1
|
Bathaei P, Imenshahidi M, Hosseinzadeh H. Effects of Berberis vulgaris, and its active constituent berberine on cytochrome P450: a review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:179-202. [PMID: 39141022 DOI: 10.1007/s00210-024-03326-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024]
Abstract
The cytochrome P450 (CYP450) family is crucial for metabolizing drugs and natural substances. Numerous compounds, such as pharmaceuticals and dietary items, can influence CYP activity by either enhancing or inhibiting these enzymes, potentially leading to interactions between drugs or between drugs and food. This research explores the impact of barberry and its primary component "berberine" on key human CYP450 enzymes. The text discusses the effects of this plant on the 12 primary human CYP450 enzymes, with summarized data presented in tables. Berberine exerts an influence on the function of various CYP450 isoforms, including CYP3A4/5, CYP2D6, CYP2C9, CYP2E1, CYP1A1/2, and most isoforms within the CYP2B subfamily. Given the significant role of these CYP450 isoforms in metabolizing commonly used drugs and endogenous substances, as well as activating procarcinogens into carcinogenic metabolites, the influence of barberry and its active constituent on these enzymes may impact the pharmacokinetics and toxicity profiles of various compounds. More specifically, regarding the crucial role of CYP2D6 and CYP3A4 in metabolizing clinically used drugs, and the inhibitory effects of berberine on these two CYP450 isoforms, it seems that the most important drug interaction of berberine that should be considered is related to its inhibitory effect on CYP2D6 and CYP3A4. In conclusion, due to the impact of barberry on multiple CYP450 isoforms, healthcare providers should conduct thorough consultations and investigations to ensure patient safety and prevent any potential adverse interactions before recommending the consumption of these herbs. Additional research, particularly clinical trials is crucial for preventing any potentially adverse interactions in patients who consume this herb.
Collapse
Affiliation(s)
- Pooneh Bathaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Guo L, Du L, Zhang Y, Gao J, Cui F. Development of an accurate synchronous transport signal hand-held sensing platform for fluorescence-based berberine on-site detection. Anal Chim Acta 2024; 1331:343304. [PMID: 39532403 DOI: 10.1016/j.aca.2024.343304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/03/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Berberine is widely used in clinical treatment because of its wide antibacterial spectrum and low toxic side effects. However, its abuse could lead to bacterial resistance and several other adverse effects. In addition, measuring the content of berberine in environmental water samples helps to monitor its accumulation and metabolism in ecosystems. Traditional detection methods usually need to be carried out in the laboratory, involving complex processing procedures, which are not only time-consuming, but also unfavorable for rapid response and decision-making. Therefore, it is necessary to develop portable instruments to provide reasonable guidance on the addition and intake of berberine to reduce the harm caused by its abuse. RESULTS In this work, an accurate synchronous transport signal hand-held sensing platform (STSHSP) with a low-cost, easy-to-manufacture, independent use was developed by using photoelectric conversion technology, Bluetooth technology, remote synchronous signal technology, electrical technology, and 3D printing technology. To verify the performance of STSHSP, a 5-oxo-2,3-dihydro-5H-thiazolo [3,2-a] pyridine-3,7-dicarboxylic acid (TPDCA) with ultra-high quantum yield was designed and synthesized as a probe. TPDCA exhibited bright blue fluorescence under the ultraviolet light of 365 nm which could be quenched by berberine through the inner filter effect. In the range of 0.1-80 μg/mL, the voltage displayed by the prepared STSHSP has a good linearity with the berberine concentration (R2 = 0.9997) with a detection limit of 28.32 ng/mL. The portable sensor demonstrated good stability, accuracy, and reliability in detecting actual river water, urine, traditional Chinese medicine, and its preparation samples. SIGNIFICANCE The sensor with its compact structure, portability, and simple operation was suitable for in-situ detection with accurate, reliable, and feasible results, which is beneficial for improving drug quality and ensuring human health. Fortunately, the device could transmit the information to the control center and/or a third-party supervision institution in real-time, which could effectively eliminate the trust crisis. The sensor has broad application prospects in the field of environmental water quality detection and drug safety.
Collapse
Affiliation(s)
- Liucheng Guo
- School of Chemistry and Chemical Engineering, Henan Normal University, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, National Demonstration Center for Experimental Chemistry Education, Xinxiang, Henan, 453007, China; Luohe Medical College, Luohe, Henan, 462002, China
| | - Liyue Du
- Luohe Medical College, Luohe, Henan, 462002, China
| | - Yan Zhang
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, 450000, China
| | - Jie Gao
- School of Chemistry and Chemical Engineering, Henan Normal University, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, National Demonstration Center for Experimental Chemistry Education, Xinxiang, Henan, 453007, China.
| | - Fengling Cui
- School of Chemistry and Chemical Engineering, Henan Normal University, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, National Demonstration Center for Experimental Chemistry Education, Xinxiang, Henan, 453007, China.
| |
Collapse
|
3
|
Zhang W, Luo M, Chen J, Li Z, Wei X, Wu M, Yang S, He Y, Wang X, Xiao Z. A simple and label-free fluorescent DNA sensor for visual detection of aptamer-based berberine. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7130-7138. [PMID: 39292521 DOI: 10.1039/d4ay01411a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
The intrinsic fluorescence of berberine is very weak, which can be enhanced by its interaction with specific aptamers. A simple and sensitive DNA sensor for visual detection of berberine has here been established. When using this sensor, there was a good linear relationship between the change in fluorescence intensity of berberine and the concentration of berberine in the range of 16-2000 nM, with a detection limit of 5.1 nM. The change in fluorescence intensity was caused by the addition of aptamers. A detection limit of 170.1 nM was acquired by reading the RGB values of fluorescent images with a smartphone for the quantification of berberine. Common antibiotics did not interfere with the measurement of the berberine concentration. The molecular ion peaks of the complexes formed by the aptamer and berberine could be clearly observed by electrospray ionization mass spectrometry. The UV-vis absorption spectra, circular dichroism spectra, and fluorescence spectra indicated a strong interaction between berberine and the aptamer. The dissociation constant (Kd) between berberine and the aptamer was 1.91 μM. This sensor was both simple and sensitive, requiring only a 21-base oligonucleotide. It realized a visual quantitative analysis with a smartphone. This method could also be used for similar fluorescence visualization determination of aptamer-based drug molecules.
