1
|
da Silveira BP, Cohen ND, Lawhon SD, Watson RO, Bordin AI. Protective immune response against Rhodococcus equi: An innate immunity-focused review. Equine Vet J 2025; 57:563-586. [PMID: 39258739 PMCID: PMC11982438 DOI: 10.1111/evj.14214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/30/2024] [Indexed: 09/12/2024]
Abstract
Rhodococcus equi causes pyogranulomatous pneumonia in foals and immunocompromised people. Despite decades of research efforts, no vaccine is available against this common cause of disease and death in foals. The purpose of this narrative review is to summarise the current understanding of interactions between R. equi and the host innate immune system, to describe features of the immune response that are associated with resistance or susceptibility to R. equi infection, and help guide strategies for developing novel approaches for preventing R. equi infections. Virulence of R. equi in foals has been attributed to the virulence associated protein A which allows intracellular survival in macrophages by preventing acidification of R. equi-containing vacuole. Additionally, foal susceptibility to R. equi infection is associated with immaturity and naivety of innate and adaptive immune systems, while adult horses with fully functional immune system are resistant to pneumonia. Specific interaction between R. equi and innate immune cells can result in bacterial survival or death; learning how to manipulate these responses to control infection is critical to prevent pneumonia in foals. Administration of live vaccines and stimulation of innate immune responses appears to improve foals' immune response and has the potential to overcome the challenges of foal active vaccination and elicit protection against pneumonia.
Collapse
Affiliation(s)
- Bibiana Petri da Silveira
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical SciencesTexas A&M University, School of Veterinary Medicine & Biomedical SciencesCollege StationTexasUSA
| | - Noah D. Cohen
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical SciencesTexas A&M University, School of Veterinary Medicine & Biomedical SciencesCollege StationTexasUSA
| | - Sara D. Lawhon
- Department of Veterinary PathobiologyTexas A&M University, School of Veterinary Medicine & Biomedical SciencesCollege StationTexasUSA
| | - Robert O. Watson
- Department of Microbial Pathogenesis & ImmunologyTexas A&M University, School of MedicineCollege StationTexasUSA
- Present address:
Division of Infectious DiseasesDepartment of Medicine, Vanderbilt University Medical CenterNashvilleTNUSA
| | - Angela I. Bordin
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical SciencesTexas A&M University, School of Veterinary Medicine & Biomedical SciencesCollege StationTexasUSA
| |
Collapse
|
2
|
Higgins C, Huber L. Rhodococcus equi: challenges to treat infections and to mitigate antimicrobial resistance. J Equine Vet Sci 2023:104845. [PMID: 37295760 DOI: 10.1016/j.jevs.2023.104845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
Rhodococcus equi, a gram-positive facultative intracellular pathogen and a soil saprophyte, is one of the most common causes of pneumonia in young foals. It poses a threat to the economy in endemic horse-breeding farms and to animal welfare annually. Many farms use thoracic ultrasonographic screening and antimicrobial treatment of subclinically affected foals as a preventive measure against severe R. equi infections. The wide use antimicrobials to treat subclinically affected foals has contributed to the emergence of multidrug resistant (MDR)-R. equi in both clinical isolates from sick foals and in the environment of horse-breeding farms. Alternatives to treat foals infected with MDR-R. equi are scarce and the impact of the emergence of MDR-R. equi in the environment of farms is still unknown. The aim of this review is to discuss the emergence of MDR-R. equi in the United States and the challenges faced to guide antimicrobial use practices. Reduction of antimicrobial use at horse-breeding farms is essential for the preservation of antimicrobial efficacy and, ultimately, human, animal, and environmental health.
Collapse
Affiliation(s)
- Courtney Higgins
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 1130 Wire Road, Auburn, Alabama, USA 36832.
| | - Laura Huber
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 1130 Wire Road, Auburn, Alabama, USA 36832.
| |
Collapse
|
3
|
Sanz MG. Rhodococcus equi-What is New This Decade? Vet Clin North Am Equine Pract 2023; 39:1-14. [PMID: 36898784 DOI: 10.1016/j.cveq.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
Foals become infected shortly after birth; most develop subclinical pneumonia and 20% to 30% develop clinical pneumonia that requires treatment. It is now well established that the combination of screening programs based on thoracic ultrasonography and treatment of subclinical foals with antimicrobials has led to the development of resistant Rhodococcus equi strains. Thus, targeted treatment programs are needed. Administration of R equi-specific hyperimmune plasma shortly after birth is beneficial as foals develop less severe pneumonia but does not seem to prevent infection. This article provides a summary of clinically relevant research published during this past decade.
Collapse
|
4
|
Kingsley NB, Sandmeyer L, Bellone RR. A review of investigated risk factors for developing equine recurrent uveitis. Vet Ophthalmol 2022; 26:86-100. [PMID: 35691017 DOI: 10.1111/vop.13002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/25/2022] [Accepted: 05/27/2022] [Indexed: 12/01/2022]
Abstract
Equine recurrent uveitis (ERU) is an ocular inflammatory disease that can be difficult to manage clinically. As such, it is the leading cause of bilateral blindness for horses. ERU is suspected to have a complex autoimmune etiology with both environmental and genetic risk factors contributing to onset and disease progression in some or all cases. Work in recent years has aimed at unraveling the primary triggers, such as infectious agents and inherited breed-specific risk factors, for disease onset, persistence, and progression. This review has aimed at encompassing those factors that have been associated, implicated, or substantiated as contributors to ERU, as well as identifying areas for which additional knowledge is needed to better understand risk for disease onset and progression. A greater understanding of the risk factors for ERU will enable earlier detection and better prognosis through prevention and new therapeutics.
