1
|
Usai G, Giordani T, Vangelisti A, Castellacci M, Simoni S, Bosi E, Natali L, Mascagni F, Cavallini A. Haplotype-resolved genome assembly of Ficus carica L. reveals allele-specific expression in the fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70012. [PMID: 39994925 PMCID: PMC11850962 DOI: 10.1111/tpj.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 02/26/2025]
Abstract
In this study, we produced a haplotype-phased genome sequence of the fig tree (Ficus carica L.), a non-Rosaceae fruit tree model species, providing a systematic overview of the organization of a heterozygous diploid genome and, for the first time in a fruit tree, evidence of allelic expression direction-shifting among haplotypes. The genome was used for whole genome analysis of heterozygosis, allelic cytosine methylation, and expression profiles in peel and pulp fruit tissues. The two pseudo-haplotypes spanned approximately 355 and 346 Mbp, respectively, and 97% of the sequences were associated with 13 chromosome pairs of the fig tree. Overall, the methylation profile in peel and pulp tissues showed no variations between the homologous chromosomes. However, we detected differential DNA methylation within defined heterozygous allelic gene regions, particularly in upstream regions. Among 6768 heterozygous coding sequences identified, 4024 exhibited allele-specific expression, with approximately 18% specific to the peel and 14% to the pulp. Specifically, 2715 genes were consistent, with one allele always more expressed than the other in both peel and pulp. On the contrary, 22 allele-specific expressed genes switched allele expression among the fig fruit peel and pulp tissues, indicating evidence of overdominance and suggesting that the genome can express one of the two alleles higher or lower depending on developmental or environmental triggers. Notably, these genes were associated with key biological processes, including fruit maturation regulation, seed maturation, and stress response, highlighting their potential role in the plant's developmental and adaptive functions in view of gene editing-based breeding.
Collapse
Affiliation(s)
- Gabriele Usai
- Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
| | - Tommaso Giordani
- Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
| | - Alberto Vangelisti
- Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
| | - Marco Castellacci
- Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
| | - Samuel Simoni
- Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
| | - Emanuele Bosi
- Department of Earth, Environmental and Life ScienceUniversity of GenoaGenoaItaly
| | - Lucia Natali
- Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
| | - Flavia Mascagni
- Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
| | - Andrea Cavallini
- Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
| |
Collapse
|
2
|
Pierozan P, Höglund A, Theodoropoulou E, Karlsson O. Perfluorooctanesulfonic acid (PFOS) induced cancer related DNA methylation alterations in human breast cells: A whole genome methylome study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174864. [PMID: 39032741 DOI: 10.1016/j.scitotenv.2024.174864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/24/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
DNA methylation plays a pivotal role in cancer. The ubiquitous contaminant perfluorooctanesulfonic acid (PFOS) has been epidemiologically associated with breast cancer, and can induce proliferation and malignant transformation of normal human breast epithelial cells (MCF-10A), but the information about its effect on DNA methylation is sparse. The aim of this study was to characterize the whole-genome methylome effects of PFOS in our breast cell model and compare the findings with previously demonstrated DNA methylation alterations in breast tumor tissues. The DNA methylation profile was assessed at single CpG resolution in MCF-10A cells treated with 1 μM PFOS for 72 h by using Enzymatic Methyl sequencing (EM-seq). We found 12,591 differentially methylated CpG-sites and 13,360 differentially methylated 100 bp tiles in the PFOS exposed breast cells. These differentially methylated regions (DMRs) overlapped with 2406 genes of which 494 were long non-coding RNA and 1841 protein coding genes. We identified 339 affected genes that have been shown to display altered DNA methylation in breast cancer tissue and several other genes related to cancer development. This includes hypermethylation of GACAT3, DELEC1, CASC2, LCIIAR, MUC16, SYNE1 and hypomethylation of TTN and KMT2C. DMRs were also found in estrogen receptor genes (ESR1, ESR2, ESRRG, ESRRB, GREB1) and estrogen responsive genes (GPER1, EEIG1, RERG). The gene ontology analysis revealed pathways related to cancer phenotypes such as cell adhesion and growth. These findings improve the understanding of PFOS's potential role in breast cancer and illustrate the value of whole-genome methylome analysis in uncovering mechanisms of chemical effects, identifying biomarker candidates, and strengthening epidemiological associations, potentially impacting risk assessment.
