1
|
Noelker JE, Abreu Ruozzi V, Craig HM, Sckrabulis JP, Raffel TR. Glove decontamination procedures to prevent pathogen and DNA cross-contamination among frogs. DISEASES OF AQUATIC ORGANISMS 2024; 158:173-178. [PMID: 38813857 DOI: 10.3354/dao03793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Working with aquatic organisms often requires handling multiple individuals in a single session, potentially resulting in cross-contamination by live pathogens or DNA. Most researchers address this problem by disposing of gloves between animals. However, this generates excessive waste and may be impractical for processing very slippery animals that might be easier to handle with cotton gloves. We tested methods to decontaminate cotton or nitrile gloves after contamination with cultured Batrachochytrium dendrobatidis (Bd) or after handling heavily Bd-infected Xenopus laevis with layered cotton and nitrile gloves. Bleach eliminated detectable Bd DNA from culture-contaminated nitrile gloves, but gloves retained detectable Bd DNA following ethanol disinfection. After handling a Bd-infected frog, Bd DNA contamination was greatly reduced by removal of the outer cotton glove, after which either bleach decontamination or ethanol decontamination followed by drying hands with a paper towel lowered Bd DNA below the detection threshold of our assay. These results provide new options to prevent pathogen or DNA cross-contamination, especially when handling slippery aquatic organisms. However, tradeoffs should be considered when selecting an animal handling procedure, such as the potential for cotton gloves to abrade amphibian skin or disrupt skin mucus. Disposing of gloves between animals should remain the gold standard for maintaining biosecurity in sensitive situations.
Collapse
Affiliation(s)
- James E Noelker
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | | | - Hunter M Craig
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Jason P Sckrabulis
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Thomas R Raffel
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| |
Collapse
|
2
|
da Silveira JAG, Moreira SM, do Nascimento AF, de Oliveira MM, dos Santos HA, Estevam LGTDM, Pereira CR, Oliveira AGG, D’Elia ML, Araujo ADC, Silva JMM. Preparing Collared Peccary ( Pecari tajacu Linnaeus, 1758) for Reintroduction into the Wild: A Screening for Parasites and Hemopathogens of a Captive Population. Pathogens 2024; 13:47. [PMID: 38251354 PMCID: PMC10819336 DOI: 10.3390/pathogens13010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 01/23/2024] Open
Abstract
The reintroduction of captive animals to the wild helps restore endangered species, but it risks pathogen transmission, harming wild populations. Such transmission can impact the genetic diversity and long-term viability of these populations. This study assessed parasite diversity and load in captive Pecari tajacu, a species native to the Americas and culturally significant to Brazilian indigenous culture, prior to reintroduction. Samples from 24 peccaries were analyzed for ectoparasites, hemopathogens, and stool parasites with direct and molecular analysis. Findings showed that various parasites were present. Two peccaries (8.3%) were infested by the adult tick Amblyomma sculptum. Six (25.0%) tested positive for Trypanosoma evansi, four (16.7%) for hemobacteria of the family Anaplasmataceae, twelve (50.0%) for hemotropic Mycoplasma, and seven (29.2%) for Leishmania braziliensis. Stool samples indicated multiple parasites, with sixteen (66.7%) peccaries infected by Strongylida order parasites, Spiruridae in three (12.5%), and Ascaris suum in one (4.2%) animal. Cysts of Balantidium sp. were found in twenty (83.3%), Entamoeba polecki in five (20.8%), and Iodamoeba bütschlii in two (8.3%) peccaries. To our current knowledge, this is the first global report of Leishmania braziliensis, Iodamoeba bütschlii, and Entamoeba polecki in P. tajacu, irrespective of the environment, including both captivity and wild conditions. Some of these parasites are common in domestic animals, and others are zoonotic, indicating potential interspecies pathogen transmission.
Collapse
Affiliation(s)
| | - Simone Magela Moreira
- Department of Agrarian Sciences, Federal Institute of Education, Science and Technology of Minas Gerais-Campus Bambuí, Bambuí 38900-000, MG, Brazil; (S.M.M.); (A.F.d.N.)
| | - Ariane Flávia do Nascimento
- Department of Agrarian Sciences, Federal Institute of Education, Science and Technology of Minas Gerais-Campus Bambuí, Bambuí 38900-000, MG, Brazil; (S.M.M.); (A.F.d.N.)
| | - Marco Miguel de Oliveira
- Biological Science, State University of Minas Gerais-Unit Ituiutaba, Ituiutaba 38302-192, MG, Brazil;
| | - Hudson Andrade dos Santos
- Department of Parasitology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (H.A.d.S.); (A.d.C.A.)
| | | | | | - Anna Gabriela Guimarães Oliveira
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | | | - Andreina de Carvalho Araujo
- Department of Parasitology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (H.A.d.S.); (A.d.C.A.)
