1
|
Bhende RS, Dafale NA. Insights into the ubiquity, persistence and microbial intervention of imidacloprid. Arch Microbiol 2023; 205:215. [PMID: 37129684 DOI: 10.1007/s00203-023-03516-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Imidacloprid, a neonicotinoid pesticide, is employed to increase crop productivity. Meanwhile, its indiscriminate application severely affects the non-target organisms and the environment. As an eco-friendly and economically workable option, the microbial intervention has garnered much attention. This review concisely outlines the toxicity, long-term environmental repercussions, degradation kinetics, biochemical pathways, and interplay of genes implicated in imidacloprid remediation. The studies have highlighted imidacloprid residue persistence in the environment for up to 3000 days. In view of high persistence, effective intervention is highly required. Bacteria-mediated degradation has been established as a viable approach with Bacillus spp. being among the most efficient at 30 ℃ and pH 7. Further, a comparative metagenomic investigation reveals dominant neonicotinoid degradation genes in agriculture compared to forest soils with distinctive microbial communities. Functional metabolism of carbohydrates, amino acids, fatty acids, and lipids demonstrated a significantly superior relative abundance in forest soil, implying its quality and fertility. The CPM, CYP4C71v2, CYP4C72, and CYP6AY3v2 genes that synthesize cyt p450 monooxygenase enzyme play a leading role in imidacloprid degradation. In the future, a systems biology approach incorporating integrated kinetics should be utilized to come up with innovative strategies for moderating the adverse effects of imidacloprid on the environment.
Collapse
Affiliation(s)
- Rahul S Bhende
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 4400 20, India
| | - Nishant A Dafale
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 4400 20, India.
| |
Collapse
|
2
|
Vieira JGA, Santana EDR, Thiesen LV, Matioli TF, Yamamoto PT. Effect of Systemic Insecticides Applied via Drench on the Mortality of Diaphorina citri on Curry Leaf. INSECTS 2023; 14:insects14050422. [PMID: 37233050 DOI: 10.3390/insects14050422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023]
Abstract
Huanglongbing (HLB), the most serious disease in citriculture, is caused by the bacteria Candidatus Liberibacter spp., which is transmitted by the Asian citrus psyllid (ACP) Diaphorina citri. HLB is mainly controlled with insecticides, necessitating the development of alternative methods, e.g., the use of trap plants such as curry leaf Bergera koenigii, which is highly attractive to the ACP. We evaluated the effects of the main systemic insecticides used by citrus growers, applied via drench to adults of D. citri on the curry leaf tree. We tested the persistence of three pesticides: thiamethoxam, thiamethoxam + chlorantraniliprole, and imidacloprid in protected cultivation and the field condition at 7, 14, 28, 42, 56, 70, 98, and 154 days after the application. Different concentrations of insecticides containing the active ingredient thiamethoxam were tested on adults to determine the LC10 and LC50. Finally, we assessed the sublethal effects on the oviposition and development of D. citri. The insecticides controlled the adults for long periods. However, in the field experiment, from 42 days after application there was a decrease in mortality caused by pesticides applied via drench, while in the protected cultivation, mortality did not decline until the last day of evaluation. The median lethal concentration (LC50) for thiamethoxam was 0.031 g of active ingredient per plant, and for thiamethoxam in a mixture, the LC50 was 0.028 g a.i. per plant. In the experiment with sublethal doses, D. citri did not oviposit on the treated plants. Our findings suggest that the attract-and-kill system using the curry leaf tree and systemic insecticides is effective for the control of D. citri and contributes to the integrated management of HLB.