Collapse
Affiliation(s)
- Wenjuan Zhang
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550025, China.
| | - Mingwan Luo
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550025, China.
| | - Juan Chen
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550025, China.
| | - Zhengxing Li
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550025, China.
| | - Xian Wei
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550025, China.
| | - Miqi Wu
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550025, China.
| | - Shengli Yang
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550025, China.
| | - Yuanju He
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550025, China.
| | - Xiaoping Wang
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550025, China.
| | - Zhiyou Xiao
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550025, China.
| |
Collapse
|
4
|
Guo X, Yang J, Wang W, Gong Y, Zhang P, Wu M, Zheng Y, Wang C. Pharmacokinetic and tissue distribution analysis of bioactive compounds from Fuke Qianjin capsules in rats by a validated UPLCMS/MS method. J Pharm Biomed Anal 2024; 243:116069. [PMID: 38460275 DOI: 10.1016/j.jpba.2024.116069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/11/2024]
Abstract
Fuke Qianjin capsules (FKQJ) exhibit obvious advantages and characteristics in the treatment of pelvic inflammatory disease. At present, information regarding the in vivo process of FKQJ is lacking, which has become a bottleneck in further determining the therapeutic effect of this traditional Chinese medicine. In the present study, a sensitive, simple and reliable method was developed and validated for the simultaneous quantification of 12 main components (4 flavonoids, 4 alkaloids, 2 phthalides and 2 diterpene lactones) in plasma and seven tissues of rats to study the pharmacokinetic and distribution characteristics of these components in vivo by using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) for the first time. Plasma and tissue were prepared by protein precipitation with acetonitrile and methanol, followed by its separation on a Waters Acquity UPLC BEH C18 column. The quantification was performed via multiple reaction monitoring (MRM) by a triple quadrupole mass spectrometer under positive electrospray ionization (ESI) mode. The method was validated to demonstrate its selectivity, linearity, accuracy, precision, recovery, matrix effect and stability. For 12 analytes, the low limit of quantification (LLOQs) reached 0.005-2.44 ng/mL, and all calibration curves showed good linearity (r2 ≥ 0.990) in linear ranges. The intra-day and inter-day precision (relative standard deviation) for all analytes was less than 14.96%, and the accuracies were in the range of 85.29%-114.97%. Extraction recoveries and matrix effects of analytes were acceptable. The pharmacokinetic results showed that the main components could be absorbed quickly, had a short residence time, and were eliminated quickly in vivo. At different time points, the 12 components were widely distributed with uneven characteristics in the body, which tended to be distributed in the liver, kidney and lung and to a lesser extent in the uterus, brain and heart. The pharmacokinetic process and tissue distribution characteristics of FKQJ were expounded in this study, which can provide a scientific theory for in-depth development of FKQJ and guide FKQJ use in the clinic.
Collapse
Affiliation(s)
- Xiujie Guo
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiaying Yang
- Taizhou Medical City Guokehuawu Bio-Pharm Co., Ltd, Taizhou 225300, China
| | - Wei Wang
- Taizhou Medical City Guokehuawu Bio-Pharm Co., Ltd, Taizhou 225300, China
| | - Yun Gong
- Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou 412000, China
| | - Peng Zhang
- Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou 412000, China.
| | - Mengyao Wu
- Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou 412000, China
| | - Yuanqing Zheng
- Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou 412000, China
| | - Chaoran Wang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
5
|
Chang C, Roh YS, Du M, Kuo YC, Zhang Y, Hardy M, Gahler R, Solnier J. Differences in Metabolite Profiles of Dihydroberberine and Micellar Berberine in Caco-2 Cells and Humans-A Pilot Study. Int J Mol Sci 2024; 25:5625. [PMID: 38891813 PMCID: PMC11171481 DOI: 10.3390/ijms25115625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
We investigated the pharmacokinetic pathway of berberine and its metabolites in vitro, in Caco-2 cells, and in human participants following the administration of dihydroberberine (DHB) and micellar berberine (LipoMicel®, LMB) formulations. A pilot trial involving nine healthy volunteers was conducted over a 24 h period; blood samples were collected and subjected to Ultra High-Performance Liquid Chromatography-High Resolution Mass Spectrometry (UHPLC-HRMS) analyses to quantify the concentrations of berberine and its metabolites. Pharmacokinetic correlations indicated that berberrubine and thalifendine follow distinct metabolic pathways. Additionally, jatrorrhizine sulfate appeared to undergo metabolism differently compared to the other sulfated metabolites. Moreover, berberrubine glucuronide likely has a unique metabolic pathway distinct from other glucuronides. The human trial revealed significantly higher blood concentrations of berberine metabolites in participants of the DHB treatment group compared to the LMB treatment group-except for berberrubine glucuronide, which was only detected in the LMB treatment group. Similarly, results from in vitro investigations showed significant differences in berberine metabolite profiles between DHB and LMB. Dihydroberberine, dihydroxy-berberrubine/thalifendine and jatrorrhizine sulfate were detected in LMB-treated cells, but not in DHB-treated cells; thalifendine and jatrorrhizine-glucuronide were detected in DHB-treated cells only. While DHB treatment provided higher blood concentrations of berberine and most berberine metabolites, both in vitro (Caco-2 cells) and in vivo human studies showed that treatment with LMB resulted in a higher proportion of unmetabolized berberine compared to DHB. These findings suggest potential clinical implications that merit further investigation in future large-scale trials.