Collapse
Affiliation(s)
- Paula Pierozan
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 114 18 Stockholm, Sweden; Stockholm University Center for Circular and Sustainable Systems (SUCCeSS), Stockholm University, 106 91 Stockholm, Sweden
| | - Andrey Höglund
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 114 18 Stockholm, Sweden; Stockholm University Center for Circular and Sustainable Systems (SUCCeSS), Stockholm University, 106 91 Stockholm, Sweden
| | - Eleftheria Theodoropoulou
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 114 18 Stockholm, Sweden; Stockholm University Center for Circular and Sustainable Systems (SUCCeSS), Stockholm University, 106 91 Stockholm, Sweden
| | - Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 114 18 Stockholm, Sweden; Stockholm University Center for Circular and Sustainable Systems (SUCCeSS), Stockholm University, 106 91 Stockholm, Sweden.
| |
Collapse
|
3
|
Gong H, Ren J, Xu J, Zhong X, Abudureheman Z, Yilamujiang S, Xie C, Ma T, Li F, Tang L, Xu A, Li L. SMAD3 rs36221701 T>C polymorphism impacts COPD susceptibility in the Kashi population. Gene 2022; 808:145970. [PMID: 34547372 DOI: 10.1016/j.gene.2021.145970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/14/2021] [Indexed: 01/20/2023]
Abstract
Small mother against decapentaplegic (SMAD) family member 3 (SMAD3) is well correlated with the inflammatory response of chronic obstructive pulmonary disease (COPD). A previous study indicated that the single nucleotide polymorphism (SNP) rs36221701 of SMAD3 was related to the risk of inflammatory disease. Hence, given the pathogenesis of COPD is intently associated with smoking and gene polymorphism, this study aims to analyze the relationship between SMAD3 rs36221701 and COPD susceptibility, and to explore whether the interaction is related to smoking status. We studied the association between the rs36221701 and rs34307601 of SMAD3 and COPD susceptibility, a total of 541 COPD patients and 534 controls of the Uyghur population were recruited at the First People's Hospital and the village of Kashi. The interrelation of the two SNPs with the risk of COPD was determined by calculating odds ratio (OR) and 95% confidence interval (95% CI). We found a significant association between the rs36221701 and COPD risk in the non-smoking population. TC genotype showed a significant decreased association with COPD risk (OR = 0.59, 95% CI = 0.41-0.83, P < 0.05), but CC genotype can increased the COPD risk (OR > 1, P < 0.05). In addition, COPD susceptibility was not related to the genetic variations in the rs34307601 (P > 0.05). In conclusion, we confirmed that the SMAD3 rs36221701 may be associated with COPD susceptibility in the Chinese Uyghur population, especially among non-smokers. Our data provide new light for the relationship between SMAD3 gene polymorphisms and COPD susceptibility in the Chinese Uyghur population.
Collapse
Affiliation(s)
- Hui Gong
- Clinical Research Center of Infectious Diseases (Pulmonary Tuberculosis), First People's Hospital of Kashi, Kashi, Xinjiang, PR China
| | - Jie Ren
- Department of Respiratory and Critical Care Medicine, First People's Hospital of Kashi, Kashi, Xinjiang, PR China
| | - Jingran Xu
- Clinical Research Center of Infectious Diseases (Pulmonary Tuberculosis), First People's Hospital of Kashi, Kashi, Xinjiang, PR China
| | - Xuemei Zhong
- Department of Respiratory and Critical Care Medicine, First People's Hospital of Kashi, Kashi, Xinjiang, PR China
| | - Zulipikaer Abudureheman
- Clinical Research Center of Infectious Diseases (Pulmonary Tuberculosis), First People's Hospital of Kashi, Kashi, Xinjiang, PR China
| | - Subinuer Yilamujiang
- Clinical Research Center of Infectious Diseases (Pulmonary Tuberculosis), First People's Hospital of Kashi, Kashi, Xinjiang, PR China
| | - Chengxin Xie
- Department of Respiratory and Critical Care Medicine, First People's Hospital of Kashi, Kashi, Xinjiang, PR China
| | - Tao Ma
- Department of Respiratory and Critical Care Medicine, First People's Hospital of Kashi, Kashi, Xinjiang, PR China
| | - Feifei Li
- Department of Respiratory and Critical Care Medicine, First People's Hospital of Kashi, Kashi, Xinjiang, PR China
| | - Lifeng Tang
- Clinical Research Center of Infectious Diseases (Pulmonary Tuberculosis), First People's Hospital of Kashi, Kashi, Xinjiang, PR China
| | - Aimin Xu
- Department of Clinical Laboratory, First People's Hospital of Kashi, Kashi, Xinjiang, PR China.
