1
|
Sánchez-Yustos P, Marín-Arroyo AB, Arnold LJ, Luque L, Kehl M, López-Sáez JA, Carrancho Alonso Á, Demuro M, Sanz-Royo A, Buckley M, Maíllo-Fernández JM, Cuartero-Monteagudo F, Llamazares-González J, Ruiz-Alonso M, Luelmo-Lautenschlaeger R, García-Soto E, Alcaraz-Castaño M. Initial Upper Palaeolithic lithic industry at Cueva Millán in the hinterlands of Iberia. Sci Rep 2024; 14:21705. [PMID: 39333171 PMCID: PMC11436763 DOI: 10.1038/s41598-024-69913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/09/2024] [Indexed: 09/29/2024] Open
Abstract
The extended period of coexistence between Neanderthals and Homo sapiens in Europe coincided with the emergence of regionally distinctive lithic industries, signalling the onset of the Upper Palaeolithic. The Iberian Peninsula was on the periphery of pioneering Upper Palaeolithic developments, with archaeological remains primarily found in northern territories. We report the discovery of an initial Upper Palaeolithic lithic industry at Cueva Millán in the hinterlands of Iberia. This industry, termed here Arlanzian, not only represents the earliest and southernmost evidence of such industries in Iberia but also lacks a direct counterpart. However, it exhibits chronological and technological parallels with the lithic industries associated with the earliest expansion of Homo sapiens throughout Eurasia. We interpret this as potential evidence of its intrusive nature, but not necessarily associated with a migration event, as more complex scenarios derived from inter-population connectivity must be also considered. The biological identity of the Arlanzian makers remains unknown, but they coexisted with declining Neanderthal groups from neighbouring territories.
Collapse
Affiliation(s)
- Policarpo Sánchez-Yustos
- Área de Prehistoria, Departamento de Prehistoria, Arqueología, Antropología Social y Ciencias y Técnicas Historiográficas, Universidad de Valladolid, Valladolid, Spain.
| | - Ana B Marín-Arroyo
- Grupo I+D+I EvoAdapta (Evolución Humana y Adaptaciones Económicas y Ecológicas Durante la Prehistoria), Departamento Ciencias Históricas, Universidad de Cantabria, Cantabria, Spain.
| | - Lee J Arnold
- School of Physics, Chemistry and Earth Sciences, Institute for Photonics and Advanced Sensing (IPAS), Environment Institute, University of Adelaide, Adelaide, Australia
| | - Luis Luque
- Área de Prehistoria, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Martin Kehl
- Institute for Integrated Natural Sciences, University of Koblenz, Koblenz, Germany
| | | | - Ángel Carrancho Alonso
- Área de Prehistoria, Departamento de Historia, Geografía y Comunicación, Universidad de Burgos, Burgos, Spain
| | - Martina Demuro
- School of Physics, Chemistry and Earth Sciences, Institute for Photonics and Advanced Sensing (IPAS), Environment Institute, University of Adelaide, Adelaide, Australia
| | - Alicia Sanz-Royo
- Grupo I+D+I EvoAdapta (Evolución Humana y Adaptaciones Económicas y Ecológicas Durante la Prehistoria), Departamento Ciencias Históricas, Universidad de Cantabria, Cantabria, Spain
- Área de Prehistoria, Departamento de Ciencias de la Antigüedad, Universidad de Zaragoza, Zaragoza, Spain
| | - Michael Buckley
- School of Natural Sciences, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - José Manuel Maíllo-Fernández
- Departamento de Prehistoria y Arqueología, Universidad Nacional de Educación a Distancia, UNED, Madrid, Spain
- Institute of Evolution in Africa (IDEA), University of Alcalá, Madrid, Spain
| | - Felipe Cuartero-Monteagudo
- Área de Prehistoria, Universidad de Alcalá, Alcalá de Henares, Spain
- Centro Nacional de Investigación Sobre la Evolución Humana (CENIEH), Burgos, Spain
| | | | - Mónica Ruiz-Alonso
- Environmental Archaeology Research Group, Institute of History, CCHS CSIC, Madrid, Spain
| | - Reyes Luelmo-Lautenschlaeger
- Environmental Archaeology Research Group, Institute of History, CCHS CSIC, Madrid, Spain
- ISEM, Univ. Montpellier, CNRS, Montpellier, IRD, France
| | | | | |
Collapse
|
2
|
Shao Y, Wegener C, Klein K, Schmidt I, Weniger GC. Reconstruction of human dispersal during Aurignacian on pan-European scale. Nat Commun 2024; 15:7406. [PMID: 39198497 PMCID: PMC11358479 DOI: 10.1038/s41467-024-51349-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
The Aurignacian is the first techno-complex related with certainty to Anatomically Modern Humans in Europe. Studies show that they appeared around 43-42 kyr cal BP and dispersed rapidly in Europe during the Upper Palaeolithic. However, human dispersal is a highly convoluted process which is until today not well understood. Here, we provide a reconstruction of the human dispersal during the Aurignacian on the pan-European scale using a human dispersal model, the Our Way Model, which combines archaeological with paleoclimate data and uses the human existence potential as a unifying driver of human population dynamics. Based on the reconstruction, we identify the different stages of the human dispersal and analyse how human demographic processes are influenced by climate change and topography. A chronology of the Aurignacian human groups in Europe is provided, which is verified for locations where archaeological dating records are available. Insights into highly debated hypotheses, such as human dispersal routes, are provided.