Collapse
Affiliation(s)
- Nicole B Kingsley
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California - Davis, Davis, California, USA.,Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, California, USA
| | - Lynne Sandmeyer
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Rebecca R Bellone
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California - Davis, Davis, California, USA.,Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, California, USA
| |
Collapse
|
5
|
Bordin AI, Huber L, Sanz M, Cohen N. Rhodococcus equi Foal Pneumonia: Update on Epidemiology, Immunity, Treatment, and Prevention. Equine Vet J 2022; 54:481-494. [PMID: 35188690 DOI: 10.1111/evj.13567] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/03/2022] [Accepted: 02/17/2022] [Indexed: 11/25/2022]
Abstract
Pneumonia in foals caused by the bacterium Rhodococcus equi has a worldwide distribution and is a common cause of disease and death for foals. The purpose of this narrative review is to summarise recent developments pertaining to the epidemiology, immune responses, treatment, and prevention of rhodococcal pneumonia of foals. Screening tests have been used to implement earlier detection and treatment of foals with presumed subclinical R. equi pneumonia to reduce mortality and severity of disease. Unfortunately, this practice has been linked to the emergence of antimicrobial resistant R. equi in North America. Correlates of protective immunity for R. equi infections of foals remain elusive, but recent evidence indicates that innate immune responses are important both for mediating killing and orchestrating adaptive immune responses. A macrolide antimicrobial in combination with rifampin remains the recommended treatment for foals with R. equi pneumonia. Great need exists to identify which antimicrobial combination is most effective for treating foals with R. equi pneumonia and to limit emergence of antimicrobial-resistant strains. In the absence of an effective vaccine against R. equi, passive immunisation remains the only commercially-available method for effectively reducing the incidence of R. equi pneumonia. Because passive immunisation is expensive, labour-intensive, and carries risks for foals, great need exists to develop alternative approaches for passive and active immunisation.
Collapse
Affiliation(s)
- Angela I Bordin
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, 77843-4475, USA
| | - Laura Huber
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, 36849, USA
| | - Macarena Sanz
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, 99164-6610, USA
| | - Noah Cohen
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, 77843-4475, USA
| |
Collapse
|
6
|
Le Corre S, Janes J, Slovis NM. Multiple extra‐pulmonary disorders associated with
Rhodococcus equi
infection in a 2‐month‐old foal. EQUINE VET EDUC 2021. [DOI: 10.1111/eve.13279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- S. Le Corre
- Hagyard Equine Medical Institute Lexington Kentucky USA
| | - J. Janes
- University of Kentucky Veterinary Diagnostic Laboratory Lexington Kentucky USA
| | - N. M. Slovis
- Hagyard Equine Medical Institute Lexington Kentucky USA
| |
Collapse
|
7
|
Huber L. Medical management of
Rhodococcus equi
infections: A clinical epidemiology perspective. EQUINE VET EDUC 2020. [DOI: 10.1111/eve.13417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- L. Huber
- Institute of Environmental Decisions Health Geography and Policy Group ETH Zürich Zürich Switzerland
| |
Collapse
|
8
|
Lindegaard C, Galen G, Aarsvold S, Berg LC, Verwilghen D. Haematogenous septic arthritis, physitis and osteomyelitis in foals: A tutorial review on pathogenesis, diagnosis, treatment and prognosis. Part 1. EQUINE VET EDUC 2020. [DOI: 10.1111/eve.13394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- C. Lindegaard
- Department of Veterinary Clinical Sciences Faculty of Health Sciences University of Copenhagen Taastrup Denmark
| | - G. Galen
- School of Veterinary Sciences Faculty of Science University of Sydney Sydney New South Wales Australia
| | - S. Aarsvold
- Puchalski Equine Imaging Petaluma California USA
| | - L. C. Berg
- Department of Veterinary Clinical Sciences Faculty of Health Sciences University of Copenhagen Taastrup Denmark
| | - D. Verwilghen
- School of Veterinary Sciences Faculty of Science University of Sydney Sydney New South Wales Australia
| |
Collapse
|
9
|
Fecal shedding of Rhodococcus equi in mares and foals after experimental infection of foals and effect of composting on concentrations of R. equi in contaminated bedding. Vet Microbiol 2018; 223:42-46. [PMID: 30173750 DOI: 10.1016/j.vetmic.2018.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 07/17/2018] [Accepted: 07/21/2018] [Indexed: 11/23/2022]
Abstract
Rhodococcus equi, a soil saprophyte, is a common cause of pneumonia in foals and a frequent opportunistic pathogen in immunosuppressed people. Because it is widespread in the environment, R. equi can be detected in the feces of most horses. However, the exact timing and rate of shedding relative to infection is unknown. The objectives of this study were to quantify shedding of R. equi in mares and foals after experimental infection of foals with 2 different inocula and to determine the effect of composting on concentrations of R. equi in contaminated bedding. Foals were infected intratracheally with virulent R. equi using inocula of 1 × 107 CFU/mL (n = 16) or 1 × 106 CFU/mL (n = 12) at 23 ± 2 days (range 21 to 27 days) of age. Fecal samples were collected from mares and foals prior to infection and on days 3, 7, and 14 post-infection for quantitative culture of total and virulent R. equi. Waste from the horses was composted for 7 days. Concentrations of total and virulent R. equi in foal feces were significantly higher on day 14 post-infection compared to day 0, regardless of inoculum size. Concentration of total R. equi in mare feces was significantly higher on days 3, 7 and 14 compared to day 0 regardless of inoculum size, whereas shedding of virulent R. equi only increased on day 14 post-infection. Composting for 7 days significantly decreased concentrations of total R. equi and virulent R. equi by an average of 1.08 ± 0.21 and 0.59 ± 0.26 log10 CFU/g, respectively.
Collapse
|