| | | |
Collapse
|
3
|
Fieschi-Méric L, Van Leeuwen P, Hopkins K, Bournonville M, Denoël M, Lesbarrères D. Strong restructuration of skin microbiota during captivity challenges ex-situ conservation of amphibians. Front Microbiol 2023; 14:1111018. [PMID: 36891392 PMCID: PMC9986596 DOI: 10.3389/fmicb.2023.1111018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
In response to the current worldwide amphibian extinction crisis, conservation instances have encouraged the establishment of ex-situ collections for endangered species. The resulting assurance populations are managed under strict biosecure protocols, often involving artificial cycles of temperature and humidity to induce active and overwintering phases, which likely affect the bacterial symbionts living on the amphibian skin. However, the skin microbiota is an important first line of defense against pathogens that can cause amphibian declines, such as the chytrid Batrachochytrium dendrobatidis (Bd). Determining whether current husbandry practices for assurance populations might deplete amphibians from their symbionts is therefore essential to conservation success. Here, we characterize the effect of the transitions from the wild to captivity, and between aquatic and overwintering phases, on the skin microbiota of two newt species. While our results confirm differential selectivity of skin microbiota between species, they underscore that captivity and phase-shifts similarly affect their community structure. More specifically, the translocation ex-situ is associated with rapid impoverishment, decrease in alpha diversity and strong species turnover of bacterial communities. Shifts between active and overwintering phases also cause changes in the diversity and composition of the microbiota, and on the prevalence of Bd-inhibitory phylotypes. Altogether, our results suggest that current husbandry practices strongly restructure the amphibian skin microbiota. Although it remains to be determined whether these changes are reversible or have deleterious effects on their hosts, we discuss methods to limit microbial diversity loss ex-situ and emphasize the importance of integrating bacterial communities to applied amphibian conservation.
Collapse
Affiliation(s)
- Léa Fieschi-Méric
- Laboratory of Ecology and Conservation of Amphibians (LECA), Freshwater and OCeanic science Unit of reSearch (FOCUS), Université de Liège, Liège, Belgium.,Biology Department, Laurentian University, Sudbury, ON, Canada
| | | | - Kevin Hopkins
- Institute of Zoology, Zoological Society of London (ZSL), London, United Kingdom
| | - Marie Bournonville
- Aquarium-Muséum de l'Université de Liège, Freshwater and OCeanic science Unit of reSearch (FOCUS), Liège, Belgium
| | - Mathieu Denoël
- Laboratory of Ecology and Conservation of Amphibians (LECA), Freshwater and OCeanic science Unit of reSearch (FOCUS), Université de Liège, Liège, Belgium
| | - David Lesbarrères
- Biology Department, Laurentian University, Sudbury, ON, Canada.,Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, ON, Canada
| |
Collapse
|
4
|
Woodhams DC, Madison JD, Bletz MC, McCartney J, LaBumbard BC, Whetstone R, McDonnell NB, Preissler K, Sabino-Pinto J, Piovia-Scott J. Responsible biosecurity and risk mitigation for laboratory research on emerging pathogens of amphibians. DISEASES OF AQUATIC ORGANISMS 2021; 147:141-148. [PMID: 34913442 DOI: 10.3354/dao03636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The increasing study of emerging wildlife pathogens and a lack of policy or legislation regulating their translocation and use has heightened concerns about laboratory escape, species spillover, and subsequent epizootics among animal populations. Responsible self-regulation by research laboratories, in conjunction with institutional-level safeguards, has an important role in mitigating pathogen transmission and spillover, as well as potential interspecies pathogenesis. A model system in disease ecology that highlights these concerns and related amelioration efforts is research focused on amphibian emerging infectious diseases. Whereas laboratory escape of amphibian pathogens has not been reported and may be rare compared with introduction events from trade or human globalization, the threat that novel disease outbreaks with mass mortality effects pose to wild populations warrants thorough biosecurity measures to ensure containment and prevent spillover. Here, we present a case study of the laboratory biosecurity concerns for the emerging amphibian fungal pathogen Batrachochytrium salamandrivorans. We conclude that proactive biosecurity strategies are needed to integrate researcher and institutional oversight of aquatic wildlife pathogens generally, and we call for increased national and international policy and legislative enforcement. Furthermore, taking professional responsibility beyond current regulations is needed as development of legal guidance can be slow at national and international levels. We outline the need for annual laboratory risk assessments, comprehensive training for all laboratory personnel, and appropriate safeguards specific to pathogens under study. These strategies are critical for upholding the integrity and credibility of the scientific community and maintaining public support for research on wildlife diseases.
