1
|
Omole TE, Nguyen HM, Marcinow A, Oo MM, Jahan N, Ssemaganda A, Severini G, Thomas KK, Celum C, Mugo N, Mujugira A, Kublin J, Corey L, Sivro A, Lingappa JR, Gray G, McKinnon LR. Pre-Human Immunodeficiency Virus (HIV) α4β7hi CD4+ T Cells and HIV Risk Among Heterosexual Individuals in Africa. J Infect Dis 2025; 231:e770-e780. [PMID: 39720913 PMCID: PMC11998548 DOI: 10.1093/infdis/jiae638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 12/26/2024] Open
Abstract
BACKGROUND CD4+ T cells expressing α4β7 are optimal targets for human immunodeficiency virus (HIV) infections, with higher pre-HIV α4β7hi expression linked to increased HIV acquisition and progression in South African women. However, similar associations were not observed in men who have sex with men or people who inject drugs in the Americas, indicating need for further research. METHODS This retrospective case-control study enrolled heterosexual men and women from South Africa (HIV Vaccine Trials Network [HVTN] 503) and East Africa (Partners Preexposure Prophylaxis/Couples' Observational Study [PP/COS]), quantifying α4β7 expression on CD4+ T cells as a predictor of subsequent HIV risk using flow cytometry analyses. RESULTS Associations between α4β7hi expression and HIV acquisition varied across cohorts. In HVTN 503, women had a higher risk estimate compared to men, but this was not significant. In PP/COS, α4β7hi expression was generally protective, particularly in Ugandans. Additionally, α4β7hi expression inversely correlated with peak viral load in PP/COS but not in HVTN 503; in the latter cohort, α4β7hi expression was inversely correlated with the CD4/CD8 ratio and predicted rapid CD4+ T-cell decline, similar to what was observed previously in South Africa. CONCLUSIONS These findings suggest that α4β7hi expression on CD4+ T cells may not predict HIV acquisition and progression in all contexts, which may be due to cohort effects, modes of transmission, viral clade, or other factors.
Collapse
Affiliation(s)
- Tosin E Omole
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Huong Mai Nguyen
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Agata Marcinow
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Myo Minn Oo
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Naima Jahan
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Aloysious Ssemaganda
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Giulia Severini
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | | | - Connie Celum
- Department of Global Health
- Departments of Medicine and Epidemiology, University of Washington, Seattle
| | - Nelly Mugo
- Department of Global Health
- Sexual Reproductive and Adolescent Child Health Research Program, Kenya Medical Research Institute, Nairobi
| | - Andrew Mujugira
- Department of Global Health
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - James Kublin
- HIV Vaccine Trials Network
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Lawrence Corey
- HIV Vaccine Trials Network
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Aida Sivro
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Mucosal Immunology Laboratory, Centre for the AIDS Program of Research in South Africa (CAPRISA), Durban
- JC Wilt Infectious Disease Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba
- Department of Medical Microbiology, University of KwaZulu-Natal, Durban, South Africa
| | - Jairam R Lingappa
- Department of Global Health
- Departments of Medicine and Pediatrics, University of Washington, Seattle
| | - Glenda Gray
- HIV Vaccine Trials Network
- Office of the President, South African Medical Research Council, Cape Town
| | - Lyle R McKinnon
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Mucosal Immunology Laboratory, Centre for the AIDS Program of Research in South Africa (CAPRISA), Durban
- Department of Medical Microbiology and Immunology, University of Nairobi, Kenya
| |
Collapse
|
2
|
Zhao R, Gu J, Zhao H, Wang Z, Liu X, Yuan C, Zheng X, Yang T, Xu X, Cai Y. Expression of integrin α4β1 and α4β7 on B cells correlates with autoimmune responses in Graves' disease. Int Immunopharmacol 2024; 142:113218. [PMID: 39317053 DOI: 10.1016/j.intimp.2024.113218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Integrins are upregulated on endothelial cells and T-lymphocytes in autoimmune thyroid disease (AITD), potentially contributing to immune response localization. The role of integrins on B-cells in AITD remains unclear. METHODS Peripheral blood samples were collected from healthy controls (n = 56), patients with Graves' disease (GD) (n = 37) and Hashimoto's thyroiditis (HT) (n = 52). Ultrasound-guided fine-needle aspiration (FNA) of the thyroid was performed in patients with non-autoimmune thyroid disease (nAITD) (n = 19), GD (n = 11), and HT (n = 40). Integrins α4β7, α4β1, and αEβ7 in B cells were measured by flow cytometry. Serum zonulin levels were quantified via ELISA. Associations of integrins on B cells with thyroid hormones, thyroid autoantibodies, AITD duration, and zonulin were analyzed. RESULTS HT patients exhibited lower α4β7 and higher α4β1 expression on B cells compared to healthy controls and GD patients. While α4β7 was predominant on circulating B cells, the dominant integrin expressed on intrathyroidal B cells varied with specific thyroid diseases. In GD patients, α4β7 and α4β1 expression on circulating B cells correlated positively and negatively with thyroid function and thyroid stimulating immunoglobulins (TSI) levels, respectively. Intrathyroidal α4β1+ B cells positively correlated with TSH levels in HT patients. Additionally, serum zonulin was elevated in HT patients, and intrathyroidal α4β7+ B cells and α4β1+ B cells correlated negatively and positively with zonulin levels, respectively. Integrin αEβ7 on B cells showed no significant association with AITD. CONCLUSION Integrins expressed on B cells potentially play a role in the pathogenesis of AITD and might serve as immune biomarkers for the disease.