Collapse
Affiliation(s)
- Chuck Chang
- ISURA, Clinical Research, Burnaby, BC V3N 4S9, Canada; (C.C.); (Y.S.R.); (M.D.); (Y.C.K.); (Y.Z.)
| | - Yoon Seok Roh
- ISURA, Clinical Research, Burnaby, BC V3N 4S9, Canada; (C.C.); (Y.S.R.); (M.D.); (Y.C.K.); (Y.Z.)
| | - Min Du
- ISURA, Clinical Research, Burnaby, BC V3N 4S9, Canada; (C.C.); (Y.S.R.); (M.D.); (Y.C.K.); (Y.Z.)
| | - Yun Chai Kuo
- ISURA, Clinical Research, Burnaby, BC V3N 4S9, Canada; (C.C.); (Y.S.R.); (M.D.); (Y.C.K.); (Y.Z.)
| | - Yiming Zhang
- ISURA, Clinical Research, Burnaby, BC V3N 4S9, Canada; (C.C.); (Y.S.R.); (M.D.); (Y.C.K.); (Y.Z.)
| | - Mary Hardy
- Academy of Integrative and Holistic Medicine, San Diego, CA 92037, USA;
| | | | - Julia Solnier
- ISURA, Clinical Research, Burnaby, BC V3N 4S9, Canada; (C.C.); (Y.S.R.); (M.D.); (Y.C.K.); (Y.Z.)
| |
Collapse
|
6
|
Cai Y, Yang Q, Yu Y, Yang F, Bai R, Fan X. Efficacy and underlying mechanisms of berberine against lipid metabolic diseases: a review. Front Pharmacol 2023; 14:1283784. [PMID: 38034996 PMCID: PMC10684937 DOI: 10.3389/fphar.2023.1283784] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023] Open
Abstract
Lipid-lowering therapy is an important tool for the treatment of lipid metabolic diseases, which are increasing in prevalence. However, the failure of conventional lipid-lowering drugs to achieve the desired efficacy in some patients, and the side-effects of these drug regimens, highlight the urgent need for novel lipid-lowering drugs. The liver and intestine are important in the production and removal of endogenous and exogenous lipids, respectively, and have an important impact on circulating lipid levels. Elevated circulating lipids predisposes an individual to lipid deposition in the vascular wall, affecting vascular function. Berberine (BBR) modulates liver lipid production and clearance by regulating cellular targets such as cluster of differentiation 36 (CD36), acetyl-CoA carboxylase (ACC), microsomal triglyceride transfer protein (MTTP), scavenger receptor class B type 1 (SR-BI), low-density lipoprotein receptor (LDLR), and ATP-binding cassette transporter A1 (ABCA1). It influences intestinal lipid synthesis and metabolism by modulating gut microbiota composition and metabolism. Finally, BBR maintains vascular function by targeting proteins such as endothelial nitric oxide synthase (eNOS) and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1). This paper elucidates and summarizes the pharmacological mechanisms of berberine in lipid metabolic diseases from a multi-organ (liver, intestine, and vascular system) and multi-target perspective.
Collapse
Affiliation(s)
- Yajie Cai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiaoning Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Beijing, China
| | - Yanqiao Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Furong Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruina Bai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaodi Fan
- Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Key Laboratory of Pharmacology of Chinese Materia Medica, Beijing, China
| |
Collapse
|
7
|
Huang HJ, Gao SY, Zhao AJ, Ngeontae W, Wu HC, Wang FM, Ren XK. Tetraphenylethylene sulfonate derivative as turn-on fluorescent sensor for berberine chloride detection in aqueous solution. J Pharm Biomed Anal 2022; 220:115030. [PMID: 36088810 DOI: 10.1016/j.jpba.2022.115030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/30/2022] [Accepted: 09/03/2022] [Indexed: 11/26/2022]
Abstract
A negatively-charged tetraphenylethylene derivative (TPE-SE) was designed and synthesized as turn-on fluorescent sensor for berberine chloride (BBC) detection in aqueous solution. The fluorescent property and detection mechanism were elucidated by UV-vis absorption spectra, photoluminescence spectra, dynamic light scattering experiments. The results reveal that the BBC can lead to aggregation-induced emission of TPE-SE due to the electrostatic interactions, endowing TPE-SE with excellent turn-on detecting ability, high selectivity and sensitivity to BBC. The detection limit is as low as 6.58 × 10-6M. These results should be applicable to fabricate special turn-on fluorescent sensors towards various antibiotics, and it is crucially important for achieving reasonable control and intake of small biomolecules.
Collapse
Affiliation(s)
- Han-Jun Huang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, PR China
| | - Si-Yu Gao
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, PR China
| | - Ai-Juan Zhao
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, PR China
| | - Wittaya Ngeontae
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Han-Chun Wu
- School of Physics, Beijing Institute of Technology, Beijing 100081, PR China
| | - Fu-Min Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, PR China.
| | - Xiang-Kui Ren
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, PR China; Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, PR China.
| |
Collapse
|
8
|
Wang S, Zhang T, Liu X, Yang Z, Li L, Shan D, Gao Y, Li Y, Li Y, Zhang Y, Wang Q. Toxicity and toxicokinetics of the ethanol extract of Zuojin formula. BMC Complement Med Ther 2022; 22:220. [PMID: 35971113 PMCID: PMC9377102 DOI: 10.1186/s12906-022-03684-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/20/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Zuojin formula, a traditional Chinese medicine, comprises Coptis chinensis and Evodia rutaecarpa. In our previous study, the total alkaloid extract from Zuojin formula (TAZF) showed potent and improved efficacy. However, its safety and toxicokinetics remain unknown. The objective of this study was to evaluate the safety of repeated administrations of TAZF and investigate the internal exposure of the main components and its relationship with toxic symptoms.