Collapse
Affiliation(s)
- Yaping Shao
- Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany.
| | - Christian Wegener
- Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany
| | - Konstantin Klein
- Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany
| | - Isabell Schmidt
- Institute of Prehistory, University of Cologne, Cologne, Germany
| | | |
Collapse
|
3
|
Sala N, Alcaraz-Castaño M, Arriolabengoa M, Martínez-Pillado V, Pantoja-Pérez A, Rodríguez-Hidalgo A, Téllez E, Cubas M, Castillo S, Arnold LJ, Demuro M, Duval M, Arteaga-Brieba A, Llamazares J, Ochando J, Cuenca-Bescós G, Marín-Arroyo AB, Seijo MM, Luque L, Alonso-Llamazares C, Arlegi M, Rodríguez-Almagro M, Calvo-Simal C, Izquierdo B, Cuartero F, Torres-Iglesias L, Agudo-Pérez L, Arribas A, Carrión JS, Magri D, Zhao JX, Pablos A. Nobody's land? The oldest evidence of early Upper Paleolithic settlements in inland Iberia. SCIENCE ADVANCES 2024; 10:eado3807. [PMID: 38924409 PMCID: PMC11809639 DOI: 10.1126/sciadv.ado3807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
The Iberian Peninsula is a key region for unraveling human settlement histories of Eurasia during the period spanning the decline of Neandertals and the emergence of anatomically modern humans (AMH). There is no evidence of human occupation in central Iberia after the disappearance of Neandertals ~42,000 years ago until approximately 26,000 years ago, rendering the region "nobody's land" during the Aurignacian period. The Abrigo de la Malia provides irrefutable evidence of human settlements dating back to 36,200 to 31,760 calibrated years before the present (cal B.P.) This site also records additional levels of occupation around 32,420 to 26,260 cal B.P., suggesting repeated settlement of this territory. Our multiproxy examination identifies a change in climate trending toward colder and more arid conditions. However, this climatic deterioration does not appear to have affected AMH subsistence strategies or their capacity to inhabit this region. These findings reveal the ability of AMH groups to colonize regions hitherto considered uninhabitable, reopening the debate on early Upper Paleolithic population dynamics of southwestern Europe.
Collapse
Affiliation(s)
- Nohemi Sala
- Centro Nacional de Investigación Sobre Evolución Humana (CENIEH), Burgos, Spain
- Centro Mixto UCM-ISCIII de Evolución y Comportamiento Humanos, Madrid, Spain
| | - Manuel Alcaraz-Castaño
- Área de Prehistoria, Departamento de Historia y Filosofía, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Martin Arriolabengoa
- Departamento de Geología, Facultad de Ciencia y Tecnología, Universidad del País Vasco-Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Spain
| | - Virginia Martínez-Pillado
- Centro Nacional de Investigación Sobre Evolución Humana (CENIEH), Burgos, Spain
- Centro Mixto UCM-ISCIII de Evolución y Comportamiento Humanos, Madrid, Spain
| | - Ana Pantoja-Pérez
- Centro Nacional de Investigación Sobre Evolución Humana (CENIEH), Burgos, Spain
- Centro Mixto UCM-ISCIII de Evolución y Comportamiento Humanos, Madrid, Spain
| | - Antonio Rodríguez-Hidalgo
- Consejo Superior de Investigaciones Científicas, Instituto de Arqueología-Mérida (CSIC-Junta de Extremadura), Mérida, Spain
- Institut Català de Paleoecologia Humana i Evolució Social (IPHES-CERCA), Tarragona, Spain
| | - Edgar Téllez
- Centro Nacional de Investigación Sobre Evolución Humana (CENIEH), Burgos, Spain
| | - Miriam Cubas
- Área de Prehistoria, Departamento de Historia y Filosofía, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Samuel Castillo
- Área de Prehistoria, Departamento de Historia y Filosofía, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Lee J. Arnold
- School of Physics, Chemistry and Earth Sciences, Environment Institute, and Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia
| | - Martina Demuro
- School of Physics, Chemistry and Earth Sciences, Environment Institute, and Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia
| | - Mathieu Duval
- Centro Nacional de Investigación Sobre Evolución Humana (CENIEH), Burgos, Spain
- Australian Research Centre for Human Evolution, Griffith University, Brisbane, QLD, Australia
- Palaeoscience Laboratories, Department of Archaeology and History, La Trobe University, Melbourne, VIC, Australia
| | - Andion Arteaga-Brieba
- Institut Català de Paleoecologia Humana i Evolució Social (IPHES-CERCA), Tarragona, Spain
| | - Javier Llamazares
- Centro Nacional de Investigación Sobre Evolución Humana (CENIEH), Burgos, Spain
| | - Juan Ochando
- Department of Plant Biology (Botany Area), Faculty of Biology, University of Murcia, Murcia, Spain
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Gloria Cuenca-Bescós
- Aragosaurus-IUCA-Departamento Ciencias de la Tierra, Universidad de Zaragoza, Zaragoza, Spain
| | - Ana B. Marín-Arroyo
- Grupo de I+D+i EVOADAPTA (Evolución Humana y Adaptaciones Durante la Prehistoria), Departamento de Ciencias Históricas, Universidad de Cantabria, Santander, Spain
| | - María Martín Seijo
- Instituto de Ciencias del Patrimonio (INCIPIT), Consejo Superior de Investigaciones Científicas (CSIC), Santiago de Compostela, Spain
