1
|
Li M, Ye X, Zhao Z, Zeng Y, Huang C, Ma X, Shuai P. Identification of miRNAs and Their Targets in Cunninghamia lanceolata Under Low Phosphorus Stress Based on Small RNA and Degradome Sequencing. Int J Mol Sci 2025; 26:3655. [PMID: 40332230 PMCID: PMC12027079 DOI: 10.3390/ijms26083655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/28/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) is one of the main afforestation tree species in southern China. Continuous planting for multiple generations has led to a decrease in the content of available phosphorus in the soil. To adapt to low phosphorus stress, plants develop a series of physiological, biochemical, and developmental responses through self-regulation. Recent studies have shown that miRNAs play a regulatory role in plants' responses to low phosphorus stress. However, the regulatory mechanism of miRNAs in Chinese fir in response to low phosphorus stress is still unclear. Here, we performed small RNA sequencing on the Chinese fir roots treated with normal phosphorus and low phosphorus and identified a total of 321 miRNAs, including 139 known miRNAs and 182 new miRNAs, with 43 differentially expressed miRNAs (DEMs). Integrative analysis combined with degradome sequencing data revealed that 193 miRNAs (98 known and 95 new) targeted 469 genes, among which 23 DEMs targeted 44 genes. Gene enrichment analysis indicated that under low phosphorus stress, transcription and transcriptional regulation, as well as signal transduction, were significantly activated in Chinese fir. Modules in the miRNA-target pathways, such as miR166/HD-ZIP III, miR169/NFYA7, miR529/SPL, and miR399/UBC23, may be the key regulatory factors in the response to low phosphorus stress in Chinese fir. In addition, we found that PC-3p-1033_8666 was significantly downregulated and that PC-5p-3786_2830 was significantly upregulated, which presumably respond to low phosphorus stress by indirectly affecting phosphorus-related hormone signaling or PSR genes. The identified miRNA-target network and significantly activated pathways in this study provide insights into the post-transcriptional regulatory mechanisms of Chinese fir adapting to low phosphorus environments, which can offer theoretical references for the stress resistance and superior variety breeding of Chinese fir.
Collapse
Affiliation(s)
- Meng Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.L.); (X.Y.); (Z.Z.); (Y.Z.); (C.H.); (X.M.)
- Chinese Fir Engineering Research Center of National Forestry and Grassland Administration, Fuzhou 350002, China
| | - Xiaopeng Ye
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.L.); (X.Y.); (Z.Z.); (Y.Z.); (C.H.); (X.M.)
- Chinese Fir Engineering Research Center of National Forestry and Grassland Administration, Fuzhou 350002, China
| | - Ziyu Zhao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.L.); (X.Y.); (Z.Z.); (Y.Z.); (C.H.); (X.M.)
- Chinese Fir Engineering Research Center of National Forestry and Grassland Administration, Fuzhou 350002, China
| | - Yifan Zeng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.L.); (X.Y.); (Z.Z.); (Y.Z.); (C.H.); (X.M.)
- Chinese Fir Engineering Research Center of National Forestry and Grassland Administration, Fuzhou 350002, China
| | - Chaozhang Huang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.L.); (X.Y.); (Z.Z.); (Y.Z.); (C.H.); (X.M.)
- Chinese Fir Engineering Research Center of National Forestry and Grassland Administration, Fuzhou 350002, China
| | - Xiangqing Ma
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.L.); (X.Y.); (Z.Z.); (Y.Z.); (C.H.); (X.M.)
- Chinese Fir Engineering Research Center of National Forestry and Grassland Administration, Fuzhou 350002, China
| | - Peng Shuai
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.L.); (X.Y.); (Z.Z.); (Y.Z.); (C.H.); (X.M.)
- Chinese Fir Engineering Research Center of National Forestry and Grassland Administration, Fuzhou 350002, China
| |
Collapse
|
2
|
Shi D, Huang H, Zhang Y, Qian Z, Du J, Huang L, Yan X, Lin S. The roles of non-coding RNAs in male reproductive development and abiotic stress responses during this unique process in flowering plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:111995. [PMID: 38266717 DOI: 10.1016/j.plantsci.2024.111995] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Successful male reproductive development is the guarantee for sexual reproduction of flowering plants. Male reproductive development is a complicated and multi-stage process that integrates physiological processes and adaptation and tolerance to a myriad of environmental stresses. This well-coordinated process is governed by genetic and epigenetic machineries. Non-coding RNAs (ncRNAs) play pleiotropic roles in the plant growth and development. The identification, characterization and functional analysis of ncRNAs and their target genes have opened a new avenue for comprehensively revealing the regulatory network of male reproductive development and its response to environmental stresses in plants. This review briefly addresses the types, origin, biogenesis and mechanisms of ncRNAs in plants, highlights important updates on the roles of ncRNAs in regulating male reproductive development and emphasizes the contribution of ncRNAs, especially miRNAs and lncRNAs, in responses to abiotic stresses during this unique process in flowering plants.