Methods
Sprague–Dawley rats were orally administered TAZF at 0.4, 1.2 and 3.7 g/kg for 28 days, which was followed by a 14-day recovery period. The toxic effects were evaluated weekly by assessing body weight changes, food intake, blood biochemistry and haematological indices, organ weights and histological changes. A total of eight components were detected, including berberine, coptisine, epiberberine, palmatine, jatrorrhizine, columbamine, evodiamine, and rutaecarpine. The toxicokinetic profiles of the eight components were investigated after single and repeated administrations. Linear mixed effect models were applied to analyse the associations between internal exposure and toxic symptoms. Network pharmacology analysis was applied to explore the potential toxic mechanisms.
Results
Compared with the vehicle group, the rats in the low- and medium-dose groups did not show noticeable abnormal changes, while rats in the high-dose group exhibited inhibition of weight gain, a slight reduction in food consumption, abdominal bloating and atrophy of the splenic white pulp during drug administration. The concentration of berberine in plasma was the highest among all compounds. Epiberberine was found to be associated with the inhibition of weight gain. Network pharmacology analysis suggested that the alkaloids might cause abdominal bloating by affecting the proliferation of smooth muscle cells. The benchmark dose lower confidence limits (based on body weight inhibition) of TAZF were 1.27 g/kg (male) and 1.91 g/kg (female).
Conclusions
TAZF has no notable liver or kidney toxicity but carries risks of gastrointestinal and immune toxicity at high doses. Alkaloids from Coptis chinensis are the main plasma components related to the toxic effects of TAZF.
Collapse
|
9
|
Lewis KD, Falk M. Toxicological assessment of dihydroberberine. Food Chem Toxicol 2022; 168:113301. [PMID: 35868606 DOI: 10.1016/j.fct.2022.113301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/17/2022] [Accepted: 07/11/2022] [Indexed: 10/17/2022]
Abstract
A battery of studies was conducted to examine the toxicological potential of dihydroberberine (DHBBR), a derivative of berberine (BBR). The genotoxicity studies conducted on DHBBR, including the bacterial reverse mutation test, the mouse lymphoma assay, and the in vivo micronucleus test showed that DHBBR is non-mutagenic and non-clastogenic. An acute oral toxicity study revealed that the LD50 of DHBBR in female Sprague Dawley rats was greater than 2000 mg/kg bw. In a 14-day oral dose range finding study, the maximum tolerated dose was the high dose, 120 mg/kg bw/day. Based on a 90-day oral toxicity study in males and female Sprague Dawley rats, it was concluded that the NOAEL for DHBBR is 100 mg/kg bw/day, the highest dose tested.
Collapse
Affiliation(s)
- Kara D Lewis
- LSRO Solutions LLC, 2286 Dunster Lane, Rockville, MD, 20854, USA
| | - Michael Falk
- LSRO Solutions LLC, 2286 Dunster Lane, Rockville, MD, 20854, USA.
| |
Collapse
|
10
|
Lee CK, Zhang S, Venkatesan G, Lim I, Chong SY, Wang JW, Goh WJ, Panczyk T, Tay YZ, Hu J, Ng WK, Wacker MG, Toh WS, Pastorin G. Enhanced skin penetration of berberine from proniosome gel attenuates pain and inflammation in a mouse model of osteoarthritis. Biomater Sci 2022; 10:1752-1764. [DOI: 10.1039/d1bm01733k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dermal delivery of bioactive molecules remains an attractive route of administration in osteoarthritis (OA) due to the local accumulation of drugs while avoiding their systemic side effects. In this study...
Collapse
|
11
|
Calvo A, Moreno E, Aldalur I, Sanmartín C, Larrea E, González-Peñas E, Irache JM, Espuelas S. OUP accepted manuscript. J Antimicrob Chemother 2022; 77:1072-1081. [PMID: 35086139 PMCID: PMC9000957 DOI: 10.1093/jac/dkac007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 12/18/2021] [Indexed: 11/25/2022] Open
Abstract
Objectives More effective topical treatments remain an unmet need for the localized forms of cutaneous leishmaniasis (CL). The aim of this study was to evaluate the efficacy and safety of a topical berberine cream in BALB/c mice infected with Leishmania major parasites. Methods A cream containing 0.5% berberine-β-glycerophosphate salt and 2.5% menthol was prepared. Its physicochemical and stability properties were determined. The cream was evaluated for its capacity to reduce lesion size and parasitic load as well as to promote wound healing after twice-a-day administration for 35 days. Clinical biochemical profile was used for estimating off-target effects. In vitro time-to-kill curves in L. major-infected macrophages and skin and plasma pharmacokinetics were determined, aiming to establish pharmacokinetic/pharmacodynamic relationships. Results The cream was stable at 40°C for 3 months and at 4°C for at least 8 months. It was able to halt lesion progression in all treated mice. At the end of treatment, parasite load in the skin was reduced by 99.9% (4 log) and genes involved in the wound healing process were up-regulated compared with untreated mice. The observed effects were higher than expected from in vitro time-to-kill kinetic and plasma berberine concentrations, which ranged between 0.07 and 0.22 μM. Conclusions The twice-a-day administration of a topical berberine cream was safe, able to stop parasite progression and improved the appearance of skin CL lesions. The relationship between drug plasma levels and in vivo effect was unclear.