Collapse
Affiliation(s)
- Ruiling Zhao
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Junjie Gu
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hang Zhao
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhixiao Wang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiaoyun Liu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Cuiping Yuan
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xuqin Zheng
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Tao Yang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xinyu Xu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Yun Cai
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
3
|
Bridge F, Brotherton JML, Foong Y, Butzkueven H, Jokubaitis VG, Van der Walt A. Risk of cervical pre-cancer and cancer in women with multiple sclerosis exposed to high efficacy disease modifying therapies. Front Neurol 2023; 14:1119660. [PMID: 36846149 PMCID: PMC9950275 DOI: 10.3389/fneur.2023.1119660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/24/2023] [Indexed: 02/12/2023] Open
Abstract
There is a growing need to better understand the risk of malignancy in the multiple sclerosis (MS) population, particularly given the relatively recent and widespread introduction of immunomodulating disease modifying therapies (DMTs). Multiple sclerosis disproportionately affects women, and the risk of gynecological malignancies, specifically cervical pre-cancer and cancer, are of particular concern. The causal relationship between persistent human papillomavirus (HPV) infection and cervical cancer has been definitively established. To date, there is limited data on the effect of MS DMTs on the risk of persistent HPV infection and subsequent progression to cervical pre-cancer and cancer. This review evaluates the risk of cervical pre-cancer and cancer in women with MS, including the risk conferred by DMTs. We examine additional factors, specific to the MS population, that alter the risk of developing cervical cancer including participation in HPV vaccination and cervical screening programs.
Collapse
Affiliation(s)
- Francesca Bridge
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Julia M. L. Brotherton
- Australian Centre for the Prevention of Cervical Cancer (Formerly Victorian Cytology Service), Carlton South, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
| | - Yi Foong
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia
- Department of Neurosciences, Eastern Health, Melbourne, VIC, Australia
| | - Helmut Butzkueven
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Vilija G. Jokubaitis
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Anneke Van der Walt
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Shvartsman E, Perciani CT, Richmond MEI, Russell JNH, Tough RH, Vancuren SJ, Hill JE, KAVI-ICR, Jaoko W, McKinnon LR, Sandstrom PA, MacDonald KS. Gardnerella subgroup dominant microbiomes are associated with divergent cervicovaginal immune responses in a longitudinal cohort of Kenyan women. Front Immunol 2023; 13:974195. [PMID: 36726972 PMCID: PMC9886495 DOI: 10.3389/fimmu.2022.974195] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 12/09/2022] [Indexed: 01/19/2023] Open
Abstract
Most cervicovaginal microbiome-immunology studies to date have relied on 16S rDNA microbial profiling which does not resolve the molecular subgroups of Gardnerella, believed to be central to the pathogenesis of bacterial vaginosis (BV) and subsequent risk of HIV acquisition. Here we used the cpn60 universal target which in addition to other microbial taxa, resolves four Gardnerella subgroups, for cervicovaginal microbial profiling in a longitudinal cohort of Kenyan women to examine associations with cellular and soluble markers of inflammation and HIV susceptibility. Participants (N = 41) were sampled, contributing 362 samples for microbiome analysis. All non-Lactobacillus dominant microbial communities were associated with high pro-inflammatory cytokine levels. Divergent associations were observed among different Gardnerella subgroup dominated communities with respect to the chemokine IP-10. Specifically, Gardnerella subgroup A dominant and polymicrobial communities were associated with reduced concentrations of IP-10 in adjusted linear mixed models (p<0.0001), compared to microbial communities dominated by Lactobacillus (non-iners) species. However, these associations did not translate to significant differences in the proportion or absolute number of CCR5, HLA-DR and CD38 expressed on cervical CD4+ T- cells. These findings suggest that some associations between Gardnerella subgroup dominant microbiomes and mucosal immunity differ and are relevant for the study of BV-pathogenesis and understanding the mechanisms of BV-associated HIV risk.