Collapse
Affiliation(s)
- Dexi Shi
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Huiting Huang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yuting Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhihao Qian
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jiao Du
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xiufeng Yan
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| | - Sue Lin
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
3
|
Selection and Optimization of Reference Genes for MicroRNA Expression Normalization by qRT-PCR in Chinese Cedar ( Cryptomeria fortunei) under Multiple Stresses. Int J Mol Sci 2021; 22:ijms22147246. [PMID: 34298866 PMCID: PMC8304282 DOI: 10.3390/ijms22147246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 01/22/2023] Open
Abstract
MicroRNA (miRNA) expression analysis is very important for investigating its functions. To date, no research on reference genes (RGs) for miRNAs in gymnosperms, including Cryptomeria fortunei, has been reported. Here, ten miRNAs (i.e., pab-miR159a, cln-miR162, cas-miR166d, pab-miR395b, ppt-miR894, cln-miR6725, novel1, novel6, novel14 and novel16) and three common RGs (U6, 5S and 18S) were selected as candidate RGs. qRT-PCR was used to analyse their expressions in C. fortunei under various experimental conditions, including multiple stresses (cold, heat, drought, salt, abscisic acid and gibberellin) and in various tissues (roots, stems, tender needles, cones and seeds). Four algorithms (delta Ct, geNorm, NormFinder and BestKeeper) were employed to assess the stability of candidate RG expression; the geometric mean and RefFinder program were used to comprehensively evaluate RG stability. According to the results, novel16, cln-miR6725, novel1 and U6 were the most stable RGs for studying C. fortunei miRNA expression. In addition, the expression of three target miRNAs (aly-miR164c-5p, aly-miR168a-5p and smo-miR396) was examined to verify that the selected RGs are suitable for miRNA expression normalisation. This study may aid further investigations of miRNA expression/function in the response of C. fortunei to abiotic stress and provides an important basis for the standardisation of miRNA expression in other gymnosperm species.
Collapse
|
4
|
Wang J, Tang F, Gao C, Gao X, Xu B, Shi F. Comparative transcriptome between male fertile and male sterile alfalfa ( Medicago varia). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1487-1498. [PMID: 34366591 PMCID: PMC8295440 DOI: 10.1007/s12298-021-01026-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/14/2021] [Accepted: 06/23/2021] [Indexed: 05/05/2023]
Abstract
UNLABELLED Male sterility is an important factor in improving crop quality and yield through heterosis breeding. In this study, we analyzed the transcriptomes of male fertile (MF) and male sterile (MS) alfalfa flower buds using the Illumina HiSeq™ 4000 platform. A total of 54.05 million clean reads were generated and assembled into 65,777 unigenes with an average length of 874 bp. The differentially expressed genes (DEGs) between the MF and MS flowers at three stages of pollen development were identified, and there were 3832, 5678 and 5925 DEGs respectively in stages 1, 2 and 3. GO and KEGG functional enrichment analysis revealed 12, 12, 6 and 12 key branch-point genes involved in circadian rhythm, transcription factors, pollen development and flavonoid biosynthesis. Our findings provide novel insights into the mechanism of male sterility in alfalfa. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01026-x.