Collapse
Affiliation(s)
- Alba Calvo
- ISTUN Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain
- Chemistry and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain
| | - Esther Moreno
- ISTUN Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain
- Chemistry and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain
- Navarra Institute for Health Research, IdisNA, Pamplona, Spain
| | - Irati Aldalur
- ISTUN Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain
- Chemistry and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain
| | - Carmen Sanmartín
- ISTUN Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain
- Chemistry and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain
- Navarra Institute for Health Research, IdisNA, Pamplona, Spain
| | - Esther Larrea
- ISTUN Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain
- Navarra Institute for Health Research, IdisNA, Pamplona, Spain
| | - Elena González-Peñas
- Chemistry and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain
| | - Juan Manuel Irache
- Chemistry and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain
- Navarra Institute for Health Research, IdisNA, Pamplona, Spain
| | - Socorro Espuelas
- ISTUN Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain
- Chemistry and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain
- Navarra Institute for Health Research, IdisNA, Pamplona, Spain
- Corresponding author. E-mail:
| |
Collapse
|
12
|
Absorption Kinetics of Berberine and Dihydroberberine and Their Impact on Glycemia: A Randomized, Controlled, Crossover Pilot Trial. Nutrients 2021; 14:nu14010124. [PMID: 35010998 PMCID: PMC8746601 DOI: 10.3390/nu14010124] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 01/08/2023] Open
Abstract
Berberine is a natural alkaloid used to improve glycemia but displays poor bioavailability and increased rates of gastrointestinal distress at higher doses. Recently, dihydroberberine has been developed to combat these challenges. This study was designed to determine the rate and extent to which berberine appeared in human plasma after oral ingestion of a 500 mg dose of berberine (B500) or 100 mg and 200 mg doses of dihydroberberine (D100 and D200). In a randomized, double-blind, crossover fashion, five males (26 ± 2.6 years; 184.2 ± 11.6 cm; 91.8 ± 10.1 kg; 17.1 ± 3.5% fat) completed a four-dose supplementation protocol of placebo (PLA), B500, D100, and D200. The day prior to their scheduled visit, participants ingested three separate doses with breakfast, lunch, and dinner. Participants fasted overnight (8-10 h) and consumed their fourth dose with a standardized test meal (30 g glucose solution, 3 slices white bread) after arrival. Venous blood samples were collected 0, 20, 40, 60, 90, and 120 minutes (min) after ingestion and analyzed for BBR, glucose, and insulin. Peak concentration (CMax) and area under the curve (AUC) were calculated for all variables. Baseline berberine levels were different between groups (p = 0.006), with pairwise comparisons indicating that baseline levels of PLA and B500 were different than D100. Berberine CMax tended to be different (p = 0.06) between all conditions. Specifically, the observed CMax for D100 (3.76 ± 1.4 ng/mL) was different than PLA (0.22 ± 0.18 ng/mL, p = 0.005) and B500 (0.4 ± 0.17 ng/mL, p = 0.005). CMax for D200 (12.0 ± 10.1 ng/mL) tended (p = 0.06) to be different than B500. No difference in CMax was found between D100 and D200 (p = 0.11). Significant differences in berberine AUC were found between D100 (284.4 ± 115.9 ng/mL × 120 min) and PLA (20.2 ± 16.2 ng/mL × 120 min, p = 0.007) and between D100 and B500 (42.3 ± 17.6 ng/mL × 120 min, p = 0.04). Significant differences in D100 BBR AUC (284.4 ± 115.9 ng/mL×120 min) were found between PLA (20.2 ± 16.2 ng/mL × 120 min, p = 0.042) and B500 (42.3 ± 17.6 ng/mL × 120 min, p = 0.045). Berberine AUC values between D100 and D200 tended (p = 0.073) to be different. No significant differences in the levels of glucose (p = 0.97) and insulin (p = 0.24) were observed across the study protocol. These results provide preliminary evidence that four doses of a 100 mg dose of dihydroberberine and 200 mg dose of dihydroberberine produce significantly greater concentrations of plasma berberine across of two-hour measurement window when compared to a 500 mg dose of berberine or a placebo. The lack of observed changes in glucose and insulin were likely due to the short duration of supplementation and insulin responsive nature of study participants. Follow-up efficacy studies on glucose and insulin changes should be completed to assess the impact of berberine and dihydroberberine supplementation in overweight, glucose intolerant populations.
Collapse
|
13
|
Chang JM, Wu JY, Chen SH, Chao WY, Chuang HH, Kam KH, Zhao PW, Li YZ, Yen YP, Lee YR. 9-O-Terpenyl-Substituted Berberrubine Derivatives Suppress Tumor Migration and Increase Anti-Human Non-Small-Cell Lung Cancer Activity. Int J Mol Sci 2021; 22:ijms22189864. [PMID: 34576028 PMCID: PMC8469690 DOI: 10.3390/ijms22189864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 01/06/2023] Open
Abstract
Lung cancer is one of the most common cancers and the leading cause of death in humans worldwide. Non-small-cell lung cancer (NSCLC) accounts for approximately 85% of lung cancer cases and is often diagnosed at a late stage. Among patients with NSCLC, 50% die within 1 year after diagnosis. Even with clinical intervention, the 5-year survival rate is only approximately 20%. Therefore, the development of an advanced therapeutic strategy or novel agent is urgently required for treating NSCLC. Berberine exerts therapeutic activity toward NSCLC; therefore, its activity as an antitumor agent needs to be explored further. In this study, three terpenylated-bromide derivatives of berberrubine were synthesized and their anti-NSCLC activities were evaluated. Each derivative had higher anti-NSCLCs activity than berberrubine and berberine. Among them, 9-O-gernylberberrubine bromide (B4) and 9-O-farnesylberberrubine bromide (B5) showed greater growth inhibition, cell-cycle regulation, in vitro tumorigenesis suppression, and tumor migration reduction. In addition, some degree of apoptosis and autophagic flux blocking was noted in the cells under B4 and B5 treatments. Our study demonstrates that the berberrubine derivatives, B4 and B5, exhibit impressive anti-NSCLC activities and have potential for use as chemotherapeutic agents against NSCLC.
