1
|
Fabri JHTM, Pech-Canul A, Ziegler SJ, Burgin TE, Richardson ID, Maloney MI, Bomble YJ, Lynd LR, Olson DG. The role of AdhE mutations in Thermoanaerobacterium saccharolyticum. J Bacteriol 2025; 207:e0001525. [PMID: 40304514 PMCID: PMC12096837 DOI: 10.1128/jb.00015-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/04/2025] [Indexed: 05/02/2025] Open
Abstract
Thermoanaerobacterium saccharolyticum is a thermophilic anaerobic bacterium that natively ferments a variety of hemicellulose substrates to organic acids and alcohols. It has recently been engineered to produce ethanol at high yield and titer; however, it uses a unique metabolic pathway for ethanol production that is poorly characterized. One of the distinctive aspects of this pathway is the presence of acetyl-CoA as an intermediate metabolite. In this organism, acetyl-CoA is converted to ethanol by a bifunctional AdhE enzyme. This enzyme has been a frequent target for mutations, and in many cases, the function of these mutations was unknown. Using a combination of genetic modifications, enzyme assays, and computational analysis, we have developed a better understanding of how mutations in AdhE affect ethanol production in the engineered homoethanologen strain. We identify a set of approximately interchangeable AdhE mutations (G544D, T597K, T597I, and T605I), whose function is to disrupt the activity of the alcohol dehydrogenase (ADH) domain of AdhE. This reduces NADH-linked ADH activity, which dramatically increases ethanol tolerance and changes the overall stoichiometry of acetaldehyde to ethanol conversion. Furthermore, our improved understanding of the function of these AdhE mutations calls into question a proposed feature of AdhE enzymes known as substrate channeling-direct transfer of acetaldehyde between the two domains of the AdhE enzyme. This improved the understanding of the role of AdhE mutations in T. saccharolyticum and provides deeper insights into the function of the unique ethanol production pathway in this organism. IMPORTANCE Many anaerobic bacteria maintain redox equilibrium by producing reduced organic compounds such as ethanol. The final two steps of ethanol production are mediated by a bifunctional enzyme, AdhE, and this enzyme is a frequent target of mutations in strains engineered for increased ethanol production. Paradoxically, these mutations increase ethanol production by eliminating the activity of one domain of the AdhE enzyme (the ADH domain). This provides additional support for a redox-imbalance theory of alcohol tolerance, which challenges the prevailing hypothesis that alcohol tolerance is associated with cell membrane effects.
Collapse
Affiliation(s)
- João Henrique T. M. Fabri
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, State of São Paulo, Brazil
| | - Angel Pech-Canul
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Samantha J. Ziegler
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Tucker Emme Burgin
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Isaiah D. Richardson
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Marybeth I. Maloney
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Yannick J. Bomble
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Lee R. Lynd
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, State of São Paulo, Brazil
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Terragia Corporation, Hanover, New Hampshire, USA
| | - Daniel G. Olson
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, State of São Paulo, Brazil
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
2
|
Sitara A, Hocq R, Lu AJ, Pflügl S. Hi-TARGET: a fast, efficient and versatile CRISPR type I-B genome editing tool for the thermophilic acetogen Thermoanaerobacter kivui. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:49. [PMID: 40307869 PMCID: PMC12044746 DOI: 10.1186/s13068-025-02647-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/11/2025] [Indexed: 05/02/2025]
Abstract
BACKGROUND Due to its ability to grow fast on CO2, CO and H2 at high temperatures and with high energy efficiency, the thermophilic acetogen Thermoanaerobacter kivui could become an attractive host for industrial biotechnology. In a circular carbon economy, diversification and upgrading of C1 platform feedstocks into value-added products (e. g., ethanol, acetone and isopropanol) could become crucial. To that end, genetic and bioprocess engineering tools are required to facilitate the development of bioproduction scenarios. Currently, the genome editing tools available for T. kivui present some limitations in speed and efficiency, thus restricting the development of a powerful strain chassis for industrial applications. RESULTS In this study, we developed the versatile genome editing tool Hi-TARGET, based on the endogenous CRISPR Type I-B system of T. kivui. Hi-TARGET demonstrated 100% efficiency for gene knock-out (from both purified plasmid and cloning mixture) and knock-in, and 49% efficiency for creating point mutations. Furthermore, we optimized the transformation and plating protocol and increased transformation efficiency by 245-fold to 1.96 × 104 ± 8.7 × 103 CFU μg-1. Subsequently, Hi-TARGET was used to demonstrate gene knock-outs (pyrE, rexA, hrcA), a knock-in (ldh::pFAST), a single nucleotide mutation corresponding to PolCC629Y, and knock-down of the fluorescent protein pFAST. Analysis of the ∆rexA deletion mutant created with Hi-TARGET revealed that the transcriptional repressor rexA is likely involved in the regulation of the expression of lactate dehydrogenase (ldh). Following genome engineering, an optimized curing procedure for edited strains was devised. In total, the time required from DNA to a clean, edited strain is 12 days, rendering Hi-TARGET a fast, robust and complete method for engineering T. kivui. CONCLUSIONS The CRISPR-based genome editing tool Hi-TARGET developed for T. kivui can be used for scarless deletion, insertion, point mutation and gene knock-down, thus fast-tracking the generation of industrially-relevant strains for the production of carbon-negative chemicals and fuels as well as facilitating studies of acetogen metabolism and physiology.