| | - Li Li
- Clinical Research Center of Infectious Diseases (Pulmonary Tuberculosis), First People's Hospital of Kashi, Kashi, Xinjiang, PR China; Department of Respiratory and Critical Care Medicine, First People's Hospital of Kashi, Kashi, Xinjiang, PR China.
| |
Collapse
|
4
|
Abstract
Diploidy has profound implications for population genetics and susceptibility to genetic diseases. Although two copies are present for most genes in the human genome, they are not necessarily both active or active at the same level in a given individual. Genomic imprinting, resulting in exclusive or biased expression in favor of the allele of paternal or maternal origin, is now believed to affect hundreds of human genes. A far greater number of genes display unequal expression of gene copies due to cis-acting genetic variants that perturb gene expression. The availability of data generated by RNA sequencing applied to large numbers of individuals and tissue types has generated unprecedented opportunities to assess the contribution of genetic variation to allelic imbalance in gene expression. Here we review the insights gained through the analysis of these data about the extent of the genetic contribution to allelic expression imbalance, the tools and statistical models for gene expression imbalance, and what the results obtained reveal about the contribution of genetic variants that alter gene expression to complex human diseases and phenotypes.
Collapse
Affiliation(s)
- Siobhan Cleary
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway H91 H3CY, Ireland;
| | - Cathal Seoighe
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway H91 H3CY, Ireland;
| |
Collapse
|
5
|
Zhou Q, Wang Z, Li J, Sung WK, Li G. MethHaplo: combining allele-specific DNA methylation and SNPs for haplotype region identification. BMC Bioinformatics 2020; 21:451. [PMID: 33045983 PMCID: PMC7552496 DOI: 10.1186/s12859-020-03798-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 10/02/2020] [Indexed: 12/26/2022] Open
Abstract
Background DNA methylation is an important epigenetic modification that plays a critical role in most eukaryotic organisms. Parental alleles in haploid genomes may exhibit different methylation patterns, which can lead to different phenotypes and even different therapeutic and drug responses to diseases. However, to our knowledge, no software is available for the identification of DNA methylation haplotype regions with combined allele-specific DNA methylation, single nucleotide polymorphisms (SNPs) and high-throughput chromosome conformation capture (Hi-C) data. Results In this paper, we developed a new method, MethHaplo, that identify DNA methylation haplotype regions with allele-specific DNA methylation and SNPs from whole-genome bisulfite sequencing (WGBS) data. Our results showed that methylation haplotype regions were ten times longer than haplotypes with SNPs only. When we integrate WGBS and Hi-C data, MethHaplo could call even longer haplotypes. Conclusions This study illustrates the usefulness of methylation haplotypes. By constructing methylation haplotypes for various cell lines, we provide a clearer picture of the effect of DNA methylation on gene expression, histone modification and three-dimensional chromosome structure at the haplotype level. Our method could benefit the study of parental inheritance-related disease and hybrid vigor in agriculture.
Collapse
Affiliation(s)
- Qiangwei Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.,Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ze Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wing-Kin Sung
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China.,Department of Computer Science, National University of Singapore, Singapore, 117417, Singapore.,Department of Computational and Systems Biology, Genome Institute of Singapore, Singapore, 138672, Singapore
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China. .,Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
6
|
SMAD3 Hypomethylation as a Biomarker for Early Prediction of Colorectal Cancer. Int J Mol Sci 2020; 21:ijms21197395. [PMID: 33036415 PMCID: PMC7582763 DOI: 10.3390/ijms21197395] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
The incidence and mortality rates of colorectal cancer (CRC) have been high in recent years. Prevention and early detection are crucial for decreasing the death rate. Therefore, this study aims to characterize the alteration patterns of mothers against decapentaplegic homolog 3 (SMAD3) in patients with CRC and its applications in early detection by using a genome-wide methylation array to identify an aberrant hypomethylation site in the intron position of the SMAD3 gene. Quantitative methylation-specific polymerase chain reaction showed that hypomethylated SMAD3 occurred in 91.4% (501/548) of Taiwanese CRC tissues and 66.6% of benign tubular adenoma polyps. In addition, SMAD3 hypomethylation was observed in 94.7% of patients with CRC from The Cancer Genome Atlas dataset. A decrease in circulating cell-free methylation SMAD3 was detected in 70% of CRC patients but in only 20% of healthy individuals. SMAD3 mRNA expression was low in 42.9% of Taiwanese CRC tumor tissues but high in 29.4% of tumors compared with paired adjacent normal tissues. Hypomethylated SMAD3 was found in cancers of the digestive system, such as liver cancer, gastric cancer, and colorectal cancer, but not in breast cancer, endometrial cancer, and lung cancer. In conclusion, SMAD3 hypomethylation is a potential diagnostic marker for CRC in Western and Asian populations.