Collapse
Affiliation(s)
- Jia-Ming Chang
- Department of Surgery, Division of Thoracic Surgery, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi City 60002, Taiwan; (J.-M.C.); (K.-H.K.)
- Department of Physical Therapy, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi City 60002, Taiwan; (S.-H.C.); (P.-W.Z.); (Y.-Z.L.); (Y.-P.Y.)
| | - Jin-Yi Wu
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi 60004, Taiwan;
| | - Shu-Hsin Chen
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi City 60002, Taiwan; (S.-H.C.); (P.-W.Z.); (Y.-Z.L.); (Y.-P.Y.)
| | - Wen-Ying Chao
- Department of Nursing, Min-Hwei College of Health Care Management, Tainan 73658, Taiwan;
| | - Hsiang-Hao Chuang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Kam-Hong Kam
- Department of Surgery, Division of Thoracic Surgery, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi City 60002, Taiwan; (J.-M.C.); (K.-H.K.)
| | - Pei-Wen Zhao
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi City 60002, Taiwan; (S.-H.C.); (P.-W.Z.); (Y.-Z.L.); (Y.-P.Y.)
| | - Yi-Zhen Li
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi City 60002, Taiwan; (S.-H.C.); (P.-W.Z.); (Y.-Z.L.); (Y.-P.Y.)
| | - Yu-Pei Yen
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi City 60002, Taiwan; (S.-H.C.); (P.-W.Z.); (Y.-Z.L.); (Y.-P.Y.)
| | - Ying-Ray Lee
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: ; Tel.: +886-7-3121101
| |
Collapse
|
14
|
Li C, Dong N, Wu B, Mo Z, Xie J, Lu Q. Dihydroberberine, an isoquinoline alkaloid, exhibits protective effect against dextran sulfate sodium-induced ulcerative colitis in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153631. [PMID: 34253428 DOI: 10.1016/j.phymed.2021.153631] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/31/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND As a chronic inflammatory disease, ulcerative colitis (UC) is relevant to a rising risk of colorectal cancer. Dihydroberberine (DHBB), a natural occurring isoquinoline alkaloid with various bioactivities, was found in many plants including Coptis chinensis Franch. (Ranunculaceae), Phellodendron chinense Schneid. (Rutaceae), and Chelidonium majus L. (Papaveraceae). However, its protective effect on UC is sparsely dissected out. PURPOSE To explore the protective role and underlying mechanism of DHBB on a model of colitis. METHODS Acute colitis model was established by gavage with 3% dextran sulfate sodium (DSS) for 8 days. Influence of DHBB on DSS-induced clinical symptoms and disease activity index (DAI) was monitored and analyzed. Pathological injury of colon tissues was examined by hematoxylin-eosin and Alcian blue staining. The expression of intestinal mucosal barrier function proteins, immune-inflammation related biomarkers and signal pathway key targets were determined by ELISA kit, Western blot, immunohistochemistry and qRT-PCR. RESULTS DHBB treatment effectively alleviated DSS-induced UC by relieving clinical manifestations, DAI scores and pathological damage, which exerted similar beneficial effect to azathioprine (AZA), and better than berberine (BBR). In addition, DHBB significantly improved the gut barrier function through up-regulating the levels of tight junction proteins and mucins. Furthermore, DHBB dramatically ameliorated colonic immune-inflammation state, which was related to the decrease of colonic pro-inflammatory cytokines and immunoglobulin through blocking TLR4/MyD88/NF-κB signal pathway. CONCLUSION These results demonstrated that DHBB exerted a significant protective effect on DSS-induced experimental UC, at least partly through suppressing immune-inflammatory response and maintaining gut barrier function.
Collapse
Affiliation(s)
- Cailan Li
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, China
| | - Na Dong
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, China
| | - Bowen Wu
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, China
| | - Zhimi Mo
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, China
| | - Jianhui Xie
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Qiang Lu
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, China.
| |
Collapse
|
15
|
Cai Y, Xin Q, Lu J, Miao Y, Lin Q, Cong W, Chen K. A New Therapeutic Candidate for Cardiovascular Diseases: Berberine. Front Pharmacol 2021; 12:631100. [PMID: 33815112 PMCID: PMC8010184 DOI: 10.3389/fphar.2021.631100] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/08/2021] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of death in the world. However, due to the limited effectiveness and potential adverse effects of current treatments, the long-term prognosis of CVD patients is still discouraging. In recent years, several studies have found that berberine (BBR) has broad application prospects in the prevention and treatment of CVD. Due to its effectiveness and safety for gastroenteritis and diarrhea caused by bacterial infections, BBR has been widely used in China and other Asian countries since the middle of the last century. The development of pharmacology also provides evidence for the multi-targets of BBR in treating CVD. Researches on CVD, such as arrhythmia, atherosclerosis, dyslipidemia, hypertension, ischemic heart disease, myocarditis and cardiomyopathy, heart failure, etc., revealed the cardiovascular protective mechanisms of BBR. This review systematically summarizes the pharmacological research progress of BBR in the treatment of CVD in recent years, confirming that BBR is a promising therapeutic option for CVD.