Collapse
Affiliation(s)
- Elinor Shvartsman
- Department of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg, MB, Canada,JC Wilt Infectious Diseases Research Centre, Winnipeg, MB, Canada,Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Catia T. Perciani
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Meika E. I. Richmond
- Department of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg, MB, Canada,JC Wilt Infectious Diseases Research Centre, Winnipeg, MB, Canada
| | - Justen N. H. Russell
- JC Wilt Infectious Diseases Research Centre, Winnipeg, MB, Canada,Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Riley H. Tough
- Department of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg, MB, Canada,JC Wilt Infectious Diseases Research Centre, Winnipeg, MB, Canada
| | - Sarah J. Vancuren
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Janet E. Hill
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - KAVI-ICR
- Kenyan AIDS Vaccine Initiative-Institute of Clinical Research (KAVI-ICR), University of Nairobi, Nairobi, Kenya
| | - Walter Jaoko
- Kenyan AIDS Vaccine Initiative-Institute of Clinical Research (KAVI-ICR), University of Nairobi, Nairobi, Kenya
| | - Lyle R. McKinnon
- Department of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg, MB, Canada,JC Wilt Infectious Diseases Research Centre, Winnipeg, MB, Canada,Centre for the AIDS Program of Research in South Africa (CAPRISA), Durban, South Africa
| | - Paul A. Sandstrom
- Department of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg, MB, Canada,JC Wilt Infectious Diseases Research Centre, Winnipeg, MB, Canada
| | - Kelly S. MacDonald
- Department of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg, MB, Canada,JC Wilt Infectious Diseases Research Centre, Winnipeg, MB, Canada,Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada,Department of Immunology, University of Toronto, Toronto, ON, Canada,*Correspondence: Kelly S. MacDonald,
| |
Collapse
|
5
|
Morozova DS, Martyanov AA, Obydennyi SI, Korobkin JJD, Sokolov AV, Shamova EV, Gorudko IV, Khoreva AL, Shcherbina A, Panteleev MA, Sveshnikova AN. Ex vivo observation of granulocyte activity during thrombus formation. BMC Biol 2022; 20:32. [PMID: 35125118 PMCID: PMC8819951 DOI: 10.1186/s12915-022-01238-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 01/24/2022] [Indexed: 01/06/2023] Open
Abstract
Background The process of thrombus formation is thought to involve interactions between platelets and leukocytes. Leukocyte incorporation into growing thrombi has been well established in vivo, and a number of properties of platelet-leukocyte interactions critical for thrombus formation have been characterized in vitro in thromboinflammatory settings and have clinical relevance. Leukocyte activity can be impaired in distinct hereditary and acquired disorders of immunological nature, among which is Wiskott-Aldrich Syndrome (WAS). However, a more quantitative characterization of leukocyte behavior in thromboinflammatory conditions has been hampered by lack of approaches for its study ex vivo. Here, we aimed to develop an ex vivo model of thromboinflammation, and compared granulocyte behavior of WAS patients and healthy donors. Results Thrombus formation in anticoagulated whole blood from healthy volunteers and patients was visualized by fluorescent microscopy in parallel-plate flow chambers with fibrillar collagen type I coverslips. Moving granulocytes were observed in hirudinated or sodium citrate-recalcified blood under low wall shear rate conditions (100 s−1). These cells crawled around thrombi in a step-wise manner with an average velocity of 90–120 nm/s. Pre-incubation of blood with granulocyte priming agents lead to a significant decrease in mean-velocity of the cells and increase in the number of adherent cells. The leukocytes from patients with WAS demonstrated a 1.5-fold lower mean velocity, in line with their impaired actin polymerization. It is noteworthy that in an experimental setting where patients’ platelets were replaced with healthy donor’s platelets the granulocytes’ crawling velocity did not change, thus proving that WASP (WAS protein) deficiency causes disruption of granulocytes’ behavior. Thereby, the observed features of granulocytes crawling are consistent with the neutrophil chemotaxis phenomenon. As most of the crawling granulocytes carried procoagulant platelets teared from thrombi, we propose that the role of granulocytes in thrombus formation is that of platelet scavengers. Conclusions We have developed an ex vivo experimental model applicable for observation of granulocyte activity in thrombus formation. Using the proposed setting, we observed a reduction of motility of granulocytes of patients with WAS. We suggest that our ex vivo approach should be useful both for basic and for clinical research. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01238-x.
