1
|
Gu Z, Kong W, Liu X, Hu L, Zhou Y, Liang Z, Zhang M, Chen D, Li F, Chen W. Drug discovery targeting protein arginine methyltransferase 5 (PRMT5): an update. Bioorg Med Chem 2025; 128:118240. [PMID: 40412016 DOI: 10.1016/j.bmc.2025.118240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 05/01/2025] [Accepted: 05/12/2025] [Indexed: 05/27/2025]
Abstract
Protein arginine methyltransferase 5 (PRMT5) plays an important role in regulating gene expression, cell differentiation and development, and chromatin structure by catalyzing the methylation of histones and non-histone proteins. The aberrant expression of PRMT5 is closely associated with the occurrence and progression of various diseases, particularly malignant tumors. Accordingly, developing potent and specific PRMT5 inhibitors may provide a potential novel therapeutic approach. In this Perspective, we highlight the structures, the biological functions, regulatory mechanisms, relevant signaling pathways, and associations with cancer development of PRMT5, as well as the recent advances in drug discovery strategies targeting PRMT5. The challenges, opportunities, and future directions for developing PRMT5 inhibitors and degraders are also discussed.
Collapse
Affiliation(s)
- Zhouyang Gu
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Weizheng Kong
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xing Liu
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Liangju Hu
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yucheng Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Zhenchu Liang
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Minyue Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Dongyin Chen
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Fei Li
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Weilin Chen
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
2
|
Dang T, EswarKumar N, Tripathi SK, Yan C, Wang CH, Cao M, Paul TK, Agboluaje EO, Xiong MP, Ivanov I, Ho MC, Zheng YG. Oligomerization of protein arginine methyltransferase 1 and its functional impact on substrate arginine methylation. J Biol Chem 2024; 300:107947. [PMID: 39491649 DOI: 10.1016/j.jbc.2024.107947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024] Open
Abstract
Protein arginine methyltransferases (PRMTs) are important posttranslational modifying enzymes in eukaryotic proteins and regulate diverse pathways from gene transcription, RNA splicing, and signal transduction to metabolism. Increasing evidence supports that PRMTs exhibit the capacity to form higher-order oligomeric structures, but the structural basis of PRMT oligomerization and its functional consequence are elusive. Herein, we revealed for the first time different oligomeric structural forms of the predominant arginine methyltransferase PRMT1 using cryo-EM, which included tetramer (dimer of dimers), hexamer (trimer of dimers), octamer (tetramer of dimers), decamer (pentamer of dimers), and also helical filaments. Through a host of biochemical assays, we showed that PRMT1 methyltransferase activity was substantially enhanced as a result of the high-ordered oligomerization. High-ordered oligomerization increased the catalytic turnover and the multimethylation processivity of PRMT1. Presence of a catalytically dead PRMT1 mutant also enhanced the activity of WT PRMT1, pointing out a noncatalytic role of oligomerization. Structural modeling demonstrates that oligomerization enhances substrate retention at the PRMT1 surface through electrostatic force. Our studies offered key insights into PRMT1 oligomerization and established that oligomerization constitutes a novel molecular mechanism that positively regulates the enzymatic activity of PRMTs in biology.
Collapse
Affiliation(s)
- Tran Dang
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, United States
| | | | - Sunil Kumar Tripathi
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Chunli Yan
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Chun-Hsiung Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Mengtong Cao
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, United States
| | - Tanmoy Kumar Paul
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Elizabeth Oladoyin Agboluaje
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, United States
| | - May P Xiong
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, United States
| | - Ivaylo Ivanov
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan; Graduate Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan.
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, United States.