Collapse
Affiliation(s)
- Douglas C Woodhams
- Biology Department, University of Massachusetts Boston, Boston, MA 02125, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Investigating the Impact of Group Holding on the Transfer of Ophidiomyces ophidiicola DNA in Free-Ranging Lake Erie Watersnakes (Nerodia sipedon insularum). J Wildl Dis 2021; 57:980-982. [PMID: 34525189 DOI: 10.7589/jwd-d-21-00010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 06/10/2021] [Indexed: 11/20/2022]
Abstract
Ophidiomycosis threatens snakes worldwide. We swabbed free-ranging Lake Erie watersnakes (Nerodia sipedon insularum) for quantitative PCR detection of Ophidiomyces ophidiicola before and after group and individual holding in pillowcases. Our results indicate that group, rather than individual, holding does not significantly increase detection of O. ophidiicola DNA.
Collapse
|
6
|
Chaves A, Montecino-Latorre D, Alcázar P, Suzán G. Wildlife rehabilitation centers as a potential source of transmission of SARS-CoV-2 into native wildlife of Latin America. Biotropica 2021; 53:987-993. [PMID: 34219749 PMCID: PMC8239512 DOI: 10.1111/btp.12965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/09/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022]
Abstract
The COVID-19 pandemic has impacted the entire world, causing a great number of mortality of humans and affecting the economy, while conservation efforts are finally recognized to prevent further pandemics. The wildlife rehabilitation centers (WRCs) play a relevant role in animal welfare; nevertheless, they also represent an imminent risk of pathogen transmission between humans-to-animals and between animals. Moreover, WRCs could spread pathogens into natural habitats through the reintroduction of infectious individuals. These biosafety concerns at WRCs may increase as the economic and social impact of the COVID-19 extends. We explored the current situation of Latin American WRCs under the COVID-19 pandemic to determine the feasibility of SARS-CoV-2 introduction, amplification, and spread within these institutions. We surveyed WRCs from eight Latin American countries. We found that pandemic is affecting these institutions in many aspects: workers with symptoms compatible with COVID-19, reduced economic resources, and lack of information and support from governmental authorities. These have forced WRCs to reduce the workforce, veterinary visits, and animal food rations and to increase the number of animals released. This scenario generates a risky environment for the transmission of SARS-CoV-2, especially for felids, mustelids, and non-human primates. Therefore, it is imperative to respect quarantine periods, monitor incoming patients, increase biosecurity measures, develop and apply guidelines and recommendations for the protection of personnel and biosafety of enclosures and instruments. It is of utmost importance the proper and safer reintroduction of recovered wildlife.
Collapse
Affiliation(s)
- Andrea Chaves
- Escuela de Biología Universidad de Costa Rica San José Costa Rica.,Awá Science and Conservation San José Costa Rica
| | | | - Paloma Alcázar
- Awá Science and Conservation San José Costa Rica.,Centro de Ornitología y Biodiversidad Lima Perú
| | - Gerardo Suzán
- Departamento de Etología Fauna Silvestre y Animales de Laboratorio Facultad de Medicina Veterinaria y Zootecnia Universidad Nacional Autónoma de México Mexico City Mexico
| |
Collapse
|
7
|
Tompros A, Dean AD, Fenton A, Wilber MQ, Carter ED, Gray MJ. Frequency-dependent transmission of Batrachochytrium salamandrivorans in eastern newts. Transbound Emerg Dis 2021; 69:731-741. [PMID: 33617686 PMCID: PMC9290712 DOI: 10.1111/tbed.14043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/11/2021] [Accepted: 02/19/2021] [Indexed: 12/25/2022]
Abstract
Transmission is the fundamental process whereby pathogens infect their hosts and spread through populations, and can be characterized using mathematical functions. The functional form of transmission for emerging pathogens can determine pathogen impacts on host populations and can inform the efficacy of disease management strategies. By directly measuring transmission between infected and susceptible adult eastern newts (Notophthalmus viridescens) in aquatic mesocosms, we identified the most plausible transmission function for the emerging amphibian fungal pathogen Batrachochytrium salamandrivorans (Bsal). Although we considered a range of possible transmission functions, we found that Bsal transmission was best explained by pure frequency dependence. We observed that >90% of susceptible newts became infected within 17 days post‐exposure to an infected newt across a range of host densities and initial infection prevalence treatments. Under these conditions, we estimated R0 = 4.9 for Bsal in an eastern newt population. Our results suggest that Bsal has the capability of driving eastern newt populations to extinction and that managing host density may not be an effective management strategy. Intervention strategies that prevent Bsal introduction or increase host resistance or tolerance to infection may be more effective. Our results add to the growing empirical evidence that transmission of wildlife pathogens can saturate and be functionally frequency‐dependent.