| | - Luis Luque
- Área de Prehistoria, Departamento de Historia y Filosofía, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Carmen Alonso-Llamazares
- Departamento de Biología Animal, Ecología, Parasitología, Edafología y Química Agrícola, Universidad de Salamanca, Salamanca, Spain
| | - Mikel Arlegi
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge CB2 3ER, UK
| | | | - Cecilia Calvo-Simal
- Centro Nacional de Investigación Sobre Evolución Humana (CENIEH), Burgos, Spain
| | | | - Felipe Cuartero
- Área de Prehistoria, Departamento de Historia y Filosofía, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Leire Torres-Iglesias
- Grupo de I+D+i EVOADAPTA (Evolución Humana y Adaptaciones Durante la Prehistoria), Departamento de Ciencias Históricas, Universidad de Cantabria, Santander, Spain
| | - Lucía Agudo-Pérez
- Grupo de I+D+i EVOADAPTA (Evolución Humana y Adaptaciones Durante la Prehistoria), Departamento de Ciencias Históricas, Universidad de Cantabria, Santander, Spain
| | - Alfonso Arribas
- Estación Paleontológica Valle del río Fardes, Instituto Geológico y Minero de España (IGME), Tres Cantos, Madrid, Spain
| | - José S. Carrión
- Department of Plant Biology (Botany Area), Faculty of Biology, University of Murcia, Murcia, Spain
| | - Donatella Magri
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - J.-X. Zhao
- Radiogenic Isotope Facility, School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Adrián Pablos
- Centro Nacional de Investigación Sobre Evolución Humana (CENIEH), Burgos, Spain
- Centro Mixto UCM-ISCIII de Evolución y Comportamiento Humanos, Madrid, Spain
- Departamento de Geodinámica, Estratigrafía y Paleontología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Prehistoria y Arqueología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
4
|
Vidal-Cordasco M, Terlato G, Ocio D, Marín-Arroyo AB. Neanderthal coexistence with Homo sapiens in Europe was affected by herbivore carrying capacity. SCIENCE ADVANCES 2023; 9:eadi4099. [PMID: 37738342 PMCID: PMC10516502 DOI: 10.1126/sciadv.adi4099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/15/2023] [Indexed: 09/24/2023]
Abstract
It has been proposed that climate change and the arrival of modern humans in Europe affected the disappearance of Neanderthals due to their impact on trophic resources; however, it has remained challenging to quantify the effect of these factors. By using Bayesian age models to derive the chronology of the European Middle to Upper Paleolithic transition, followed by a dynamic vegetation model that provides the Net Primary Productivity, and a macroecological model to compute herbivore abundance, we show that in continental regions where the ecosystem productivity was low or unstable, Neanderthals disappeared before or just after the arrival of Homo sapiens. In contrast, regions with high and stable productivity witnessed a prolonged coexistence between both species. The temporal overlap between Neanderthals and H. sapiens is significantly correlated with the carrying capacity of small- and medium-sized herbivores. These results suggest that herbivore abundance released the trophic pressure of the secondary consumers guild, which affected the coexistence likelihood between both human species.
Collapse
Affiliation(s)
- Marco Vidal-Cordasco
- Grupo I+D+i EvoAdapta (Evolución Humana y Adaptaciones durante la Prehistoria), Dpto. Ciencias Históricas, Universidad de Cantabria, Avd, Los Castros 44, 39005 Santander, Spain
| | - Gabriele Terlato
- Grupo I+D+i EvoAdapta (Evolución Humana y Adaptaciones durante la Prehistoria), Dpto. Ciencias Históricas, Universidad de Cantabria, Avd, Los Castros 44, 39005 Santander, Spain
| | - David Ocio
- Mott MacDonald Ltd., 22 Station Road, Cambridge, UK
| | - Ana B. Marín-Arroyo
- Grupo I+D+i EvoAdapta (Evolución Humana y Adaptaciones durante la Prehistoria), Dpto. Ciencias Históricas, Universidad de Cantabria, Avd, Los Castros 44, 39005 Santander, Spain
| |
Collapse
|
5
|
Talamo S, Kromer B, Richards MP, Wacker L. Back to the future: The advantage of studying key events in human evolution using a new high resolution radiocarbon method. PLoS One 2023; 18:e0280598. [PMID: 36791053 PMCID: PMC9931112 DOI: 10.1371/journal.pone.0280598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/03/2023] [Indexed: 02/16/2023] Open
Abstract
Radiocarbon dating is the most widely applied dating method in archaeology, especially in human evolution studies, where it is used to determine the chronology of key events, such as the replacement of Neanderthals by modern humans in Europe. However, the method does not always provide precise and accurate enough ages to understand the important processes of human evolution. Here we review the newest method developments in radiocarbon dating ('Radiocarbon 3.0'), which can lead us to much better chronologies and understanding of the major events in recent human evolution. As an example, we apply these new methods to discuss the dating of the important Palaeolithic site of Bacho Kiro (Bulgaria).