| |
Collapse
|
3
|
Yang XC, Desotell A, Lin MH, Paige AS, Malinowska A, Sun Y, Aik WS, Dadlez M, Tong L, Dominski Z. In vitro methylation of the U7 snRNP subunits Lsm11 and SmE by the PRMT5/MEP50/pICln methylosome. RNA (NEW YORK, N.Y.) 2023; 29:1673-1690. [PMID: 37562960 PMCID: PMC10578488 DOI: 10.1261/rna.079709.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/08/2023] [Indexed: 08/12/2023]
Abstract
U7 snRNP is a multisubunit endonuclease required for 3' end processing of metazoan replication-dependent histone pre-mRNAs. In contrast to the spliceosomal snRNPs, U7 snRNP lacks the Sm subunits D1 and D2 and instead contains two related proteins, Lsm10 and Lsm11. The remaining five subunits of the U7 heptameric Sm ring, SmE, F, G, B, and D3, are shared with the spliceosomal snRNPs. The pathway that assembles the unique ring of U7 snRNP is unknown. Here, we show that a heterodimer of Lsm10 and Lsm11 tightly interacts with the methylosome, a complex of the arginine methyltransferase PRMT5, MEP50, and pICln known to methylate arginines in the carboxy-terminal regions of the Sm proteins B, D1, and D3 during the spliceosomal Sm ring assembly. Both biochemical and cryo-EM structural studies demonstrate that the interaction is mediated by PRMT5, which binds and methylates two arginine residues in the amino-terminal region of Lsm11. Surprisingly, PRMT5 also methylates an amino-terminal arginine in SmE, a subunit that does not undergo this type of modification during the biogenesis of the spliceosomal snRNPs. An intriguing possibility is that the unique methylation pattern of Lsm11 and SmE plays a vital role in the assembly of the U7 snRNP.
Collapse
Affiliation(s)
- Xiao-Cui Yang
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Anthony Desotell
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Min-Han Lin
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Andrew S Paige
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Agata Malinowska
- Department of Biophysics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Yadong Sun
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Wei Shen Aik
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Michał Dadlez
- Department of Biophysics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Institute of Genetics and Biotechnology, Warsaw University, 02-106 Warsaw, Poland
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Zbigniew Dominski
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
4
|
Yang XC, Desotell A, Lin MH, Paige AS, Malinowska A, Sun Y, Aik WS, Dadlez M, Tong L, Dominski Z. In vitro methylation of the U7 snRNP subunits Lsm11 and SmE by the PRMT5/MEP50/pICln methylosome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540203. [PMID: 37215023 PMCID: PMC10197641 DOI: 10.1101/2023.05.10.540203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
U7 snRNP is a multi-subunit endonuclease required for 3' end processing of metazoan replication-dependent histone pre-mRNAs. In contrast to the spliceosomal snRNPs, U7 snRNP lacks the Sm subunits D1 and D2 and instead contains two related proteins, Lsm10 and Lsm11. The remaining five subunits of the U7 heptameric Sm ring, SmE, F, G, B and D3, are shared with the spliceosomal snRNPs. The pathway that assembles the unique ring of U7 snRNP is unknown. Here, we show that a heterodimer of Lsm10 and Lsm11 tightly interacts with the methylosome, a complex of the arginine methyltransferase PRMT5, MEP50 and pICln known to methylate arginines in the C-terminal regions of the Sm proteins B, D1 and D3 during the spliceosomal Sm ring assembly. Both biochemical and Cryo-EM structural studies demonstrate that the interaction is mediated by PRMT5, which binds and methylates two arginine residues in the N-terminal region of Lsm11. Surprisingly, PRMT5 also methylates an N-terminal arginine in SmE, a subunit that does not undergo this type of modification during the biogenesis of the spliceosomal snRNPs. An intriguing possibility is that the unique methylation pattern of Lsm11 and SmE plays a vital role in the assembly of the U7 snRNP.
Collapse
|
5
|
Fu S, Zheng Q, Zhang D, Lin C, Ouyang L, Zhang J, Chen L. Medicinal chemistry strategies targeting PRMT5 for cancer therapy. Eur J Med Chem 2022; 244:114842. [DOI: 10.1016/j.ejmech.2022.114842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/24/2022]
|
6
|
Asberry AM, Cai X, Deng X, Liu S, Santiago U, Sims H, Liang W, Xu X, Wan J, Jiang W, Camacho C, Dai M, Hu CD. Discovery and Biological Characterization of PRMT5:MEP50 Protein-Protein Interaction Inhibitors. J Med Chem 2022; 65:13793-13812. [PMID: 36206451 PMCID: PMC11167723 DOI: 10.1021/acs.jmedchem.2c01000] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein arginine methyltransferase 5 (PRMT5) is a master epigenetic regulator and an extensively validated therapeutic target in multiple cancers. Notably, PRMT5 is the only PRMT that requires an obligate cofactor, methylosome protein 50 (MEP50), to function. We developed compound 17, a novel small-molecule PRMT5:MEP50 protein-protein interaction (PPI) inhibitor, after initial virtual screen hit identification and analogue refinement. Molecular docking indicated that compound 17 targets PRMT5:MEP50 PPI by displacing the MEP50 W54 burial into a hydrophobic pocket of the PRMT5 TIM barrel. In vitro analysis indicates IC50 < 500 nM for prostate and lung cancer cells with selective, specific inhibition of PRMT5:MEP50 substrate methylation and target gene expression, and RNA-seq analysis suggests that compound 17 may dysregulate TGF-β signaling. Compound 17 provides a proof of concept in targeting PRMT5:MEP50 PPI, as opposed to catalytic targeting, as a novel mechanism of action and supports further preclinical development of inhibitors in this class.