Collapse
Affiliation(s)
- Julia Gabriela Aleixo Vieira
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba 13418-900, Brazil
| | - Emile Dayara Rabelo Santana
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba 13418-900, Brazil
| | - Leonardo Vinicius Thiesen
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba 13418-900, Brazil
| | - Thaís Fagundes Matioli
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba 13418-900, Brazil
| | - Pedro Takao Yamamoto
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba 13418-900, Brazil
| |
Collapse
|
3
|
Fortuin CC, Gandhi KJK. Mason Bees (Hymenoptera: Megachilidae) Exhibit No Avoidance of Imidacloprid-Treated Soils. ENVIRONMENTAL ENTOMOLOGY 2021; 50:1438-1445. [PMID: 34415023 DOI: 10.1093/ee/nvab083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Indexed: 06/13/2023]
Abstract
1) Many wild bee species interact with soil either as a nesting substrate or material. These soil interactions create a risk of exposure to agrochemicals such as imidacloprid or other neonicotinoid pesticides that can persist in soil for months after application. At the landscape level, concentrations of imidacloprid residue in soil are limited to the immediate treatment area, and thus risks to soil-interacting bees could be low if they avoid contaminated soils. 2) We utilized Osmia lignaria (Say), a solitary cavity nesting bee which collects mud to partition and seal nests, and conducted two laboratory experiments to test whether nesting females select or avoid soils containing various levels of imidacloprid residue. For the first experiment, we assessed behavioral responses of females to treated soil utilizing a choice arena and pairing various choices of soil with imidacloprid residues ranging between 0 and 780 ppb. For the second experiment, we developed a laboratory assay to assess soil selection of actively nesting O. lignaria, by providing choices of contaminated soil between 0 and 100 ppb and 0 and 1,000 ppb to nesting females. 3) We found no evidence that O. lignaria females avoided any level of imidacloprid contamination, even at the highest residue level (1,000 ppb) in both the experiments, which may have implications for risk. The in situ nesting methodology developed in this study has future applications for research on soil or pollen preferences of cavity nesting Osmia species, and potential for breeding of O. lignaria in laboratory.
Collapse
Affiliation(s)
| | - Kamal J K Gandhi
- D.B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
| |
Collapse
|
4
|
Fortuin CC, McCarty E, Gandhi KJ. Acute contact with imidacloprid in soil affects the nesting and survival success of a solitary wild bee, Osmia lignaria (Hymenoptera: Megachilidae). CHEMOSPHERE 2021; 264:128572. [PMID: 33065319 DOI: 10.1016/j.chemosphere.2020.128572] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
We assessed impacts of direct acute contact with imidacloprid-treated soil on nesting behavior and mortality of the blue orchard mason bee (Osmia lignaria Say), which is a native solitary cavity-nesting species that collects mud for nest partitions. Laboratory-reared O. lignaria females were exposed to three concentrations of imidacloprid (0, 50, 390 and 780 ppb), in wet (30% moisture) soil for 20 min and released in large flight cages, where impacts on nesting activity and nest cell production were evaluated. Mortality was tested in another experiment using exposure at the same concentrations with two differing soil moisture levels (20% and 40%). Nesting activity was reduced by 42% for females exposed at 390 ppb and by 66% for females exposed at 780 ppb. Females treated at 780 ppb produced 40% fewer nest cells per day. Sex ratios of F1 generation were skewed toward male in the 50 ppb treatment group with 50% fewer females. The number of cells and pre-pupae per nest, as well as the weight of pre-pupal cocoons did not vary among exposure levels. There were no mortality effects at 20% soil moisture for any level of imidacloprid, but at 40%, mortality of females was >50% at all levels of imidacloprid. These results suggest that acute exposure to imidacloprid residue in soil can have negative impacts on soil-interacting bees, and the effects may be relative to the degree of soil moisture.
Collapse
Affiliation(s)
- Christine Cairns Fortuin
- D.B. Warnell School of Forestry and Natural Resources, 180 E Green Street, University of Georgia, Athens, GA, 30602, USA.