Collapse
|
7
|
Agliata I, Fernandez-Jimenez N, Goldsmith C, Marie JC, Bilbao JR, Dante R, Hernandez-Vargas H. The DNA methylome of inflammatory bowel disease (IBD) reflects intrinsic and extrinsic factors in intestinal mucosal cells. Epigenetics 2020; 15:1068-1082. [PMID: 32281463 PMCID: PMC7518701 DOI: 10.1080/15592294.2020.1748916] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abnormal DNA methylation has been described in human inflammatory conditions of the gastrointestinal tract, such as inflammatory bowel disease (IBD). As other complex diseases, IBD results from the balance between genetic predisposition and environmental exposures. As such, DNA methylation may be the consequence (and potential effector) of both, genetic susceptibility variants and/or environmental signals such as cytokine exposure. We attempted to discern between these two non-excluding possibilities by performing a combined analysis of published DNA methylation data in intestinal mucosal cells of IBD and control samples. We identified abnormal DNA methylation at different levels: deviation from mean methylation signals at site and region levels, and differential variability. A fraction of such changes is associated with genetic polymorphisms linked to IBD susceptibility. In addition, by comparing with another intestinal inflammatory condition (i.e., coeliac disease) we propose that aberrant DNA methylation can also be the result of unspecific processes such as chronic inflammation. Our characterization suggests that IBD methylomes combine intrinsic and extrinsic responses in intestinal mucosal cells, and could point to knowledge-based biomarkers of IBD detection and progression.
Collapse
Affiliation(s)
- Iolanda Agliata
- Department of Medicine and Health Sciences, University of Molise , Campobasso, Italy
| | - Nora Fernandez-Jimenez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute , Leioa, Spain
| | - Chloe Goldsmith
- Department of Immunity, Virus and Inflammation, Cancer Research Centre of Lyon (CRCL), Inserm U 1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard , Lyon, France
| | - Julien C Marie
- Department of Immunity, Virus and Inflammation, Cancer Research Centre of Lyon (CRCL), Inserm U 1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard , Lyon, France
| | - Jose R Bilbao
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute , Leioa, Spain.,Ciber de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) , Madrid, Spain
| | - Robert Dante
- Department of Signaling of Tumoral Escape, Cancer Research Centre of Lyon (CRCL), Inserm U 1052, CNRS UMR 5286, Université de Lyon , Lyon, France
| | - Hector Hernandez-Vargas
- Department of Immunity, Virus and Inflammation, Cancer Research Centre of Lyon (CRCL), Inserm U 1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard , Lyon, France.,Department of Translational Research and Innovation, Centre Léon Bérard , Lyon, France
| |
Collapse
|
8
|
Meddens CA, van der List ACJ, Nieuwenhuis EES, Mokry M. Non-coding DNA in IBD: from sequence variation in DNA regulatory elements to novel therapeutic potential. Gut 2019; 68:928-941. [PMID: 30692146 DOI: 10.1136/gutjnl-2018-317516] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/28/2018] [Accepted: 12/04/2018] [Indexed: 12/13/2022]
Abstract
Genome-wide association studies have identified over 200 loci associated with IBD. We and others have recently shown that, in addition to variants in protein-coding genes, the majority of the associated loci are related to DNA regulatory elements (DREs). These findings add a dimension to the already complex genetic background of IBD. In this review we summarise the existing evidence on the role of DREs in IBD. We discuss how epigenetic research can be used in candidate gene approaches that take non-coding variants into account and can help to pinpoint the essential pathways and cell types in the pathogenesis of IBD. Despite the increased level of genetic complexity, these findings can contribute to novel therapeutic options that target transcription factor binding and enhancer activity. Finally, we summarise the future directions and challenges of this emerging field.
Collapse
Affiliation(s)
- Claartje Aleid Meddens
- Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Michal Mokry
- Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
9
|
Correction: Allele-specific DNA methylation of disease susceptibility genes in Japanese patients with inflammatory bowel disease. PLoS One 2019; 14:e0212148. [PMID: 30721250 PMCID: PMC6363215 DOI: 10.1371/journal.pone.0212148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0194036.].