Collapse
Affiliation(s)
- Andrew M. Asberry
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Interdisciplinary Life Sciences Graduate Program, Purdue University, West Lafayette, IN, 47907, USA
| | - Xinpei Cai
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Xuehong Deng
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- The Indiana University Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, 46202, USA
| | - Ulises Santiago
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Hunter Sims
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Weida Liang
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Xueyong Xu
- Department of Biological Sciences, Purdue University, 240 S Martin Jischke Drive, West Lafayette, IN 47907, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- The Indiana University Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, 46202, USA
- The Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Wen Jiang
- Department of Biological Sciences, Purdue University, 240 S Martin Jischke Drive, West Lafayette, IN 47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Carlos Camacho
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Mingji Dai
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Chang-Deng Hu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
7
|
Zhou W, Yadav GP, Yang X, Qin F, Li C, Jiang QX. Cryo-EM structure-based selection of computed ligand poses enables design of MTA-synergic PRMT5 inhibitors of better potency. Commun Biol 2022; 5:1054. [PMID: 36192627 PMCID: PMC9530242 DOI: 10.1038/s42003-022-03991-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 09/13/2022] [Indexed: 12/31/2022] Open
Abstract
Projected potential of 2.5-4.0 Å cryo-EM structures for structure-based drug design is not well realized yet. Here we show that a 3.1 Å structure of PRMT5 is suitable for selecting computed poses of a chemical inhibitor and its analogs for enhanced potency. PRMT5, an oncogenic target for various cancer types, has many inhibitors manifesting little cooperativity with MTA, a co-factor analog accumulated in MTAP-/- cells. To achieve MTA-synergic inhibition, a pharmacophore from virtual screen leads to a specific inhibitor (11-2 F). Cryo-EM structures of 11-2 F / MTA-bound human PRMT5/MEP50 complex and its apo form resolved at 3.1 and 3.2 Å respectively show that 11-2 F in the catalytic pocket shifts the cofactor-binding pocket away by ~2.0 Å, contributing to positive cooperativity. Computational analysis predicts subtype specificity of 11-2 F among PRMTs. Structural analysis of ligands in the binding pockets is performed to compare poses of 11-2 F and its redesigned analogs and identifies three new analogs predicted to have significantly better potency. One of them, after synthesis, is ~4 fold more efficient in inhibiting PRMT5 catalysis than 11-2 F, with strong MTA-synergy. These data suggest the feasibility of employing near-atomic resolution cryo-EM structures and computational analysis of ligand poses for small molecule therapeutics.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Gaya P Yadav
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611, USA
- Laboratory of Molecular Physiology and Biophysics, Hauptman-Woodward Medical Research Institute, Buffalo, NY, 14203, USA
- G.P.Y at the Department of Biochemistry and Biophysics, Texas A &M University, College Station, TX, 77843, USA
| | - Xiaozhi Yang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Feng Qin
- Department of Physiology and Biophysics, the State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Chenglong Li
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA.
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
- Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, 32610, USA.
| | - Qiu-Xing Jiang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA.
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611, USA.
- Laboratory of Molecular Physiology and Biophysics, Hauptman-Woodward Medical Research Institute, Buffalo, NY, 14203, USA.