Collapse
Affiliation(s)
- Angeliki Sitara
- Institute for Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Rémi Hocq
- Institute for Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Alexander Jiwei Lu
- Institute for Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Stefan Pflügl
- Institute for Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria.
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria.
| |
Collapse
|
3
|
Dai K, Qu C, Li X, Lan Y, Fu H, Wang J. Cofactor engineering in Thermoanaerobacterium aotearoense SCUT27 for maximizing ethanol yield and revealing an enzyme complex with high ferredoxin-NAD + reductase activity. BIORESOURCE TECHNOLOGY 2024; 402:130784. [PMID: 38701976 DOI: 10.1016/j.biortech.2024.130784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/03/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Thermoanaerobacterium aotearoense SCUT27 is a prominent producer of biofuels from lignocellulosic materials. To provide sufficient NAD(P)H for ethanol production, redox-related genes, including lactate dehydrogenase (ldh), redox-sensing transcriptional repressor (rex), and hydrogenase (hfsB), were knocked out. However, the growth of strain PRH (Δldh/Δrex/ΔhfsB) was suppressed due to the intracellular redox state imbalance with the increased NADH concentration. Coincidentally, when the Bcd-EtfAB (BCD) complex was overexpressed, the resulting strain PRH-B3 (Δldh/Δrex/ΔhfsB::BCD) grew rapidly and produced ethanol with a high yield. With lignocellulosic hydrolysates, PRH-BA (Δldh/Δrex/ΔhfsB::BCD::adhE) demonstrated high ethanol productivity and yield, reaching levels of 0.45-0.51 g/L/h and 0.46-0.53 g/g sugars, respectively. The study results shed light on the cofactor balance for cell stability and the high ferredoxin-NAD+ reductase activity of the BCD complex under an intracellular low redox state. They also provide an essential reference for developing strains for improved biofuel production.
Collapse
Affiliation(s)
- Kaiqun Dai
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Chunyun Qu
- College of Light Industry and Food Science, Guangdong Provincial Key Laboratory of Science and Technology of Lingnan Special Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xin Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yang Lan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Hongxin Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510006, China.
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
4
|
Fiamenghi MB, Prodonoff JS, Borelli G, Carazzolle MF, Pereira GAG, José J. Comparative genomics reveals probable adaptations for xylose use in Thermoanaerobacterium saccharolyticum. Extremophiles 2024; 28:9. [PMID: 38190047 DOI: 10.1007/s00792-023-01327-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024]
Abstract
Second-generation ethanol, a promising biofuel for reducing greenhouse gas emissions, faces challenges due to the inefficient metabolism of xylose, a pentose sugar. Overcoming this hurdle requires exploration of genes, pathways, and organisms capable of fermenting xylose. Thermoanaerobacterium saccharolyticum is an organism capable of naturally fermenting compounds of industrial interest, such as xylose, and understanding evolutionary adaptations may help to bring novel genes and information that can be used for industrial yeast, increasing production of current bio-platforms. This study presents a deep evolutionary study of members of the firmicutes clade, focusing on adaptations in Thermoanaerobacterium saccharolyticum that may be related to overall fermentation metabolism, especially for xylose fermentation. One highlight is the finding of positive selection on a xylose-binding protein of the xylFGH operon, close to the annotated sugar binding site, with this protein already being found to be expressed in xylose fermenting conditions in a previous study. Results from this study can serve as basis for searching for candidate genes to use in industrial strains or to improve Thermoanaerobacterium saccharolyticum as a new microbial cell factory, which may help to solve current problems found in the biofuels' industry.
