosan, France
| |
Collapse
|