- Department of Physiology and Biophysics, the State University of New York at Buffalo, Buffalo, NY, 14214, USA.
| |
Collapse
|
8
|
Nibona E, Niyonkuru C, Liang X, Yao Q, Zhao H. Essential Roles of PRMT5-MEP50 Complex Formation and Cancer Therapy. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421050064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
McKinney DC, McMillan BJ, Ranaghan MJ, Moroco JA, Brousseau M, Mullin-Bernstein Z, O'Keefe M, McCarren P, Mesleh MF, Mulvaney KM, Robinson F, Singh R, Bajrami B, Wagner FF, Hilgraf R, Drysdale MJ, Campbell AJ, Skepner A, Timm DE, Porter D, Kaushik VK, Sellers WR, Ianari A. Discovery of a First-in-Class Inhibitor of the PRMT5-Substrate Adaptor Interaction. J Med Chem 2021; 64:11148-11168. [PMID: 34342224 DOI: 10.1021/acs.jmedchem.1c00507] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PRMT5 and its substrate adaptor proteins (SAPs), pICln and Riok1, are synthetic lethal dependencies in MTAP-deleted cancer cells. SAPs share a conserved PRMT5 binding motif (PBM) which mediates binding to a surface of PRMT5 distal to the catalytic site. This interaction is required for methylation of several PRMT5 substrates, including histone and spliceosome complexes. We screened for small molecule inhibitors of the PRMT5-PBM interaction and validated a compound series which binds to the PRMT5-PBM interface and directly inhibits binding of SAPs. Mode of action studies revealed the formation of a covalent bond between a halogenated pyridazinone group and cysteine 278 of PRMT5. Optimization of the starting hit produced a lead compound, BRD0639, which engages the target in cells, disrupts PRMT5-RIOK1 complexes, and reduces substrate methylation. BRD0639 is a first-in-class PBM-competitive inhibitor that can support studies of PBM-dependent PRMT5 activities and the development of novel PRMT5 inhibitors that selectively target these functions.
Collapse
Affiliation(s)
- David C McKinney
- Center for the Development of Therapeutics, The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Brian J McMillan
- Center for the Development of Therapeutics, The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Matthew J Ranaghan
- Center for the Development of Therapeutics, The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Jamie A Moroco
- Center for the Development of Therapeutics, The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Merissa Brousseau
- Center for the Development of Therapeutics, The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Zachary Mullin-Bernstein
- Cancer Program, The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Meghan O'Keefe
- Center for the Development of Therapeutics, The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Patrick McCarren
- Center for the Development of Therapeutics, The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Michael F Mesleh
- Center for the Development of Therapeutics, The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Kathleen M Mulvaney
- Cancer Program, The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Foxy Robinson
- Cancer Program, The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Ritu Singh
- Center for the Development of Therapeutics, The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Besnik Bajrami
- Center for the Development of Therapeutics, The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Florence F Wagner
- Center for the Development of Therapeutics, The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Robert Hilgraf
- Center for the Development of Therapeutics, The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Martin J Drysdale
- Center for the Development of Therapeutics, The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Arthur J Campbell
- Center for the Development of Therapeutics, The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Adam Skepner
- Center for the Development of Therapeutics, The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - David E Timm
- Department of Biochemistry, University of Utah, 1390 Presidents Circle, Salt Lake City, Utah 84112, United States
| | - Dale Porter
- Cancer Program, The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Virendar K Kaushik
- Center for the Development of Therapeutics, The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - William R Sellers
- Cancer Program, The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States.,Department of Medical Oncology, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02215, United States
| | - Alessandra Ianari
- Cancer Program, The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
10
|
Plassart L, Shayan R, Montellese C, Rinaldi D, Larburu N, Pichereaux C, Froment C, Lebaron S, O'Donohue MF, Kutay U, Marcoux J, Gleizes PE, Plisson-Chastang C. The final step of 40S ribosomal subunit maturation is controlled by a dual key lock. eLife 2021; 10:61254. [PMID: 33908345 PMCID: PMC8112863 DOI: 10.7554/elife.61254] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 04/19/2021] [Indexed: 12/31/2022] Open
Abstract
Preventing premature interaction of pre-ribosomes with the translation apparatus is essential for translational accuracy. Hence, the final maturation step releasing functional 40S ribosomal subunits, namely processing of the 18S ribosomal RNA 3' end, is safeguarded by the protein DIM2, which both interacts with the endoribonuclease NOB1 and masks the rRNA cleavage site. To elucidate the control mechanism that unlocks NOB1 activity, we performed cryo-electron microscopy analysis of late human pre-40S particles purified using a catalytically inactive form of the ATPase RIO1. These structures, together with in vivo and in vitro functional analyses, support a model in which ATP-loaded RIO1 cooperates with ribosomal protein RPS26/eS26 to displace DIM2 from the 18S rRNA 3' end, thereby triggering final cleavage by NOB1; release of ADP then leads to RIO1 dissociation from the 40S subunit. This dual key lock mechanism requiring RIO1 and RPS26 guarantees the precise timing of pre-40S particle conversion into translation-competent ribosomal subunits.