Collapse
Affiliation(s)
- Sahra Talamo
- Department of Chemistry G. Ciamician, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- * E-mail:
| | - Bernd Kromer
- Institute for Environmental Physics, University of Heidelberg, Heidelberg, Germany
| | | | - Lukas Wacker
- Laboratory for Ion Beam Physics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Vidal-Cordasco M, Ocio D, Hickler T, Marín-Arroyo AB. Ecosystem productivity affected the spatiotemporal disappearance of Neanderthals in Iberia. Nat Ecol Evol 2022; 6:1644-1657. [PMID: 36175541 DOI: 10.1038/s41559-022-01861-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/28/2022] [Indexed: 11/09/2022]
Abstract
What role did fluctuations play in biomass availability for secondary consumers in the disappearance of Neanderthals and the survival of modern humans? To answer this, we quantify the effects of stadial and interstadial conditions on ecosystem productivity and human spatiotemporal distribution patterns during the Middle to Upper Palaeolithic transition (50,000-30,000 calibrated years before the present) in Iberia. First, we used summed probability distribution, optimal linear estimation and Bayesian age modelling to reconstruct an updated timescale for the transition. Next, we executed a generalized dynamic vegetation model to estimate the net primary productivity. Finally, we developed a macroecological model validated with present-day observations to calculate herbivore abundance. The results indicate that, in the Eurosiberian region, the disappearance of Neanderthal groups was contemporaneous with a significant decrease in the available biomass for secondary consumers, and the arrival of the first Homo sapiens populations coincided with an increase in herbivore carrying capacity. During stadials, the Mediterranean region had the most stable conditions and the highest biomass of medium and medium-large herbivores. These outcomes support an ecological cause for the hiatus between the Mousterian and Aurignacian technocomplexes in Northern Iberia and the longer persistence of Neanderthals in southern latitudes.
Collapse
Affiliation(s)
- M Vidal-Cordasco
- Grupo I+D+i EvoAdapta (Evolución Humana y Adaptaciones Económicas y Ecológicas durante la Prehistoria), Departamento Ciencias Históricas, Universidad de Cantabria, Santander, Spain.
| | - D Ocio
- Mott MacDonald, Cambridge, UK
| | - T Hickler
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany.,Department of Physical Geography, Goethe University, Frankfurt, Germany
| | - A B Marín-Arroyo
- Grupo I+D+i EvoAdapta (Evolución Humana y Adaptaciones Económicas y Ecológicas durante la Prehistoria), Departamento Ciencias Históricas, Universidad de Cantabria, Santander, Spain.
| |
Collapse
|
7
|
The intrusive nature of the Châtelperronian in the Iberian Peninsula. PLoS One 2022; 17:e0265219. [PMID: 35353845 PMCID: PMC8967055 DOI: 10.1371/journal.pone.0265219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/25/2022] [Indexed: 12/27/2022] Open
Abstract
Multiple factors have been proposed to explain the disappearance of Neandertals between ca. 50 and 40 kyr BP. Central to these discussions has been the identification of new techno-cultural complexes that overlap with the period of Neandertal demise in Europe. One such complex is the Châtelperronian, which extends from the Paris Basin to the Northern Iberian Peninsula between 43,760–39,220 BP. In this study we present the first open-air Châtelperronian site in the Northern Iberian Peninsula, Aranbaltza II. The technological features of its stone tool assemblage show no links with previous Middle Paleolithic technology in the region, and chronological modeling reveals a gap between the latest Middle Paleolithic and the Châtelperronian in this area. We interpret this as evidence of local Neandertal extinction and replacement by other Neandertal groups coming from southern France, illustrating how local extinction episodes could have played a role in the process of disappearance of Neandertals.
Collapse
|
8
|
Alcaraz-Castaño M, Alcolea-González JJ, de Andrés-Herrero M, Castillo-Jiménez S, Cuartero F, Cuenca-Bescós G, Kehl M, López-Sáez JA, Luque L, Pérez-Díaz S, Piqué R, Ruiz-Alonso M, Weniger GC, Yravedra J. First modern human settlement recorded in the Iberian hinterland occurred during Heinrich Stadial 2 within harsh environmental conditions. Sci Rep 2021; 11:15161. [PMID: 34312431 PMCID: PMC8313528 DOI: 10.1038/s41598-021-94408-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/09/2021] [Indexed: 11/09/2022] Open
Abstract
As the south-westernmost region of Europe, the Iberian Peninsula stands as a key area for understanding the process of modern human dispersal into Eurasia. However, the precise timing, ecological setting and cultural context of this process remains controversial concerning its spatiotemporal distribution within the different regions of the peninsula. While traditional models assumed that the whole Iberian hinterland was avoided by modern humans due to ecological factors until the retreat of the Last Glacial Maximum, recent research has demonstrated that hunter-gatherers entered the Iberian interior at least during Solutrean times. We provide a multi-proxy geoarchaeological, chronometric and paleoecological study on human–environment interactions based on the key site of Peña Capón (Guadalajara, Spain). Results show (1) that this site hosts the oldest modern human presence recorded to date in central Iberia, associated to pre-Solutrean cultural traditions around 26,000 years ago, and (2) that this presence occurred during Heinrich Stadial 2 within harsh environmental conditions. These findings demonstrate that this area of the Iberian hinterland was recurrently occupied regardless of climate and environmental variability, thus challenging the widely accepted hypothesis that ecological risk hampered the human settlement of the Iberian interior highlands since the first arrival of modern humans to Southwest Europe.