Collapse
Affiliation(s)
- Jia Wang
- Key Laboratory of Grassland Resources, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, No.29 Erdos Street, Saihan District, Hohhot, 010011 Inner Mongolia China
- Department of Pharmacy, Baotou Medical College, Baotou, 014040 Inner Mongolia China
| | - Fang Tang
- Key Laboratory of Grassland Resources, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, No.29 Erdos Street, Saihan District, Hohhot, 010011 Inner Mongolia China
| | - Cuiping Gao
- Key Laboratory of Grassland Resources, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, No.29 Erdos Street, Saihan District, Hohhot, 010011 Inner Mongolia China
| | - Xia Gao
- Key Laboratory of Grassland Resources, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, No.29 Erdos Street, Saihan District, Hohhot, 010011 Inner Mongolia China
| | - Bo Xu
- Key Laboratory of Grassland Resources, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, No.29 Erdos Street, Saihan District, Hohhot, 010011 Inner Mongolia China
| | - Fengling Shi
- Key Laboratory of Grassland Resources, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, No.29 Erdos Street, Saihan District, Hohhot, 010011 Inner Mongolia China
| |
Collapse
|
5
|
Bohra A, Gandham P, Rathore A, Thakur V, Saxena RK, Naik SJS, Varshney RK, Singh NP. Identification of microRNAs and their gene targets in cytoplasmic male sterile and fertile maintainer lines of pigeonpea. PLANTA 2021; 253:59. [PMID: 33538916 DOI: 10.1007/s00425-021-03568-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Comparative analysis of genome-wide miRNAs and their gene targets between cytoplasmic male sterile (CMS) and fertile lines of pigeonpea suggests a possible role of miRNA-regulated pathways in reproductive development. Exploitation of hybrid vigor using CMS technology has delivered nearly 50% yield gain in pigeonpea. Among various sterility-inducing cytoplasms (A1-A9) reported so far in pigeonpea, A2 and A4 are the two major sources that facilitate hybrid seed production. Recent evidence suggests involvement of micro RNA in vast array of biological processes including plant reproductive development. In pigeonpea, information about the miRNAs is insufficient. In view of this, we sequenced six small RNA libraries of CMS line UPAS 120A and isogenic fertile line UPAS 120B using Illumina technology. Results revealed 316 miRNAs including 248 known and 68 novel types. A total of 637 gene targets were predicted for known miRNAs, while 324 genes were associated with novel miRNAs. Degradome analysis revealed 77 gene targets of predicted miRNAs, which included a variety of transcription factors playing key roles in plant reproduction such as F-box family proteins, apetala 2, auxin response factors, ethylene-responsive factors, homeodomain-leucine zipper proteins etc. Differential expression of both known and novel miRNAs implied roles for both conserved as well as species-specific players. We also obtained several miRNA families such as miR156, miR159, miR167 that are known to influence crucial aspects of plant fertility. Gene ontology and pathway level analyses of the target genes showed their possible implications for crucial events during male reproductive development such as tapetal degeneration, pollen wall formation, retrograde signaling etc. To the best of our knowledge, present study is first to combine deep sequencing of small RNA and degradome for elucidating the role of miRNAs in flower and male reproductive development in pigeonpea.
Collapse
Affiliation(s)
- Abhishek Bohra
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, India.
| | - Prasad Gandham
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Abhishek Rathore
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Vivek Thakur
- Hyderabad Central University (HCU), Hyderabad, India
| | - Rachit K Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | |
Collapse
|
6
|
Transcriptome analysis of heat stressed seedlings with or without pre-heat treatment in Cryptomeria japonica. Mol Genet Genomics 2020; 295:1163-1172. [PMID: 32472284 DOI: 10.1007/s00438-020-01689-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 05/19/2020] [Indexed: 10/24/2022]
Abstract
With global warming as a major environment concern over the coming years, heat tolerance is an important trait for forest tree survival during the predicted future warmer weather conditions. Cryptomeria japonica is a coniferous species widely distributed throughout Japan, and thus, can adapt to a wide range of air temperatures. To elucidate genes involved in heat response in Cryptomeria japonica, transcriptome analysis was conducted for seedlings under heat shock conditions. To test whether heat acclimation affects levels of gene expression, half of the seedlings were pretreated with moderately high temperatures prior to heat shock. De novo assembly of the transcriptome generated 107,924 unigenes and the analysis of differentially expressed genes was conducted using these unigenes. A total of 5217 differentially expressed genes were identified. Most genes upregulated by heat shock, regardless of pre-heat treatment, were conserved to heat response genes of angiosperm species, such as heat shock factors (Hsf) and heat shock proteins (Hsp). Pre-heating of seedlings affected expression levels of several Hsfs and their induction was lower in pre-heated seedlings than in seedlings without pre-heat treatment. This suggests a conserved role of Hsfs in heat response and heat acclimation in seed plants. On the other hand, many unknown genes were upregulated in only seedlings without pre-heat treatment after heat exposure. Notably, expression of gypsy/Ty3 type retrotransposons was dramatically induced. These findings provide valuable information to develop a better understanding of the molecular mechanisms of heat response and acclimation in C. japonica.
Collapse
|
7
|
Chow HT, Chakraborty T, Mosher RA. RNA-directed DNA Methylation and sexual reproduction: expanding beyond the seed. CURRENT OPINION IN PLANT BIOLOGY 2020; 54:11-17. [PMID: 31881293 DOI: 10.1016/j.pbi.2019.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 05/12/2023]
Abstract
Two trends are changing our understanding of RNA-directed DNA methylation. In model systems like Arabidopsis, tissue-specific analysis of DNA methylation is uncovering dynamic changes in methylation during sexual reproduction and unraveling the contribution of maternal and paternal epigenomes to the developing embryo. These studies indicate that RNA-directed DNA Methylation might be important for mediating balance between maternal and paternal contributions to the endosperm. At the same time, researchers are moving beyond Arabidopsis to illuminate the ancestral role of RdDM in non-flowering plants that lack an endosperm, suggesting that RdDM might play a broader role in sexual reproduction.