Collapse
Affiliation(s)
- Mateus Bernabe Fiamenghi
- Laboratory of Genomics and bioEnergy (LGE), Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, UNICAMP, Campinas, São Paulo, Brazil
| | - Juliana Silveira Prodonoff
- Laboratory of Genomics and bioEnergy (LGE), Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, UNICAMP, Campinas, São Paulo, Brazil
| | - Guilherme Borelli
- Laboratory of Genomics and bioEnergy (LGE), Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, UNICAMP, Campinas, São Paulo, Brazil
| | - Marcelo Falsarella Carazzolle
- Laboratory of Genomics and bioEnergy (LGE), Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, UNICAMP, Campinas, São Paulo, Brazil
| | - Gonçalo Amarante Guimaraes Pereira
- Laboratory of Genomics and bioEnergy (LGE), Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, UNICAMP, Campinas, São Paulo, Brazil.
| | - Juliana José
- Laboratory of Genomics and bioEnergy (LGE), Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, UNICAMP, Campinas, São Paulo, Brazil
| |
Collapse
|
5
|
Is hyaluronic acid production transcriptionally regulated? A transcriptional repressor gene deletion study in Streptococcus zooepidemicus. Appl Microbiol Biotechnol 2021; 105:8495-8504. [PMID: 34661707 DOI: 10.1007/s00253-021-11481-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/11/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Hyaluronic acid (HA) is a multiple-function biopolymer that is widely used in food, cosmetic, and biomedical fields. In group C streptococci, the major workhorse of HA production in industry, the HA biosynthetic pathway has been proposed, while how HA synthesis is regulated is unclear. In this study, we identified twenty-five putative transcriptional repressors in S. zooepidemicus and studied whether they regulate HA synthesis or not. The individual gene deletion strain was firstly constructed, and the phenotypic changes of the corresponding deletion strains in stress tolerance and HA production were detected. The hrcA deletion strain is more sensitive to high temperature, and the rex deletion strain is more resistant to the oxidative stress. Three transcriptional repressor deletions resulted significantly decreased transcriptional levels of hasA, among which the scrR deletion strain shows most dramatical decrease in HA production. The regulatory mechanism of how ScrR affects the production of HA was further explored by transcriptional expression analysis of scrA and scrB, two direct target genes of ScrR regulon. Our results indicates that the deficiency of ScrR results in the unbalanced expression of scrA and scrB, which might also partly account for the decreasing production of HA. In agreement with the speculation, overexpression of scrB in ΔscrR genetic background results in 80% improvement in HA production. Taken together, the systemic genetic study of transcriptional repressors expands our understanding for the physiological regulation process of S. zooepidemicus and should help in the development of high-performance industrial strains for the efficient production of HA. KEY POINTS: • Twenty-two transcriptional repressor genes in S. zooepidemicus were deleted individually, and the phenotypes of corresponding mutants on a variety of conditions were characterized. • HrcA deficiency showed inferior cell tolerance to high temperature, and Rex deficiency showed superior cell tolerance to reactive oxygen stress, and four repressors deficiency showed inferior hyaluronic acid synthesis, among which the transcriptional levels of hasA of three mutants decreased significantly. • Optimizing sucrose metabolic flux can enhance hyaluronic acid synthesis significantly.
Collapse
|
6
|
Froese AG, Sparling R. Cross-feeding and wheat straw extractives enhance growth of Clostridium thermocellum-containing co-cultures for consolidated bioprocessing. Bioprocess Biosyst Eng 2021; 44:819-830. [PMID: 33392746 DOI: 10.1007/s00449-020-02490-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/24/2020] [Indexed: 01/19/2023]
Abstract
Co-cultures consisting of three thermophilic and lignocellulolytic bacteria, namely Clostridium thermocellum, C. stercorarium, and Thermoanaerobacter thermohydrosulfuricus, degrade lignocellulosic material in a synergistic manner. When cultured in a defined minimal medium two of the members appeared to be auxotrophic and unable to grow, but the growth of all species was observed in all co-culture combinations, indicating cross-feeding of unidentified growth factors between the members. Growth factors also appeared to be present in water-soluble extractives obtained from wheat straw, allowing for the growth of the auxotrophic monocultures in the defined minimal medium. Cell enumeration during growth on wheat straw in this medium revealed different growth profiles of the members that varied between the co-cultures. End-product profiles also varied substantially between the cultures, with significantly higher ethanol production in all co-cultures compared to the mono-cultures. Understanding interactions between co-culture members, and the additional nutrients provided by lignocellulosic substrates, will aid us in consolidated bioprocessing design.