Collapse
Affiliation(s)
| | | | | | | | | | - G Cuenca-Bescós
- Aragosaurus-IUCA, Department of Geosciences, University of Zaragoza, Zaragoza, Spain
| | - M Kehl
- Institute of Geography, University of Cologne, Cologne, Germany
| | - J A López-Sáez
- Environmental Archeology Research Group, Institute of History, CCHS CSIC, Madrid, Spain
| | - L Luque
- Prehistory Area, University of Alcalá, Alcalá de Henares, Spain
| | - S Pérez-Díaz
- Department of Geography, Urban and Regional Planning, University of Cantabria, Santander, Spain
| | - R Piqué
- Department of Prehistory, Autonomous University of Barcelona, Barcelona, Spain
| | - M Ruiz-Alonso
- Environmental Archeology Research Group, Institute of History, CCHS CSIC, Madrid, Spain
| | | | - J Yravedra
- Department of Prehistory, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
9
|
Abstract
We report the remarkable discovery of an early Aurignacian occupation, ∼5,000 years older than any Upper Paleolithic site in westernmost Eurasia. The archaeological and radiocarbon data provide definitive evidence that modern humans were in western Iberia at a time when, if present at all, Neanderthal populations would have been extremely sparse. This discovery has important ramifications for our understanding of the process of modern human dispersal and replacement of Neanderthal populations. The results support a very rapid, unimpeded dispersal of modern humans across western Eurasia and support the notion that climate and environmental change played a significant role in this process. Documenting the first appearance of modern humans in a given region is key to understanding the dispersal process and the replacement or assimilation of indigenous human populations such as the Neanderthals. The Iberian Peninsula was the last refuge of Neanderthal populations as modern humans advanced across Eurasia. Here we present evidence of an early Aurignacian occupation at Lapa do Picareiro in central Portugal. Diagnostic artifacts were found in a sealed stratigraphic layer dated 41.1 to 38.1 ka cal BP, documenting a modern human presence on the western margin of Iberia ∼5,000 years earlier than previously known. The data indicate a rapid modern human dispersal across southern Europe, reaching the westernmost edge where Neanderthals were thought to persist. The results support the notion of a mosaic process of modern human dispersal and replacement of indigenous Neanderthal populations.
Collapse
|
10
|
Gómez-Olivencia A, López-Onaindia D, Sala N, Balzeau A, Pantoja-Pérez A, Arganda-Carreras I, Arlegi M, Rios-Garaizar J, Gómez-Robles A. The human remains from Axlor (Dima, Biscay, northern Iberian Peninsula). AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 172:475-491. [PMID: 31889305 DOI: 10.1002/ajpa.23989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/19/2019] [Accepted: 12/10/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVES We provide the description and comparative analysis of all the human fossil remains found at Axlor during the excavations carried out by J. M. de Barandiarán from 1967 to 1974: a cranial vault fragment and seven teeth, five of which likely belonged to the same individual, although two are currently lost. Our goal is to describe in detail all these human remains and discuss both their taxonomic attribution and their stratigraphic context. MATERIALS AND METHODS We describe external and internal anatomy, and use classic and geometric morphometrics. The teeth from Axlor are compared to Neandertals, Upper Paleolithic, and recent modern humans. RESULTS Two teeth (a left dm2 , a left di1 ) and the parietal fragment show morphological features consistent with a Neandertal classification, and were found in an undisturbed Mousterian context. The remaining three teeth (plus the two lost ones), initially classified as Neandertals, show morphological features and a general size that are more compatible with their classification as modern humans. DISCUSSION A left parietal fragment (Level VIII) from a single probably adult Neandertal individual was recovered during the old excavations performed by Barandiarán. Additionally, two different Neandertal children lost deciduous teeth during the formations of levels V (left di1 ) and IV (right dm2 ). In addition, a modern human individual is represented by five remains (two currently lost) from a complex stratigraphic setting. Some of the morphological features of these remains suggest that they may represent one of the scarce examples of Upper Paleolithic modern human remains in the northern Iberian Peninsula, which should be confirmed by direct dating.
Collapse
Affiliation(s)
- Asier Gómez-Olivencia
- Departamento de Estratigrafía y Paleontología, Facultad de Ciencia y Tecnología, Universidad del País Vasco-Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Spain.,IKERBASQUE. Basque Foundation for Science, Bilbao, Spain.,Sociedad de Ciencias Aranzadi, Donostia-San Sebastián, Spain.,Centro UCM-ISCIII de Investigación sobre Evolución y Comportamiento Humanos, Madrid, Spain
| | - Diego López-Onaindia
- GREAB, Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facutat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Nohemi Sala
- Centro UCM-ISCIII de Investigación sobre Evolución y Comportamiento Humanos, Madrid, Spain.,Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Burgos, Spain
| | - Antoine Balzeau
- Équipe de Paléontologie Humaine, UMR 7194, CNRS, Département Homme et Environnement, Muséum National d'Histoire Naturelle, Musée de l'Homme, Paris, France.,Department of African Zoology, Royal Museum for Central Africa, Tervuren, Belgium
| | - Ana Pantoja-Pérez
- Centro UCM-ISCIII de Investigación sobre Evolución y Comportamiento Humanos, Madrid, Spain
| | - Ignacio Arganda-Carreras