Collapse
Affiliation(s)
- Yun Cai
- Doctoral Candidate, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Qiqi Xin
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Jinjin Lu
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yu Miao
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Qian Lin
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Weihong Cong
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Keji Chen
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| |
Collapse
|
16
|
Wang N, Xie YW, Li MY, Li FF, Zhang LY, You YL, Wang SQ. Simultaneous determination of five alkaloids from Rauvolfia vomitoria in rat plasma by LC-MS/MS: Application to a comparative pharmacokinetic study in normal and type 2 diabetic rats. J Sep Sci 2021; 44:1391-1403. [PMID: 33470534 DOI: 10.1002/jssc.202000914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/27/2020] [Accepted: 01/16/2021] [Indexed: 11/06/2022]
Abstract
Rauvolfia vomitoria is widely distributed in the tropical regions of Africa and Asia, and has been used in traditional folk medicine in China. Indole alkaloids were found to be major bioactive components, while the effects of diabetes mellitus on the pharmacokinetic parameters of the components have not been reflected in vivo. In this study, an efficient and sensitive liquid chromatography-tandem mass spectrometry method was developed and validated for the simultaneous determination of five ingredients of R. vomitoria in rats. Detection was implemented in multiple-reaction-monitoring mode with an electrospray positive-ionization source. Validation parameters were all in accordance with the current criterion. The established method was effectively employed to compare the pharmacokinetic behaviors of five alkaloids (reserpine, yohimbine, ajmaline, ajmalicine, and serpentine) between normal and type 2 diabetic rats. The single-dose pharmacokinetic parameters of the five alkaloids were determined in normal and diabetic rats after oral administration of 100 and 200 mg/kg body weight. The results indicated that diabetes mellitus significantly altered the pharmacokinetic characteristics of yohimbine, ajmaline, and ajmalicine after oral administration in rats. This is an attempt to provide some evidence for clinicians that may serve as a guide for the use of antidiabetic medicine in clinical practice.
Collapse
Affiliation(s)
- Ning Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan, P. R. China
| | - Yue-Wu Xie
- School of Pharmaceutical Sciences, Shandong University, Jinan, P. R. China
| | - Meng-Yu Li
- Department of general surgery, People's Hospital Binzhou, Binzhou, P. R. China
| | - Fei-Fei Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, P. R. China
| | - Li-Yuan Zhang
- School of Pharmaceutical Sciences, Shandong University, Jinan, P. R. China
| | - Yu-Lin You
- School of Pharmaceutical Sciences, Shandong University, Jinan, P. R. China
| | - Shu-Qi Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan, P. R. China
| |
Collapse
|
17
|
Gao X, Guo M, Liu M, Zhang L, Yao Z. A fluorometric and colorimetric approach for the rapid detection of berberine hydrochloride based on an anionic polythiophene derivative. LUMINESCENCE 2020; 36:668-673. [PMID: 33179429 DOI: 10.1002/bio.3986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 11/06/2022]
Abstract
In this report, we develop a dual-output sensor with fluorometric and colorimetric responses, for the rapid and simple detection of berberine hydrochloride (BRH) in 100% aqueous solution based on an anionic polythiophene derivative, poly(2-(2-(4-methylthiophen-3-yloxy)-ethyl) malonic acid) (PTMA). The sensing performance and mechanism were carefully examined by absorption and emission spectra. It can be applied to quantitatively detect BRH in aqueous solution with a detection limit 0.27 μM. The appealing performance of the sensor was demonstrated to originate from the electrostatic and π-π interactions between PTMA and BRH, which promoted the conformational change and aggregation of the PTMA backbone. Moreover, this method allowed rapid detection of BRH in urine samples and BRH tablets with high accuracy.
Collapse
Affiliation(s)
- Xiao Gao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China.,College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Mingwei Guo
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ming Liu
- Technical Center for Safety of Industrial Products of Tianjin Customs District, Tianjin Key Laboratory of Port Non-Traditional Security (NTS) Risk Prevention and Control Science and Technology, Laboratory of Emergency Inspection and Testing for Toxicological Safety Assessment of Import and Export Food Safety of General Administration of Customs, Tianjin, China
| | - Li Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Zhiyi Yao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
18
|
Li X, Wang P, Hu X, Zhang Y, Lu X, Li C, Nie T, Li G, Wang X, Pang J, Lu Y, Yang X, You X. The combined antibacterial effects of sodium new houttuyfonate and berberine chloride against growing and persistent methicillin-resistant and vancomycin-intermediate Staphylococcus aureus. BMC Microbiol 2020; 20:317. [PMID: 33076836 PMCID: PMC7574187 DOI: 10.1186/s12866-020-02003-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/11/2020] [Indexed: 01/04/2023] Open
Abstract
Background Infections caused by drug-resistant Staphylococcus aureus, especially vancomycin-intermediate Staphylococcus aureus (VISA), leave clinicians with limited therapeutic options for treatment. Persister cells is a leading cause of recalcitrant infection and antibiotic treatment failure, and there is no drug in clinical use that specifically targets persister cells currently. Here, we report a promising combination therapy of sodium new houttuyfonate (SNH) and berberine chloride (BBR) which is able to eradicate both growing and persistent drug-resistant Staphylococcus aureus. Results The susceptibility test showed SNH exhibited anti-MRSA activity with MIC90 at 64 μg/mL, while BBR showed weak anti-MRSA activity with MIC90 at 512 μg/mL. MICs of BBR in combination with 1/2 MIC SNH decreased by 4 to 64 folds compared with MICs of BBR alone. The results of time-killing assays revealed that the combined use of sub-MIC SNH and BBR offered an in vitro synergistic action against growing MRSA (including pathogenic MRSA) and VISA strains. More importantly, the combination of SNH and BBR was able to eradicate VISA Mu50 and pathogenic MRSA persister cells. The synergistic effect is likely related to the interruption of the cell membrane caused by SNH, which is confirmed by scanning electron microscope and membrane potential and permeability analysis. Conclusions Our study provide a promising clinical curative strategy for combating drug-resistant S. aureus infections, especially for recalcitrant infections caused by persister cells. Supplementary information Supplementary information accompanies this paper at 10.1186/s12866-020-02003-2.