Collapse
Affiliation(s)
- Alan G Froese
- Department of Microbiology, University of Manitoba, 213 Buller Building, Winnipeg, MB, R3T 2N2, Canada
| | - Richard Sparling
- Department of Microbiology, University of Manitoba, 213 Buller Building, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
7
|
Qu C, Chen L, Li Y, Fu H, Wang J. The redox-sensing transcriptional repressor Rex is important for regulating the products distribution in Thermoanaerobacterium aotearoense SCUT27. Appl Microbiol Biotechnol 2020; 104:5605-5617. [DOI: 10.1007/s00253-020-10554-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 02/28/2020] [Accepted: 03/16/2020] [Indexed: 01/06/2023]
|
8
|
Cui J, Maloney MI, Olson DG, Lynd LR. Conversion of phosphoenolpyruvate to pyruvate in Thermoanaerobacterium saccharolyticum. Metab Eng Commun 2020; 10:e00122. [PMID: 32025490 PMCID: PMC6997586 DOI: 10.1016/j.mec.2020.e00122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/14/2019] [Accepted: 01/20/2020] [Indexed: 12/25/2022] Open
Abstract
Thermoanaerobacterium saccharolyticum is an anaerobic thermophile that can ferment hemicellulose to produce biofuels, such as ethanol. It has been engineered to produce ethanol at high yield and titer. T. saccharolyticum uses the Embden-Meyerhof-Parnas (EMP) pathway for glycolysis. However, the genes and enzymes used in each step of the EMP pathway in T. saccharolyticum are not completely known. In T. saccharolyticum, both pyruvate kinase (PYK) and pyruvate phosphate dikinase (PPDK) are highly expressed based on transcriptomic and proteomic data. Both enzymes catalyze the formation of pyruvate from phosphoenolpyruvate (PEP). PYK is typically the last step of EMP glycolysis pathway while PPDK is reversible and is found mostly in C4 plants and some microorganisms. It is not clear what role PYK and PPDK play in T. saccharolyticum metabolism and fermentation pathways and whether both are necessary. In this study we deleted the ppdk gene in wild type and homoethanologen strains of T. saccharolyticum and showed that it is not essential for growth or ethanol production.
Collapse
Affiliation(s)
- Jingxuan Cui
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA.,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Marybeth I Maloney
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.,Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Daniel G Olson
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.,Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Lee R Lynd
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA.,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.,Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| |
Collapse
|
9
|
Mazzoli R. Metabolic engineering strategies for consolidated production of lactic acid from lignocellulosic biomass. Biotechnol Appl Biochem 2020; 67:61-72. [DOI: 10.1002/bab.1869] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/05/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Roberto Mazzoli
- Structural and Functional BiochemistryLaboratory of Proteomics and Metabolic Engineering of ProkaryotesDepartment of Life Sciences and Systems BiologyUniversity of Torino Torino Italy
| |
Collapse
|
10
|
Baffert C, Kpebe A, Avilan L, Brugna M. Hydrogenases and H 2 metabolism in sulfate-reducing bacteria of the Desulfovibrio genus. Adv Microb Physiol 2019; 74:143-189. [PMID: 31126530 DOI: 10.1016/bs.ampbs.2019.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Hydrogen metabolism plays a central role in sulfate-reducing bacteria of the Desulfovibrio genus and is based on hydrogenases that catalyze the reversible conversion of protons into dihydrogen. These metabolically versatile microorganisms possess a complex hydrogenase system composed of several enzymes of both [FeFe]- and [NiFe]-type that can vary considerably from one Desulfovibrio species to another. This review covers the molecular and physiological aspects of hydrogenases and H2 metabolism in Desulfovibrio but focuses particularly on our model bacterium Desulfovibrio fructosovorans. The search of hydrogenase genes in more than 30 sequenced genomes provides an overview of the distribution of these enzymes in Desulfovibrio. Our discussion will consider the significance of the involvement of electron-bifurcation in H2 metabolism.