- IKERBASQUE. Basque Foundation for Science, Bilbao, Spain.,Departamento de Ciencias de la Computacion e Inteligencia Artificial, Facultad de Informatica, Universidad del País Vasco-Euskal Herriko Unibertsitatea (UPV/EHU) Manuel Lardizabal Ibilbidea 1, Donostia-San Sebastián, Spain.,Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea 4, Donostia-San Sebastián, Spain
| | - Mikel Arlegi
- Departamento de Estratigrafía y Paleontología, Facultad de Ciencia y Tecnología, Universidad del País Vasco-Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Spain.,PACEA UMR 5199, Bâtiment B8, Allée Geoffroy Saint-Hilaire, Université de Bordeaux, Pessac, France
| | - Joseba Rios-Garaizar
- Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Burgos, Spain
| | - Aida Gómez-Robles
- Department of Anthropology, University College London, London, UK.,Department of Genetics, Evolution and Environment, University College London, London, UK.,Department of Life Sciences, Natural History Museum, London, UK
| |
Collapse
|
11
|
Morales JI, Cebrià A, Burguet-Coca A, Fernández-Marchena JL, García-Argudo G, Rodríguez-Hidalgo A, Soto M, Talamo S, Tejero JM, Vallverdú J, Fullola JM. The Middle-to-Upper Paleolithic transition occupations from Cova Foradada (Calafell, NE Iberia). PLoS One 2019; 14:e0215832. [PMID: 31095578 PMCID: PMC6522054 DOI: 10.1371/journal.pone.0215832] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/09/2019] [Indexed: 11/19/2022] Open
Abstract
The Middle-to-Upper Paleolithic transition in Europe covers the last millennia of Neanderthal life together with the appearance and expansion of Modern Human populations. Culturally, it is defined by the Late Middle Paleolithic succession, and by Early Upper Paleolithic complexes like the Châtelperronian (southwestern Europe), the Protoaurignacian, and the Early Aurignacian. Up to now, the southern boundary for the transition has been established as being situated between France and Iberia, in the Cantabrian façade and Pyrenees. According to this, the central and southern territories of Iberia are claimed to have been the refuge of the last Neanderthals for some additional millennia after they were replaced by anatomically Modern Humans on the rest of the continent. In this paper, we present the Middle-to-Upper Paleolithic transition sequence from Cova Foradada (Tarragona), a cave on the Catalan Mediterranean coastline. Archaeological research has documented a stratigraphic sequence containing a succession of very short-term occupations pertaining to the Châtelperronian, Early Aurignacian, and Gravettian. Cova Foradada therefore represents the southernmost Châtelperronian-Early Aurignacian sequence ever documented in Europe, significantly enlarging the territorial distribution of both cultures and providing an important geographical and chronological reference for understanding Neanderthal disappearance and the complete expansion of anatomically Modern Humans.
Collapse
Affiliation(s)
- Juan I. Morales
- SERP, Departament d’Historia i Arqueologia, Universitat de Barcelona, Barcelona, Spain
| | - Artur Cebrià
- SERP, Departament d’Historia i Arqueologia, Universitat de Barcelona, Barcelona, Spain
| | - Aitor Burguet-Coca
- Àrea de Prehistòria, Universitat Rovira i Virgili (URV), Tarragona, Spain
- Institut Català de Paleoecologia Humana i Evolució Social (IPHES), Tarragona, Spain
| | | | - Gala García-Argudo
- SERP, Departament d’Historia i Arqueologia, Universitat de Barcelona, Barcelona, Spain
| | - Antonio Rodríguez-Hidalgo
- Complutense University, Prehistory, Ancient History and Archaeology Department, Madrid, Spain
- IDEA (Instituto de Evolución en África), Madrid, Spain
| | - María Soto
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Canada
| | - Sahra Talamo
- Max Planck Institute for Evolutionary Anthropology, Department of Human Evolution, Leipzig, Germany
| | - José-Miguel Tejero
- SERP, Departament d’Historia i Arqueologia, Universitat de Barcelona, Barcelona, Spain
- CNRS, ArScan, UMR-7041, Ethnologie préhistorique, Nanterre, France
| | - Josep Vallverdú
- Àrea de Prehistòria, Universitat Rovira i Virgili (URV), Tarragona, Spain
- Institut Català de Paleoecologia Humana i Evolució Social (IPHES), Tarragona, Spain
| | - Josep Maria Fullola
- SERP, Departament d’Historia i Arqueologia, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
Affiliation(s)
- Katerina Douka
- Max Planck Institute for the Science of Human History, Jena, Germany. .,School of Archaeology, University of Oxford, Oxford, UK.
| |
Collapse
|
13
|
Cortés-Sánchez M, Jiménez-Espejo FJ, Simón-Vallejo MD, Stringer C, Lozano Francisco MC, García-Alix A, Vera Peláez JL, Odriozola CP, Riquelme-Cantal JA, Parrilla Giráldez R, Maestro González A, Ohkouchi N, Morales-Muñiz A. An early Aurignacian arrival in southwestern Europe. Nat Ecol Evol 2019; 3:207-212. [PMID: 30664696 DOI: 10.1038/s41559-018-0753-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 11/15/2018] [Indexed: 11/09/2022]
Abstract
Westernmost Europe constitutes a key location in determining the timing of the replacement of Neanderthals by anatomically modern humans (AMHs). In this study, the replacement of late Mousterian industries by Aurignacian ones at the site of Bajondillo Cave (Málaga, southern Spain) is reported. On the basis of Bayesian analyses, a total of 26 radiocarbon dates, including 17 new ones, show that replacement at Bajondillo took place in the millennia centring on ~45-43 calibrated thousand years before the present (cal ka BP)-well before the onset of Heinrich event 4 (~40.2-38.3 cal ka BP). These dates indicate that the arrival of AMHs at the southernmost tip of Iberia was essentially synchronous with that recorded in other regions of Europe, and significantly increases the areal expansion reached by early AMHs at that time. In agreement with human dispersal scenarios on other continents, such rapid expansion points to coastal corridors as favoured routes for early AMH. The new radiocarbon dates align Iberian chronologies with AMH dispersal patterns in Eurasia.