Collapse
Affiliation(s)
- Adrianna Tompros
- Center for Wildlife Health, Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| | - Andrew D Dean
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Andy Fenton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Mark Q Wilber
- Center for Wildlife Health, Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN, USA.,Department of Ecology, Evolution and Marine Biology, University of California-Santa Barbara, Santa Barbara, CA, USA
| | - Edward Davis Carter
- Center for Wildlife Health, Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| | - Matthew J Gray
- Center for Wildlife Health, Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| |
Collapse
|
8
|
Julian JT, Glenney GW, Rees C. Evaluating observer bias and seasonal detection rates in amphibian pathogen eDNA collections by citizen scientists. DISEASES OF AQUATIC ORGANISMS 2019; 134:15-24. [PMID: 32132269 DOI: 10.3354/dao03357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We trained volunteers from conservation organizations to collect environmental DNA (eDNA) from 21 ponds with amphibian communities that had a history of Batrachochytrium dendrobatidis (Bd) and ranavirus (Rv) infections. Volunteers were given sampling kits to filter pond water and preserve eDNA on filter paper, as were the principal investigators (PIs), who made independent collections within 48 h of volunteer collections. Using multi-scale occupancy modeling, we found no evidence to suggest the observer who collected the water sample (volunteer or PI) influenced either the probability of capturing eDNA on a filter or the probability of detecting extracted eDNA in a quantitative PCR (qPCR) reaction. The cumulative detection probability of Bd eDNA at a pond decreased from May through July 2017 because there was a decrease in the probability of detecting eDNA in qPCR reactions. In contrast, cumulative detection probability increased from May to July for Rv due to a higher probability of capturing eDNA on filters later in the year. Our models estimate that both pathogens could be detected with 95% confidence in as few as 5 water samples taken in June or July tested with either 4 or 3 qPCR reactions, respectively. Our eDNA protocols appeared to detect pathogens with 95% confidence using considerably fewer samples than protocols which typically recommend sampling ≥30 individual animals. In addition, eDNA sampling could reduce some biosecurity concerns, jurisdictional and institutional permitting, and stress to biota at ponds.
Collapse
Affiliation(s)
- James T Julian
- Division of Mathematics and Natural Science, Pennsylvania State University-Altoona College, Altoona, PA 16601, USA
| | | | | |
Collapse
|
9
|
Casais R, Larrinaga AR, Dalton KP, Domínguez Lapido P, Márquez I, Bécares E, Carter ED, Gray MJ, Miller DL, Balseiro A. Water sports could contribute to the translocation of ranaviruses. Sci Rep 2019; 9:2340. [PMID: 30787411 PMCID: PMC6382805 DOI: 10.1038/s41598-019-39674-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/28/2019] [Indexed: 02/05/2023] Open
Abstract
Ranaviruses have been identified as the cause of explosive disease outbreaks in amphibians worldwide and can be transmitted between hosts both via direct and indirect contact, in which humans might contribute to the translocation of contaminated material. The aim of this study was to evaluate the possible role of water sports in the human translocation of ranavirus, Batrachochytrium dendrobatidis (Bd), and B. salamandrivorans (Bsal). A total of 234 boats were sampled during the spring Spanish Canoe Championship which took place in Pontillón de Castro, a reservoir with a history of ranavirosis, in May 2017. Boats were tested for the presence of ranavirus and Batrachochytrium spp. DNA, using quantitative real-time polymerase chain reaction techniques (qPCR). A total of 22 swabs (22/234, 9.40%) yielded qPCR-positive results for Ranavirus DNA while Bd or Bsal were not detected in any of the samples. We provide the first evidence that human-related water sports could be a source of ranavirus contamination, providing justification for public disinfecting stations in key areas where human traffic from water sports is high.
Collapse
Affiliation(s)
- Rosa Casais
- SERIDA, Servicio Regional de Investigación y Desarrollo Agroalimentario, Gijón, Asturias, Spain
| | | | - Kevin P Dalton
- Departamento de Bioquímica, Universidad de Oviedo, Oviedo, Spain
| | | | - Isabel Márquez
- SERIDA, Servicio Regional de Investigación y Desarrollo Agroalimentario, Gijón, Asturias, Spain
| | - Eloy Bécares
- Facultad de Biología, Universidad de León, Campus de Vegazana, León, Spain
| | - E Davis Carter
- Center for Wildlife Health, University of Tennessee Institute of Agriculture, Knoxville, Tennessee, United States of America
| | - Matthew J Gray
- Center for Wildlife Health, University of Tennessee Institute of Agriculture, Knoxville, Tennessee, United States of America
| | - Debra L Miller
- Center for Wildlife Health, University of Tennessee Institute of Agriculture, Knoxville, Tennessee, United States of America
| | - Ana Balseiro
- SERIDA, Servicio Regional de Investigación y Desarrollo Agroalimentario, Gijón, Asturias, Spain.
| |
Collapse
|