Collapse
Affiliation(s)
- Carole Baffert
- Aix-Marseille University, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | - Arlette Kpebe
- Aix-Marseille University, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | - Luisana Avilan
- Aix-Marseille University, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | - Myriam Brugna
- Aix-Marseille University, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| |
Collapse
|
11
|
AcrR and Rex Control Mannitol and Sorbitol Utilization through Their Cross-Regulation of Aldehyde-Alcohol Dehydrogenase (AdhE) in Lactobacillus plantarum. Appl Environ Microbiol 2019; 85:AEM.02035-18. [PMID: 30530710 DOI: 10.1128/aem.02035-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/28/2018] [Indexed: 11/20/2022] Open
Abstract
Lactobacillus plantarum is a versatile bacterium that occupies a wide range of environmental niches. In this study, we found that a bifunctional aldehyde-alcohol dehydrogenase-encoding gene, adhE, was responsible for L. plantarum being able to utilize mannitol and sorbitol through cross-regulation by two DNA-binding regulators. In L. plantarum NF92, adhE was greatly induced, and the growth of an adhE-disrupted (ΔadhE) strain was repressed when sorbitol or mannitol instead of glucose was used as a carbon source. The results of enzyme activity and metabolite assays demonstrated that AdhE could catalyze the synthesis of ethanol in L. plantarum NF92 when sorbitol or mannitol was used as the carbon source. AcrR and Rex were two transcriptional factors screened by an affinity isolation method and verified to regulate the expression of adhE DNase I footprinting assay results showed that they shared a binding site (GTTCATTAATGAAC) in the adhE promoter. Overexpression and knockout of AcrR showed that AcrR was a novel regulator to promote the transcription of adhE The activator AcrR and repressor Rex may cross-regulate adhE when L. plantarum NF92 utilizes sorbitol or mannitol. Thus, a model of the control of adhE by AcrR and Rex during L. plantarum NF92 utilization of mannitol or sorbitol was proposed.IMPORTANCE The function and regulation of AdhE in the important probiotic genus Lactobacillus are rarely reported. Here we demonstrated that AdhE is responsible for sorbitol and mannitol utilization and is cross-regulated by two transcriptional regulators in L. plantarum NF92, which had not been reported previously. This is important for L. plantarum to compete and survive in some harsh environments in which sorbitol or mannitol could be used as carbon source. A novel transcriptional regulator AcrR was identified to be important to promote the expression of adhE, which was unknown before. The cross-regulation of adhE by AcrR and Rex is important to balance the level of NADH in the cell during sorbitol or mannitol utilization.
Collapse
|
12
|
Multidisciplinary involvement and potential of thermophiles. Folia Microbiol (Praha) 2018; 64:389-406. [PMID: 30386965 DOI: 10.1007/s12223-018-0662-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/25/2018] [Indexed: 12/15/2022]
Abstract
The full biotechnological exploitation of thermostable enzymes in industrial processes is necessary for their commercial interest and industrious value. The heat-tolerant and heat-resistant enzymes are a key for efficient and cost-effective translation of substrates into useful products for commercial applications. The thermophilic, hyperthermophilic, and microorganisms adapted to extreme temperatures (i.e., low-temperature lovers or psychrophiles) are a rich source of thermostable enzymes with broad-ranging thermal properties, which have structural and functional stability to underpin a variety of technologies. These enzymes are under scrutiny for their great biotechnological potential. Temperature is one of the most critical parameters that shape microorganisms and their biomolecules for stability under harsh environmental conditions. This review describes in detail the sources of thermophiles and thermostable enzymes from prokaryotes and eukaryotes (microbial cell factories). Furthermore, the review critically examines perspectives to improve modern biocatalysts, its production and performance aiming to increase their value for biotechnology through higher standards, specificity, resistance, lowing costs, etc. These thermostable and thermally adapted extremophilic enzymes have been used in a wide range of industries that span all six enzyme classes. Thus, in particular, target of this review paper is to show the possibility of both high-value-low-volume (e.g., fine-chemical synthesis) and low-value-high-volume by-products (e.g., fuels) by minimizing changes to current industrial processes.
Collapse
|