Collapse
|
6
|
Coleman SL, Neff CP, Li SX, Armstrong AJ, Schneider JM, Sen S, Fennimore B, Campbell TB, Lozupone CA, Palmer BE. Can gut microbiota of men who have sex with men influence HIV transmission? Gut Microbes 2020; 11:610-619. [PMID: 32036739 PMCID: PMC7524317 DOI: 10.1080/19490976.2019.1700756] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Gaining a complete understanding of transmission risk factors will assist in efforts to reduce new HIV infections, especially within the disproportionally affected population of men who have sex with men (MSM). We recently reported that the fecal microbiota of MSM elevates immune activation in gnotobiotic mice and enhances HIV infection in vitro over that of fecal microbiota from men who have sex with women. We also demonstrated elevation of the gut homing marker CD103 (integrin αE) on CD4+ T cells by MSM-microbiota. Here we provide additional evidence that the gut microbiota is a risk factor for HIV transmission in MSM by showing elevated frequencies of the HIV co-receptor CCR5 on CD4+ T cells in human rectosigmoid colon biopsies. We discuss our interest in specific MSM-associated bacteria and propose the influx of CD103+ and CCR5+ CD4+ T cells into the colon as a potential link between the MSM microbiota and HIV transmission.
Collapse
Affiliation(s)
- Sara L. Coleman
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - C. Preston Neff
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sam X. Li
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Abigail J.S. Armstrong
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jennifer M. Schneider
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sharon Sen
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Blair Fennimore
- Division of Gastroenterology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Thomas B. Campbell
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Catherine A. Lozupone
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Brent E. Palmer
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA,CONTACT Brent E. Palmer Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
7
|
Yegorov S, Joag V, Galiwango RM, Good SV, Okech B, Kaul R. Impact of Endemic Infections on HIV Susceptibility in Sub-Saharan Africa. TROPICAL DISEASES TRAVEL MEDICINE AND VACCINES 2019; 5:22. [PMID: 31798936 PMCID: PMC6884859 DOI: 10.1186/s40794-019-0097-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/07/2019] [Indexed: 02/08/2023]
Abstract
Human immunodeficiency virus (HIV) remains a leading cause of global morbidity with the highest burden in Sub-Saharan Africa (SSA). For reasons that are incompletely understood, the likelihood of HIV transmission is several fold higher in SSA than in higher income countries, and most of these infections are acquired by young women. Residents of SSA are also exposed to a variety of endemic infections, such as malaria and various helminthiases that could influence mucosal and systemic immunology. Since these immune parameters are important determinants of HIV acquisition and progression, this review explores the possible effects of endemic infections on HIV susceptibility and summarizes current knowledge of the epidemiology and underlying immunological mechanisms by which endemic infections could impact HIV acquisition. A better understanding of the interaction between endemic infections and HIV may enhance HIV prevention programs in SSA.