| | - Elizabeth McCarty
- D.B. Warnell School of Forestry and Natural Resources, 180 E Green Street, University of Georgia, Athens, GA, 30602, USA
| | - Kamal Jk Gandhi
- D.B. Warnell School of Forestry and Natural Resources, 180 E Green Street, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
5
|
Tang T, Zhao M, Wang P, Huang S, Fu W. Control efficacy and joint toxicity of thiamethoxam mixed with spirotetramat against the Asian citrus psyllid, Diaphorina citri Kuwayama. PEST MANAGEMENT SCIENCE 2021; 77:168-176. [PMID: 32652756 DOI: 10.1002/ps.6004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/26/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, is one of the most devastating pests in citrus orchards, and has caused huge economic losses worldwide. Chemical control is the most effective way for psyllid control. Herein, the toxicity of nine insecticides to ACP adults and the joint action of thiamethoxam + spirotetramat were determined by a topical application method in the laboratory; field plot experiments were conducted to evaluate the control efficacy of one self-made thiamethoxam + spirotetramat 40% suspension concentrate (SC) comparing with thiamethoxam 21% SC, spirotetramat 22.4% SC, tolfenpyrad 15% SC and bifenthrin 100 g/L emulsifiable concentrate against ACP using foliar sprays in 2018-2019. RESULTS The highest toxicity to ACP adults was achieved by beta-cyfulthrin, bifenthrin, thiamethoxam and acetamiprid, with median lethal doses of 0.247 to 1.382 ng/adult at 24 h after treatment. High toxicity was observed by chlorpyrifos, spirotetramat and tolfenpyrad, but moderate toxicity by pyriproxyfen and buprofezin. For mixutres of thiamethoxam and spirotetramat, a 25:15 mass ratio showed the highest synergistic effect, with a co-toxicity coefficient (CTC) of 246.52; while a 10:30 mass ratio exhibited an additive effect, with a CTC of 109.84. Thiamethoxam + spirotetramat 40% SC at 60-80 mg/kg can effectively control ACP with a control efficacy of 72.92 to 99.29% during 3-30 days. Moreover, foliar sprays of all tested insecticides at the tested rates had no phytotoxic effects on citrus trees. CONCLUSION A one-time foliar spray of thiamethoxam + spirotetramat 40% SC at 80 mg/kg could be recommended to control ACP during its infestation period in citrus groves.
Collapse
Affiliation(s)
- Tao Tang
- Department of Entomology, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, Hunan Province, China
| | - Mingping Zhao
- Plant Protection and Quarantine Station, Bureau of Agriculture and Rural Affairs of Jianghua Yao Autonomous County, Jianghua, Hunan Province, China
| | - Pei Wang
- Department of Entomology, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, Hunan Province, China
| | - Shengkong Huang
- Plant Protection and Quarantine Station, Bureau of Agriculture and Rural Affairs of Jianghua Yao Autonomous County, Jianghua, Hunan Province, China
| | - Wei Fu
- Department of Entomology, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, Hunan Province, China
| |
Collapse
|
6
|
Tang T, Zhao M, Wang P, Xiao Y, Huang S, Fu W. Field Efficacies and Joint Actions of Beta-cyfluthrin Mixed With Thiamethoxam or Tolfenpyrad Against Diaphorina citri (Hemiptera: Liviidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:2793-2799. [PMID: 32990310 DOI: 10.1093/jee/toaa196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Indexed: 06/11/2023]
Abstract
The Asian citrus psyllid, Diaphorina citri Kuwayama, is the most serious pest of citrus because it is a vector for the highly destructive citrus greening disease (huanglongbing, HLB). Currently, insecticide applications are being used widely to control psyllid populations, thereby suppressing the spread of HLB. In the present study, topical application bioassays were performed to detect the joint actions of beta-cyfluthrin and thiamethoxam or tolfenpyrad against D. citri adults in the laboratory. In 2019, a field plot experiment was conducted to evaluate the control efficacies of beta-cyfluthrin+thiamethoxam 22% capsule suspension and beta-cyfluthrin+tolfenpyrad 30% microemulsion against D. citri using foliar sprays. For the former, a 9:13 mass ratio had the highest synergistic effect, with a cotoxicity coefficient of 188.64. For the latter, a 5:25 mass ratio had the highest synergistic effect, with a cotoxicity coefficient of 153.94. A one-time foliar spray of the former at 30-40 mg/kg or of the latter at 40-60 mg/kg effectively controlled D. citri, with control efficacies varying from 80.1 to 99.4% or 80.4 to 100.0%, during the 3-30 d after treatment, respectively. Moreover, field observations indicated that these foliar sprays at the tested rates had no negative effects on citrus trees. Thus, foliar sprays of beta-cyfluthrin+thiamethoxam or beta-cyfluthrin+tolfenpyrad under the given conditions may control D. citri.
Collapse
Affiliation(s)
- Tao Tang
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Mingping Zhao
- Bureau of Agriculture and Rural Affairs of Jianghua Yao Autonomous County, Hunan Province, Jianghua, China
| | - Pei Wang
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yi Xiao
- Tiger Forest and Paper Group Co., Ltd., Yueyang, China
| | - Shengkong Huang
- Bureau of Agriculture and Rural Affairs of Jianghua Yao Autonomous County, Hunan Province, Jianghua, China
| | - Wei Fu
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|