Collapse
Affiliation(s)
- Laura Plassart
- Molecular, Cellular and Developmental Biology department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Ramtin Shayan
- Molecular, Cellular and Developmental Biology department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | | | - Dana Rinaldi
- Molecular, Cellular and Developmental Biology department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Natacha Larburu
- Molecular, Cellular and Developmental Biology department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Carole Pichereaux
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Carine Froment
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Simon Lebaron
- Molecular, Cellular and Developmental Biology department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Marie-Françoise O'Donohue
- Molecular, Cellular and Developmental Biology department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Ulrike Kutay
- Institut für Biochemie, ETH Zürich, Zurich, Switzerland
| | - Julien Marcoux
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pierre-Emmanuel Gleizes
- Molecular, Cellular and Developmental Biology department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Celia Plisson-Chastang
- Molecular, Cellular and Developmental Biology department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
11
|
Quiroz RV, Reutershan MH, Schneider SE, Sloman D, Lacey BM, Swalm BM, Yeung CS, Gibeau C, Spellman DS, Rankic DA, Chen D, Witter D, Linn D, Munsell E, Feng G, Xu H, Hughes JME, Lim J, Saurí J, Geddes K, Wan M, Mansueto MS, Follmer NE, Fier PS, Siliphaivanh P, Daublain P, Palte RL, Hayes RP, Lee S, Kawamura S, Silverman S, Sanyal S, Henderson TJ, Ye Y, Gao Y, Nicholson B, Machacek MR. The Discovery of Two Novel Classes of 5,5-Bicyclic Nucleoside-Derived PRMT5 Inhibitors for the Treatment of Cancer. J Med Chem 2021; 64:3911-3939. [PMID: 33755451 DOI: 10.1021/acs.jmedchem.0c02083] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protein arginine methyltransferase 5 (PRMT5) is a type II arginine methyltransferase that catalyzes the post-translational symmetric dimethylation of protein substrates. PRMT5 plays a critical role in regulating biological processes including transcription, cell cycle progression, RNA splicing, and DNA repair. As such, dysregulation of PRMT5 activity is implicated in the development and progression of multiple cancers and is a target of growing clinical interest. Described herein are the structure-based drug designs, robust synthetic efforts, and lead optimization strategies toward the identification of two novel 5,5-fused bicyclic nucleoside-derived classes of potent and efficacious PRMT5 inhibitors. Utilization of compound docking and strain energy calculations inspired novel designs, and the development of flexible synthetic approaches enabled access to complex chemotypes with five contiguous stereocenters. Additional efforts in balancing bioavailability, solubility, potency, and CYP3A4 inhibition led to the identification of diverse lead compounds with favorable profiles, promising in vivo activity, and low human dose projections.