Collapse
Affiliation(s)
- Miguel Cortés-Sánchez
- Departamento de Prehistoria y Arqueología, Facultad de Geografía e Historia, Universidad de Sevilla, Seville, Spain.,HUM-949 Research Group, Departamento de Prehistoria y Arqueología, Facultad de Geografía e Historia, Universidad de Sevilla, Seville, Spain
| | - Francisco J Jiménez-Espejo
- Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan. .,Instituto Andaluz de Ciencias de la Tierra, CSIC-UGR, Armilla, Spain.
| | - María D Simón-Vallejo
- Departamento de Prehistoria y Arqueología, Facultad de Geografía e Historia, Universidad de Sevilla, Seville, Spain.,HUM-949 Research Group, Departamento de Prehistoria y Arqueología, Facultad de Geografía e Historia, Universidad de Sevilla, Seville, Spain
| | - Chris Stringer
- Department of Earth Sciences, Natural History Museum, London, UK
| | - María Carmen Lozano Francisco
- HUM-949 Research Group, Departamento de Prehistoria y Arqueología, Facultad de Geografía e Historia, Universidad de Sevilla, Seville, Spain
| | - Antonio García-Alix
- Instituto Andaluz de Ciencias de la Tierra, CSIC-UGR, Armilla, Spain.,Departamento de Estratigrafía y Paleontología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - José L Vera Peláez
- HUM-949 Research Group, Departamento de Prehistoria y Arqueología, Facultad de Geografía e Historia, Universidad de Sevilla, Seville, Spain
| | - Carlos P Odriozola
- Departamento de Prehistoria y Arqueología, Facultad de Geografía e Historia, Universidad de Sevilla, Seville, Spain.,HUM-949 Research Group, Departamento de Prehistoria y Arqueología, Facultad de Geografía e Historia, Universidad de Sevilla, Seville, Spain
| | - José A Riquelme-Cantal
- Departamento de Geografía y Ciencias del Territorio, Universidad de Córdoba, Córdoba, Spain
| | - Rubén Parrilla Giráldez
- HUM-949 Research Group, Departamento de Prehistoria y Arqueología, Facultad de Geografía e Historia, Universidad de Sevilla, Seville, Spain
| | | | - Naohiko Ohkouchi
- Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Arturo Morales-Muñiz
- Laboratorio de Arqueozooarqueología, Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
14
|
The Lowermost Tejo River Terrace at Foz do Enxarrique, Portugal: A Palaeoenvironmental Archive from c. 60–35 ka and Its Implications for the Last Neanderthals in Westernmost Iberia. QUATERNARY 2019. [DOI: 10.3390/quat2010003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Reconstruction of Pleistocene environments and processes in the sensitive geographical location of westernmost Iberia, facing the North Atlantic Ocean, is crucial for understanding impacts on early human communities. We provide a characterization of the lowest terrace (T6) of the Lower Tejo River, at Vila Velha de Ródão (eastern central Portugal). This terrace comprises a lower gravel bed and an upper division consisting of fine to very fine sands and coarse silts. We have used a multidisciplinary approach, combining geomorphology, optically stimulated luminescence (OSL) dating, grain-size analysis and rock magnetism measurement, in order to provide new insights into the environmental changes coincident with the activity of the last Neanderthals in this region. In addition, we conducted palynological analysis, X-ray diffraction measurement and scanning electron microscopy coupled with energy dispersive spectra of the clay fraction and carbonate concretions. We discuss these new findings in the context of previously published palaeontological and archeological data. The widespread occurrence of carbonate concretions and rizoliths in the T6 profile is evidence for episodic pedogenic evaporation, in agreement with the rare occurrence and poor preservation of phytoliths. We provide updated OSL ages for the lower two Tejo terraces, obtained by post infra-red stimulated luminescence: (i) T5 is c. 140 to 70 ka; (ii) T6 is c. 60 to 35 ka. The single archaeological and fossiliferous level located at the base of the T6 upper division, recording the last regional occurrence of megafauna (elephant and rhinoceros) and Mousterian artefacts, is now dated at 44 ± 3 ka. With reference to the arrival of Neanderthals in the region, probably by way of the Tejo valley (from central Iberia), new dating suggests a probable age of 200–170 ka for the earliest Mousterian industry located in the topmost deposits of T4.
Collapse
|
15
|
Jones JR, Richards MP, Straus LG, Reade H, Altuna J, Mariezkurrena K, Marín-Arroyo AB. Changing environments during the Middle-Upper Palaeolithic transition in the eastern Cantabrian Region (Spain): direct evidence from stable isotope studies on ungulate bones. Sci Rep 2018; 8:14842. [PMID: 30287834 PMCID: PMC6172272 DOI: 10.1038/s41598-018-32493-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/10/2018] [Indexed: 11/09/2022] Open
Abstract
Environmental change has been proposed as a factor that contributed to the extinction of the Neanderthals in Europe during MIS3. Currently, the different local environmental conditions experienced at the time when Anatomically Modern Humans (AMH) met Neanderthals are not well known. In the Western Pyrenees, particularly, in the eastern end of the Cantabrian coast of the Iberian Peninsula, extensive evidence of Neanderthal and subsequent AMH activity exists, making it an ideal area in which to explore the palaeoenvironments experienced and resources exploited by both human species during the Middle to Upper Palaeolithic transition. Red deer and horse were analysed using bone collagen stable isotope analysis to reconstruct environmental conditions across the transition. A shift in the ecological niche of horses after the Mousterian demonstrates a change in environment, towards more open vegetation, linked to wider climatic change. In the Mousterian, Aurignacian and Gravettian, high inter-individual nitrogen ranges were observed in both herbivores. This could indicate that these individuals were procured from areas isotopically different in nitrogen. Differences in sulphur values between sites suggest some variability in the hunting locations exploited, reflecting the human use of different parts of the landscape. An alternative and complementary explanation proposed is that there were climatic fluctuations within the time of formation of these archaeological levels, as observed in pollen, marine and ice cores.