Collapse
Affiliation(s)
- Hiu Tung Chow
- The School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, United States
| | - Tania Chakraborty
- The School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, United States
| | - Rebecca A Mosher
- The School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
8
|
Nakamura M, Köhler C, Hennig L. Tissue-specific transposon-associated small RNAs in the gymnosperm tree, Norway spruce. BMC Genomics 2019; 20:997. [PMID: 31856707 PMCID: PMC6923980 DOI: 10.1186/s12864-019-6385-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/11/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Small RNAs (sRNAs) are regulatory molecules impacting on gene expression and transposon activity. MicroRNAs (miRNAs) are responsible for tissue-specific and environmentally-induced gene repression. Short interfering RNAs (siRNA) are constitutively involved in transposon silencing across different type of tissues. The male gametophyte in angiosperms has a unique set of sRNAs compared to vegetative tissues, including phased siRNAs from intergenic or genic regions, or epigenetically activated siRNAs. This is contrasted by a lack of knowledge about the sRNA profile of the male gametophyte of gymnosperms. RESULTS Here, we isolated mature pollen from male cones of Norway spruce and investigated its sRNA profiles. While 21-nt sRNAs is the major size class of sRNAs in needles, in pollen 21-nt and 24-nt sRNAs are the most abundant size classes. Although the 24-nt sRNAs were exclusively derived from TEs in pollen, both 21-nt and 24-nt sRNAs were associated with TEs. We also investigated sRNAs from somatic embryonic callus, which has been reported to contain 24-nt sRNAs. Our data show that the 24-nt sRNA profiles are tissue-specific and differ between pollen and cell culture. CONCLUSION Our data reveal that gymnosperm pollen, like angiosperm pollen, has a unique sRNA profile, differing from vegetative leaf tissue. Thus, our results reveal that angiosperm and gymnosperm pollen produce new size classes not present in vegetative tissues; while in angiosperm pollen 21-nt sRNAs are generated, in the gymnosperm Norway spruce 24-nt sRNAs are generated. The tissue-specific production of distinct TE-derived sRNAs in angiosperms and gymnosperms provides insights into the diversification process of sRNAs in TE silencing pathways between the two groups of seed plants.
Collapse
Affiliation(s)
- Miyuki Nakamura
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden.
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Lars Hennig
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| |
Collapse
|
9
|
Pooggin MM. Small RNA-Omics for Plant Virus Identification, Virome Reconstruction, and Antiviral Defense Characterization. Front Microbiol 2018; 9:2779. [PMID: 30524398 PMCID: PMC6256188 DOI: 10.3389/fmicb.2018.02779] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/30/2018] [Indexed: 11/13/2022] Open
Abstract
RNA interference (RNAi)-based antiviral defense generates small interfering RNAs that represent the entire genome sequences of both RNA and DNA viruses as well as viroids and viral satellites. Therefore, deep sequencing and bioinformatics analysis of small RNA population (small RNA-ome) allows not only for universal virus detection and genome reconstruction but also for complete virome reconstruction in mixed infections. Viral infections (like other stress factors) can also perturb the RNAi and gene silencing pathways regulating endogenous gene expression and repressing transposons and host genome-integrated endogenous viral elements which can potentially be released from the genome and contribute to disease. This review describes the application of small RNA-omics for virus detection, virome reconstruction and antiviral defense characterization in cultivated and non-cultivated plants. Reviewing available evidence from a large and ever growing number of studies of naturally or experimentally infected hosts revealed that all families of land plant viruses, their satellites and viroids spawn characteristic small RNAs which can be assembled into contigs of sufficient length for virus, satellite or viroid identification and for exhaustive reconstruction of complex viromes. Moreover, the small RNA size, polarity and hotspot profiles reflect virome interactions with the plant RNAi machinery and allow to distinguish between silent endogenous viral elements and their replicating episomal counterparts. Models for the biogenesis and functions of small interfering RNAs derived from all types of RNA and DNA viruses, satellites and viroids as well as endogenous viral elements are presented and discussed.
Collapse
Affiliation(s)
- Mikhail M. Pooggin
- Institut National de la Recherche Agronomique, UMR BGPI, Montpellier, France
| |
Collapse
|