Collapse
Affiliation(s)
- Sergey Yegorov
- 1Departments of Immunology and Medicine, University of Toronto, Toronto, Canada.,2Department of Pedagogical Mathematics and Natural Science, Faculty of Education and Humanities, Suleyman Demirel University, Almaty, Kazakhstan
| | - Vineet Joag
- 3Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN USA
| | - Ronald M Galiwango
- 1Departments of Immunology and Medicine, University of Toronto, Toronto, Canada
| | - Sara V Good
- 4Genetics & Genome Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON Canada.,5Community Health Sciences, University of Manitoba, Winnipeg, MB Canada
| | | | - Rupert Kaul
- 1Departments of Immunology and Medicine, University of Toronto, Toronto, Canada.,7Department of Medicine, University Health Network, Toronto, Canada
| |
Collapse
|
8
|
Cantero-Pérez J, Grau-Expósito J, Serra-Peinado C, Rosero DA, Luque-Ballesteros L, Astorga-Gamaza A, Castellví J, Sanhueza T, Tapia G, Lloveras B, Fernández MA, Prado JG, Solé-Sedeno JM, Tarrats A, Lecumberri C, Mañalich-Barrachina L, Centeno-Mediavilla C, Falcó V, Buzon MJ, Genescà M. Resident memory T cells are a cellular reservoir for HIV in the cervical mucosa. Nat Commun 2019; 10:4739. [PMID: 31628331 PMCID: PMC6802119 DOI: 10.1038/s41467-019-12732-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 09/30/2019] [Indexed: 11/09/2022] Open
Abstract
HIV viral reservoirs are established very early during infection. Resident memory T cells (TRM) are present in tissues such as the lower female genital tract, but the contribution of this subset of cells to the pathogenesis and persistence of HIV remains unclear. Here, we show that cervical CD4+TRM display a unique repertoire of clusters of differentiation, with enrichment of several molecules associated with HIV infection susceptibility, longevity and self-renewing capacities. These protein profiles are enriched in a fraction of CD4+TRM expressing CD32. Cervical explant models show that CD4+TRM preferentially support HIV infection and harbor more viral DNA and protein than non-TRM. Importantly, cervical tissue from ART-suppressed HIV+ women contain high levels of viral DNA and RNA, being the TRM fraction the principal contributor. These results recognize the lower female genital tract as an HIV sanctuary and identify CD4+TRM as primary targets of HIV infection and viral persistence. Thus, strategies towards an HIV cure will need to consider TRM phenotypes, which are widely distributed in tissues.
Collapse
Affiliation(s)
- Jon Cantero-Pérez
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Judith Grau-Expósito
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carla Serra-Peinado
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Daniela A Rosero
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Luque-Ballesteros
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antonio Astorga-Gamaza
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep Castellví
- Pathology Department, Hospital Universitari Vall d'Hebron, UAB, Barcelona, Spain
| | - Tamara Sanhueza
- Pathology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Gustavo Tapia
- Pathology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Belen Lloveras
- Pathology Department, Hospital del Mar, Parc de Salut Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marco A Fernández
- Flow Cytometry Facility, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Julia G Prado
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Josep M Solé-Sedeno
- Obstetrics and Gynecology Department, Hospital del Mar, Parc de Salut Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antoni Tarrats
- Department of Obstetrics and Gynecology, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Carla Lecumberri
- Department of Obstetrics and Gynecology, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Laura Mañalich-Barrachina
- Department of Obstetrics and Gynecology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Centeno-Mediavilla
- Department of Obstetrics and Gynecology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vicenç Falcó
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria J Buzon
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Meritxell Genescà
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
9
|
Wittner M, Schlicker V, Libera J, Bockmann JH, Horvatits T, Seiz O, Kummer S, Manthey CF, Hüfner A, Kantowski M, Rösch T, Degen O, Huber S, Eberhard JM, Schulze zur Wiesch J. Comparison of the integrin α4β7 expression pattern of memory T cell subsets in HIV infection and ulcerative colitis. PLoS One 2019; 14:e0220008. [PMID: 31356607 PMCID: PMC6663001 DOI: 10.1371/journal.pone.0220008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/05/2019] [Indexed: 02/07/2023] Open
Abstract
Anti-α4β7 therapy with vedolizumab (VDZ) has been suggested as possible immune intervention in HIV. Relatively little is known about the α4β7-integrin (α4β7) expression of different T-cell subsets in different anatomical compartments of healthy individuals, patients with HIV or inflammatory bowel disease (IBD). Surface expression of α4β7 as well as the frequency of activation, homing and exhaustion markers of T cells were assessed by multicolour flow cytometry in healthy volunteers (n = 15) compared to HIV infected patients (n = 52) or patients diagnosed with ulcerative colitis (UC) (n = 14), 6 of whom treated with vedolizumab. In addition, lymph nodal cells (n = 6), gut-derived cells of healthy volunteers (n = 5) and patients with UC (n = 6) were analysed. Additionally, we studied longitudinal PBMC samples of an HIV patient who was treated with vedolizumab for concomitant UC. Overall, only minor variations of the frequency of α4β7 on total CD4+ T cells were detectable regardless of the disease status or (VDZ) treatment status in peripheral blood and the studied tissues. Peripheral α4β7+ CD4+ T cells of healthy individuals and patients with UC showed a higher activation status and were more frequently CCR5+ than their α4β7- counterparts. Also, the frequency of α4β7+ cells was significantly lower in peripheral blood CD4+ effector memory T cells of HIV-infected compared to healthy individuals and this reduced frequency did not recover in HIV patients on ART. Conversely, the frequency of peripheral blood naïve α4β7+ CD4+ T cells was significantly reduced under VDZ treatment. The results of the current study will contribute to the understanding of the dynamics of α4β7 expression pattern on T cells in HIV and UC and will be useful for future studies investigating VDZ as possible HIV cure strategy.