Collapse
|
10
|
Wang H, Lou D, Wang Z. Crosstalk of Genetic Variants, Allele-Specific DNA Methylation, and Environmental Factors for Complex Disease Risk. Front Genet 2019; 9:695. [PMID: 30687383 PMCID: PMC6334214 DOI: 10.3389/fgene.2018.00695] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 12/12/2018] [Indexed: 01/04/2023] Open
Abstract
Over the past decades, genome-wide association studies (GWAS) have identified thousands of phenotype-associated DNA sequence variants for potential explanations of inter-individual phenotypic differences and disease susceptibility. However, it remains a challenge for translating the associations into causative mechanisms for complex diseases, partially due to the involved variants in the noncoding regions and the inconvenience of functional studies in human population samples. So far, accumulating evidence has suggested a complex crosstalk among genetic variants, allele-specific binding of transcription factors (ABTF), and allele-specific DNA methylation patterns (ASM), as well as environmental factors for disease risk. This review aims to summarize the current studies regarding the interactions of the aforementioned factors with a focus on epigenetic insights. We present two scenarios of single nucleotide polymorphisms (SNPs) in coding regions and non-coding regions for disease risk, via potentially impacting epigenetic patterns. While a SNP in a coding region may confer disease risk via altering protein functions, a SNP in non-coding region may cause diseases, via SNP-altering ABTF, ASM, and allele-specific gene expression (ASE). The allelic increases or decreases of gene expression are key for disease risk during development. Such ASE can be achieved via either a "SNP-introduced ABTF to ASM" or a "SNP-introduced ASM to ABTF." Together with our additional in-depth review on insulator CTCF, we are convinced to propose a working model that the small effect of a SNP acts through altered ABTF and/or ASM, for ASE and eventual disease outcome (named as a "SNP intensifier" model). In summary, the significance of complex crosstalk among genetic factors, epigenetic patterns, and environmental factors requires further investigations for disease susceptibility.
Collapse
Affiliation(s)
- Huishan Wang
- Laboratory of Human Environmental Epigenome, Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Dan Lou
- Laboratory of Human Environmental Epigenome, Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Zhibin Wang
- Laboratory of Human Environmental Epigenome, Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
11
|
Ding K, Jiang J, Chen L, Xu X. Methylenetetrahydrofolate Dehydrogenase 1 Silencing Expedites the Apoptosis of Non-Small Cell Lung Cancer Cells via Modulating DNA Methylation. Med Sci Monit 2018; 24:7499-7507. [PMID: 30343310 PMCID: PMC6206813 DOI: 10.12659/msm.910265] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/25/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) accounts for about 85% of all types of lung cancer. Methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) is involved in DNA methylation, and DNA methylation is related to tumorigenesis. The role of MTHFD1 in NSCLC was examined in our study. MATERIAL AND METHODS The correlation between the expression of MTHFD1 and the clinicopathological features of patients diagnosed with lung cancer was investigated using the chi-square test. The viability and apoptosis of NCI-H1299 cells was respectively detected using cell counting kit-8 and flow cytometry assays. The expression levels of MTHFD1, apoptosis-related factors and DNA methyltransferase-related factors were assessed by quantitative real-time PCR (qRT-PCR) and western blot assays. RESULTS We found that MTHFD1 expression in the tumor tissues and cells was higher than that of adjacent normal tissues and cells. The survival time of patients with high MTHFD1 expression was shorter than those with low MTHFD1 expression. The expression level of MTHFD1 was related to tumor size, TNM stage, histologic grade, and metastasis, but not linked to gender and age. Besides, si-MTHFD1 significantly decreased the viability of cells in a time-dependent manner, and increased cell apoptosis. When cells were transfected with MTHFD1-siRNA, the levels of surviving and B-cell lymphoma-2 (Bcl-2) were attenuated, while p53 and Bcl-2 associated X protein (Bax) levels were enhanced. Moreover, si-MTHFD1 markedly downregulated the expression levels of DNA methyltransferase 1 (DNMT1), DNMT3a, and DNMT3b. CONCLUSIONS Collectively, our results proved that MTHFD1 silencing obviously reduced the proliferation and enhanced the apoptosis of NSCLC via suppressing DNA methylation.
Collapse
Affiliation(s)
- Ke Ding
- Dispensary of Traditional Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| | - Jianyang Jiang
- Department of Respiration, Quzhou People’s Hospital, Quzhou, Zhejiang, P.R. China
| | - Liang Chen
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| | - Xiaohua Xu
- Department of Respiration, Quzhou People’s Hospital, Quzhou, Zhejiang, P.R. China
| |
Collapse
|