Collapse
Affiliation(s)
- Xue Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Penghe Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.,Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xinxin Hu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Youwen Zhang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xi Lu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Congran Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Tongying Nie
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Guoqing Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xiukun Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jing Pang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yun Lu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xinyi Yang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Xuefu You
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
19
|
Mari G, De Crescentini L, Benedetti S, Palma F, Santeusanio S, Mantellini F. Synthesis of new dihydroberberine and tetrahydroberberine analogues and evaluation of their antiproliferative activity on NCI-H1975 cells. Beilstein J Org Chem 2020; 16:1606-1616. [PMID: 32704327 PMCID: PMC7356317 DOI: 10.3762/bjoc.16.133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/24/2020] [Indexed: 01/02/2023] Open
Abstract
Dihydroberberine (DHBER), the partially reduced form of the alkaloid berberine (BER), is known to exhibit important biological activities. Despite this fact, there have been only few studies that concern the biological properties of functionalized DHBER. Attracted by the potentiality of this latter compound, we have realized the preparation of new arylhydrazono-functionalized DHBERs, starting from BER and some α-bromohydrazones. On the other hand, also the fully reduced form of BER, namely tetrahydroberberine (THBER), and its derivatives have proven to present different biological activities. Therefore, the obtained arylhydrazono-functionalized DHBERs were reduced to the corresponding arylhydrazono-THBERs. The antiproliferative activity of both arylhydrazono-DHBERs and -THBERs has been evaluated on NCI-H1975 lung cancer cells.
Collapse
Affiliation(s)
- Giacomo Mari
- Section of Chemistry and Pharmaceutical Technologies, Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Via I Maggetti 24, 61029 Urbino, Italy
| | - Lucia De Crescentini
- Section of Chemistry and Pharmaceutical Technologies, Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Via I Maggetti 24, 61029 Urbino, Italy
| | - Serena Benedetti
- Section of Biochemistry and Molecular Biology, Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Via Saffi 2, 61029 Urbino, Italy
| | - Francesco Palma
- Section of Biochemistry and Molecular Biology, Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Via Saffi 2, 61029 Urbino, Italy
| | - Stefania Santeusanio
- Section of Chemistry and Pharmaceutical Technologies, Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Via I Maggetti 24, 61029 Urbino, Italy
| | - Fabio Mantellini
- Section of Chemistry and Pharmaceutical Technologies, Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Via I Maggetti 24, 61029 Urbino, Italy
| |
Collapse
|
20
|
Xu L, Zhang Y, Xue X, Liu J, Li ZS, Yang GY, Song Y, Pan Y, Ma Y, Hu S, Wen A, Jia Y, Rodriguez LM, Tull MB, Benante K, Khan SA, Cao Y, Jovanovic B, Richmond E, Umar A, Bergan R, Wu K. A Phase I Trial of Berberine in Chinese with Ulcerative Colitis. Cancer Prev Res (Phila) 2019; 13:117-126. [PMID: 31619442 DOI: 10.1158/1940-6207.capr-19-0258] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/10/2019] [Accepted: 10/07/2019] [Indexed: 11/16/2022]
Abstract
The Chinese natural product, berberine, has biological properties that support its potential efficacy as a colon cancer prevention agent. Its longstanding use in China to treat gastrointestinal tract and rheumatologic disorders is generally regarded as safe, supporting initial investigations in an at-risk population, such as individuals with ulcerative colitis. However, the safety of berberine in this population is not established. Individuals living in China with biopsy-proven ulcerative colitis, ≤grade 2 dysplasia, and with a ulcerative colitis disease activity index (UCDAI) score ≤1 on mesalamine, were randomized 3:1 in a double-blind phase I trial to berberine 900 mg/day or placebo for 3 months, with the primary objective of assessing safety. Blood samples and biopsies of the colorectum, from prespecified locations, were collected prior to and following therapy. Secondary endpoints included changes in UCDAI score, and in tissue and plasma markers of inflammation. Of toxicities at least possibly related, one episode of grade 3 elevation in transaminases and one episode of grade 1 nausea were observed among 12 individuals on berberine, and none were observed among 4 on placebo. The mean plasma berberine concentration was 3.5 nmol/L after berberine treatment, significantly higher than 0.5 nmol/L with placebo. Berberine significantly decreased the Geboes grade in colonic tissue, but had a nonsignificant effect on other tissue or blood biomarkers related to cell growth and inflammation. The combination of berberine and mesalamine is well tolerated in Chinese with ulcerative colitis and may enhance mesalamine's anti-inflammatory effects in colonic tissue.
Collapse
Affiliation(s)
- Li Xu
- Department of Gastroenterology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yujie Zhang
- Department of Gastroenterology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xianmin Xue
- Department of Gastroenterology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jie Liu
- Department of Gastroenterology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zeng-Shan Li
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Guang-Yu Yang
- Department of Pathology, Northwestern University, Chicago, Illinois
| | - Ying Song
- Department of Pharmacology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yan Pan
- Department of Gastroenterology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yueyun Ma
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Sijun Hu
- Department of Gastroenterology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Aidong Wen
- Department of Pharmacology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yanyan Jia
- Department of Pharmacology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Luz Maria Rodriguez
- Division of Cancer Prevention, NCI, Bethesda, Maryland.,Walter Reed Military Medical Center, Department of Surgery, Bethesda, Maryland
| | - Mary Beth Tull
- Robert H. Lurie Cancer Center, Northwestern University, Chicago, Illinois
| | - Kelly Benante
- Robert H. Lurie Cancer Center, Northwestern University, Chicago, Illinois
| | - Seema A Khan
- Department of Surgery and Northwestern University, Chicago, Illinois
| | - Ying Cao
- Department of Gastroenterology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Borko Jovanovic
- Department of Preventive Medicine, Northwestern University, Chicago, Illinois
| | | | - Asad Umar
- Division of Cancer Prevention, NCI, Bethesda, Maryland
| | - Raymond Bergan
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon.
| | - Kaichun Wu
- Department of Gastroenterology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
21
|
Rapid and visual detection of berberine hydrochloride based on a water‐soluble pyrene derivative. LUMINESCENCE 2019; 34:558-562. [DOI: 10.1002/bio.3638] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/18/2019] [Accepted: 04/02/2019] [Indexed: 12/21/2022]
|