Collapse
Affiliation(s)
- Melanie Wittner
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Infectious Disease Unit, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg, Lübeck, Borstel, Riems, Germany
| | - Veronika Schlicker
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg, Lübeck, Borstel, Riems, Germany
| | - Jana Libera
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Infectious Disease Unit, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan-Hendrik Bockmann
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg, Lübeck, Borstel, Riems, Germany
| | - Thomas Horvatits
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver Seiz
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Silke Kummer
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Infectious Disease Unit, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg, Lübeck, Borstel, Riems, Germany
| | - Carolin F. Manthey
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anja Hüfner
- Infectious Disease Unit, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcus Kantowski
- Clinic and Polyclinic for Interdisciplinary Endoscopy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Rösch
- Clinic and Polyclinic for Interdisciplinary Endoscopy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Olaf Degen
- Infectious Disease Unit, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna M. Eberhard
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Infectious Disease Unit, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg, Lübeck, Borstel, Riems, Germany
| | - Julian Schulze zur Wiesch
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Infectious Disease Unit, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg, Lübeck, Borstel, Riems, Germany
- * E-mail:
| |
Collapse
|
10
|
Perciani CT, Farah B, Kaul R, Ostrowski MA, Mahmud SM, Anzala O, Jaoko W, MacDonald KS. Live attenuated varicella-zoster virus vaccine does not induce HIV target cell activation. J Clin Invest 2019; 129:875-886. [PMID: 30511963 DOI: 10.1172/jci124473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/27/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Varicella-zoster virus (VZV) is under consideration as a promising recombinant viral vector to deliver foreign antigens including HIV. However, new vectors have come under increased scrutiny, since trials with adenovirus serotype 5-vectored (Ad5-vectored) HIV vaccine demonstrated increased HIV risk in individuals with pre-immunity to the vector that was thought to be associated with mucosal immune activation (IA). Therefore, given the prospect of developing an HIV/VZV chimeric vaccine, it is particularly important to define the impact of VZV vaccination on IA. METHODS Healthy VZV-seropositive Kenyan women (n = 44) were immunized with high-dose live attenuated VZV vaccine, and we assessed the expression on CD4+ T cells isolated from blood, cervix, and rectum of IA markers including CD38 and HLA-DR and of markers of cell migration and tissue retention, as well as the concentration of genital and intestinal cytokines. A delayed-start group (n = 22) was used to control for natural variations in these parameters. RESULTS Although immunogenic, VZV vaccination did not result in significant difference in the frequency of cervical activated (HLA-DR+CD38+) CD4+ T cells (median 1.61%, IQR 0.93%-2.76%) at 12 weeks after vaccination when compared with baseline (median 1.58%, IQR 0.75%-3.04%), the primary outcome for this study. VZV vaccination also had no measurable effect on any of the IA parameters at 4, 8, and 12 weeks after vaccination. CONCLUSION This study provides the first evidence to our knowledge about the effects of VZV vaccination on human mucosal IA status and supports further evaluation of VZV as a potential vector for an HIV vaccine. TRIAL REGISTRATION ClinicalTrials.gov NCT02514018. FUNDING Primary support from the Canadian Institutes for Health Research (CIHR). For other sources, see Acknowledgments.
Collapse
Affiliation(s)
- Catia T Perciani
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Bashir Farah
- Kenyan AIDS Vaccine Initiative-Institute of Clinical Research (KAVI-ICR), University of Nairobi, Nairobi, Kenya
| | - Rupert Kaul
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,University Health Network, Toronto, Ontario, Canada
| | - Mario A Ostrowski
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Keenan Research Center, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Salaheddin M Mahmud
- Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Omu Anzala
- Kenyan AIDS Vaccine Initiative-Institute of Clinical Research (KAVI-ICR), University of Nairobi, Nairobi, Kenya.,Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Walter Jaoko
- Kenyan AIDS Vaccine Initiative-Institute of Clinical Research (KAVI-ICR), University of Nairobi, Nairobi, Kenya.,Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | | | - Kelly S MacDonald
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Section of Infectious Diseases, Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|