Collapse
Affiliation(s)
- Jennifer R Jones
- Instituto Internacional de Investigaciones Prehistóricas de Cantabria, (Universidad de Cantabria, Santander, Gobierno de Cantabria), Santander, 39005, Spain
- Department of Archaeology, School of Geosciences, University of Aberdeen, Aberdeen, AB24 3FX, Scotland, UK
| | - Michael P Richards
- Simon Fraser University, Department of Archaeology, Burnaby, V5A 1S6, B.C, Canada
| | - Lawrence G Straus
- University of New Mexico, Anthropology Department, MSC01 1040, Albuquerque, NM, 87131, USA
| | - Hazel Reade
- UCL Institute of Archaeology, 31-34 Gordon Square, London, WC1H 0PY UK, UK
| | - Jesús Altuna
- Centro de Conservación e Investigación de los Materiales Arqueológicos y Paleontológicos de Gipuzkoa, Paseo Zarategi, 84-88, Donostia/San Sebastián, 20015, Spain
| | - Koro Mariezkurrena
- Centro de Conservación e Investigación de los Materiales Arqueológicos y Paleontológicos de Gipuzkoa, Paseo Zarategi, 84-88, Donostia/San Sebastián, 20015, Spain
| | - Ana B Marín-Arroyo
- Instituto Internacional de Investigaciones Prehistóricas de Cantabria, (Universidad de Cantabria, Santander, Gobierno de Cantabria), Santander, 39005, Spain.
- Leverhulme Centre for Evolutionary Studies, Department of Archaeology and Anthropology. University of Cambridge, Cambridge, CB2 1QH, United Kingdom.
| |
Collapse
|
16
|
Slimak L, Fietzke J, Geneste JM, Ontañón R. Comment on "U-Th dating of carbonate crusts reveals Neandertal origin of Iberian cave art". Science 2018; 361:361/6408/eaau1371. [PMID: 30237321 DOI: 10.1126/science.aau1371] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/28/2018] [Indexed: 11/02/2022]
Abstract
Hoffmann et al (Reports, 23 February 2018, p. 912) report the discovery of parietal art older than 64,800 years and attributed to Neanderthals, at least 25 millennia before the oldest parietal art ever found. Instead, critical evaluation of their geochronological data seems to provide stronger support for an age of 47,000 years, which is much more consistent with the archaeological background in hand.
Collapse
Affiliation(s)
- Ludovic Slimak
- CNRS UMR 5608 TRACES, Université Toulouse Jean Jaurès, Maison de la Recherche, 31058 Toulouse Cedex 9, France
| | - Jan Fietzke
- GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, Germany
| | - Jean-Michel Geneste
- Chauvet Cave Research Group, CNRS UMR 5199 PACEA, La Mouthe Basse, 24620 Les Eyzies, France
| | - Roberto Ontañón
- Museum of Prehistory and Archeology of Cantabria, Prehistoric Caves of Cantabria, International Institute of Prehistoric Research of Cantabria, 39009 Santander, Spain
| |
Collapse
|
17
|
First data of Neandertal bird and carnivore exploitation in the Cantabrian Region (Axlor; Barandiaran excavations; Dima, Biscay, Northern Iberian Peninsula). Sci Rep 2018; 8:10551. [PMID: 30002396 PMCID: PMC6043621 DOI: 10.1038/s41598-018-28377-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/18/2018] [Indexed: 11/21/2022] Open
Abstract
Neandertals were top predators who basically relied on middle- to large-sized ungulates for dietary purposes, but there is growing evidence that supports their consumption of plants, leporids, tortoises, marine resources, carnivores and birds. The Iberian Peninsula has provided the most abundant record of bird exploitation for meat in Europe, starting in the Middle Pleistocene. However, the bird and carnivore exploitation record was hitherto limited to the Mediterranean area of the Iberian Peninsula. Here we present the first evidence of bird and carnivore exploitation by Neandertals in the Cantabrian region. We have found cut-marks in two golden eagles, one raven, one wolf and one lynx remain from the Mousterian levels of Axlor. The obtaining of meat was likely the primary purpose of the cut-marks on the golden eagle and lynx remains. Corvids, raptors, felids and canids in Axlor could have likely acted as commensals of the Neandertals, scavenging upon the carcasses left behind by these hunter-gatherers. This could have brought them closer to Neandertal groups who could have preyed upon them. These new results provide additional information on their dietary scope and indicate a more complex interaction between Neandertals and their environment.
Collapse
|
18
|
Marín-Arroyo AB, Rios-Garaizar J, Straus LG, Jones JR, de la Rasilla M, González Morales MR, Richards M, Altuna J, Mariezkurrena K, Ocio D. Correction: Chronological reassessment of the Middle to Upper Paleolithic transition and Early Upper Paleolithic cultures in Cantabrian Spain. PLoS One 2018; 13:e0199954. [PMID: 29944720 PMCID: PMC6019123 DOI: 10.1371/journal.pone.0199954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|