Collapse
Affiliation(s)
- Ryan V Quiroz
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Michael H Reutershan
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Sebastian E Schneider
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - David Sloman
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Brian M Lacey
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Brooke M Swalm
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Charles S Yeung
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Craig Gibeau
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Daniel S Spellman
- Merck & Co., Inc., 770 Sumneytown Pike, Lansdale, Pennsylvania 19446, United States
| | - Danica A Rankic
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Dapeng Chen
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - David Witter
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Doug Linn
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Erik Munsell
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Guo Feng
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Haiyan Xu
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Jonathan M E Hughes
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Jongwon Lim
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Josep Saurí
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Kristin Geddes
- Merck & Co., Inc., 770 Sumneytown Pike, Lansdale, Pennsylvania 19446, United States
| | - Murray Wan
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - My Sam Mansueto
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Nicole E Follmer
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Patrick S Fier
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Phieng Siliphaivanh
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Pierre Daublain
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Rachel L Palte
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Robert P Hayes
- Merck & Co., Inc., 770 Sumneytown Pike, Lansdale, Pennsylvania 19446, United States
| | - Sandra Lee
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Shuhei Kawamura
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Steven Silverman
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Sulagna Sanyal
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Timothy J Henderson
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Yingchun Ye
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Yuanwei Gao
- Merck & Co., Inc., 770 Sumneytown Pike, Lansdale, Pennsylvania 19446, United States
| | - Benjamin Nicholson
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Michelle R Machacek
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| |
Collapse
|
12
|
Abstract
Arginine methylation is an essential post-translational modification (PTM) deposited by protein arginine methyltransferases (PRMTs) and recognized by Tudor domain-containing proteins. Of the nine mammalian PRMTs, PRMT5 is the primary enzyme responsible for the deposition of symmetric arginine methylation marks in cells. The staphylococcal nuclease and Tudor domain-containing 1 (SND1) effector protein is a key reader of the marks deposited by PRMT5. Both PRMT5 and SND1 are broadly expressed and their deregulation is reported to be associated with a range of disease phenotypes, including cancer. Hepatocellular carcinoma (HCC) is an example of a cancer type that often displays elevated PRMT5 and SND1 levels, and there is evidence that hyperactivation of this axis is oncogenic. Importantly, this pathway can be tempered with small-molecule inhibitors that target PRMT5, offering a therapeutic node for cancer, such as HCC, that display high PRMT5–SND1 axis activity. Here we summarize the known activities of this writer–reader pair, with a focus on their biological roles in HCC. This will help establish a foundation for treating HCC with PRMT5 inhibitors and also identify potential biomarkers that could predict sensitivity to this type of therapy.
Collapse
Affiliation(s)
- Tanner Wright
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; (T.W.); (Y.W.)
- Graduate Program in Genetics & Epigenetics, UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yalong Wang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; (T.W.); (Y.W.)
| | - Mark T. Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; (T.W.); (Y.W.)
- Correspondence:
| |
Collapse
|
13
|
Tewary SK, Zheng YG, Ho MC. Protein arginine methyltransferases: insights into the enzyme structure and mechanism at the atomic level. Cell Mol Life Sci 2019; 76:2917-2932. [PMID: 31123777 PMCID: PMC6741777 DOI: 10.1007/s00018-019-03145-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 02/06/2023]
Abstract
Protein arginine methyltransferases (PRMTs) catalyze the methyl transfer to the arginine residues of protein substrates and are classified into three major types based on the final form of the methylated arginine. Recent studies have shown a strong correlation between PRMT expression level and the prognosis of cancer patients. Currently, crystal structures of eight PRMT members have been determined. Kinetic and structural studies have shown that all PRMTs share similar, but unique catalytic and substrate recognition mechanism. In this review, we discuss the structural similarities and differences of different PRMT members, focusing on their overall structure, S-adenosyl-L-methionine-binding pocket, substrate arginine recognition and catalytic mechanisms. Since PRMTs are valuable targets for drug discovery, we also rationally classify the known PRMT inhibitors into five classes and discuss their mechanisms of action at the atomic level.
Collapse
Affiliation(s)
| | - Y George Zheng
- College of Pharmacy, University of Georgia, Athens, GA, 30602, USA
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan.
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
14
|
Rational modulator design by exploitation of protein-protein complex structures. Future Med Chem 2019; 11:1015-1033. [PMID: 31141413 DOI: 10.4155/fmc-2018-0433] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The horizon of drug discovery is currently expanding to target and modulate protein-protein interactions (PPIs) in globular proteins and intrinsically disordered proteins that are involved in various diseases. To either interrupt or stabilize PPIs, the 3D structure of target protein-protein (or protein-peptide) complexes can be exploited to rationally design PPI modulators (inhibitors or stabilizers) through structure-based molecular design. In this review, we present an overview of experimental and computational methods that can be used to determine 3D structures of protein-protein complexes. Several approaches including rational and in silico methods that can be applied to design peptides, peptidomimetics and small compounds by utilization of determined 3D protein-protein/peptide complexes are summarized and illustrated.
Collapse
|