1
|
Chen F, Ma Y, Cui Y, Wang W, Mei C, Nie J, Wen C, Shen X, Zhou X. Determination of Tenacissoside G, Tenacissoside H, and Tenacissoside I in Rat Plasma by UPLC-MS/MS and Their Pharmacokinetics. Int J Anal Chem 2023; 2023:4747771. [PMID: 37810909 PMCID: PMC10555494 DOI: 10.1155/2023/4747771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/18/2023] [Accepted: 09/23/2023] [Indexed: 10/10/2023] Open
Abstract
An ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) method was developed for the determination of tenacissoside G, tenacissoside H, and tenacissoside I in rat plasma. The rat plasma was treated with liquid-liquid extraction using ethyl acetate. The determination was performed on the UPLC HSS T3 column (50 mm × 2.1 mm, 1.8 μm) with a mobile phase consisting of acetonitrile-water (containing 0.1% formic acid) and gradient elution at a flow rate of 0.4 mL/min. Electrospray (ESI) positive ion mode detection and multireaction monitoring (MRM) quantitative analysis were performed. A total of 36 rats were given tenacissoside G, tenacissoside H, and tenacissoside I, respectively, orally (5 mg/kg) and intravenously (1 mg/kg), with 6 rats in each group, to evaluate the pharmacokinetic difference of tenacissoside G, tenacissoside H, and tenacissoside I in rats. The calibration curves showed good linearity in the range of 5-2000 ng/mL, where r was greater than 0.99. The results of precision, accuracy, recovery, matrix effect, and stability met the requirements of biological sample detection methods. The established UPLC-MS/MS method was successfully applied to pharmacokinetic studies of tenacissoside G, tenacissoside H, and tenacissoside I, and the bioavailability was 22.9%, 89.8%, and 9.4%, respectively.
Collapse
Affiliation(s)
- Fan Chen
- Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yizhe Ma
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou, China
| | - Ying Cui
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou, China
| | - Wanhang Wang
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou, China
| | - Chenchen Mei
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou, China
| | - Jingjing Nie
- Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Congcong Wen
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou, China
| | - Xiuwei Shen
- Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuzhao Zhou
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Multi-methodological approach for the Quality assessment of Senecionis scandentis Herba (Qianliguang) in the herbal market. PLoS One 2022; 17:e0267143. [PMID: 35421189 PMCID: PMC9009707 DOI: 10.1371/journal.pone.0267143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/01/2022] [Indexed: 11/19/2022] Open
Abstract
We set forth to assess the quality of an herbal medicine sold in Hong Kong called Qianliguang by employing a multi-methodological approach. The quality is set by its identity, chemical composition, and bioactivities, among others. Qianliguang (Senecionis scandentis Herba, Senecio scandens Buch.-Ham. ex D.Don) has known antibacterial properties. However, it is poisonous and overconsumption can result in liver damage. Eighteen Qianliguang samples were purchased from herbal shops at various districts in Hong Kong. Samples were first authenticated organoleptically. DNA barcoding at the psbA-trnH, ITS2, and rbcL loci was then conducted to confirm the species. HPLC-UV was performed to screen for the presence of the chemical compounds and to quantify the flavonoid hyperoside. UPLC-MS was used to quantify the amount of the toxic pyrrolizidine alkaloid (PA) adonifoline. Microdilution assay was performed to show the antibacterial effect on Streptococcus aureus and S. pneumoniae. Results showed that five samples were found to be substituted by species belonging to the genus Lespedeza; four samples were mixtures containing not only Qianliguang but also Achyranthes aspera L., Lonicera confusa DC., or Solanum nigrum L. HPLC-UV showed that only ten contained enough hyperoside to meet the standard requirement. In addition, nine samples had adonifoline that exceeded the toxicity standard requirement. In the microdilution assay, samples containing Qianliguang showed inhibition on S. aureus and S. pneumoniae, while among the five Lespedeza sp. samples the antibacterial effects on S. aureus were not detectable; only one sample showed inhibition to S. pneumoniae. Our study illustrated the necessity of using a multi-methodological approach for herbal medicine quality assessment. We also showed that Qianliguang samples in the Hong Kong market were either toxic or adulterated. It is therefore essential to improve the quality control of Qianliguang and probably other herbs in the herbal market.
Collapse
|
3
|
Yanaso S, Phrutivorapongkul A, Hongwiset D, Piyamongkol S, Intharuksa A. Verification of Thai ethnobotanical medicine "Kamlang Suea Khrong" driven by multiplex PCR and powerful TLC techniques. PLoS One 2021; 16:e0257243. [PMID: 34534243 PMCID: PMC8448358 DOI: 10.1371/journal.pone.0257243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/26/2021] [Indexed: 11/18/2022] Open
Abstract
Kamlang Suea Khrong (KSK) crude drug, a traditional Thai medicine used for oral tonic and analgesic purposes, is obtained from three origins: the inner stem bark of Betula alnoides (BA) or the stems of Strychnos axillaris (SA) or Ziziphus attopensis (ZA). According to the previous reports, SA contains strychnine-type alkaloids that probably cause poisoning; however, only organoleptic approaches are insufficient to differentiate SA from the other plant materials. To ensure the botanical origin of KSK crude drug, powerful and reliable tools are desperately needed. Therefore, molecular and chemical identification methods, DNA barcoding and thin-layer chromatography (TLC), were investigated. Reference databases, i.e., the ITS region and phytochemical profile of the authentic plant species, were conducted. In case of molecular analysis, multiplex polymerase chain reaction (PCR) based on species-specific primers was applied. Regarding species-specific primers designation, the suitability of three candidate barcode regions (ITS, ITS1, and ITS2) was evaluated by genetic distance using K2P model. ITS2 presented the highest interspecific variability was verified its discrimination power by tree topology. Accordingly, ITS2 was used to create primers that successfully specified plant species of authentic samples. For chemical analysis, TLC with toluene:ethyl acetate:ammonia (1:9:0.025) and hierarchical clustering were operated to identify the authentic crude drugs. The developed multiplex PCR and TLC methods were then applied to identify five commercial KSK crude drugs (CK1-CK5). Both methods correspondingly indicated that CK1-CK2 and CK3-CK5 were originated from BA and ZA, respectively. Molecular and chemical approaches are convenient and effective identification methods that can be performed for the routine quality-control of the KSK crude drugs for consumer reliance. According to chemical analysis, the results indicated BA, SA, and ZA have distinct chemical profiles, leading to differences in pharmacological activities. Consequently, further scientific investigations are required to ensure the quality and safety of Thai ethnobotanical medicine known as KSK.
Collapse
Affiliation(s)
- Suthira Yanaso
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Mueang, Chiang Mai, Thailand
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, Huachiew Chalermprakiet University, Bang Phli, Samutprakan, Thailand
| | - Ampai Phrutivorapongkul
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Mueang, Chiang Mai, Thailand
| | - Darunee Hongwiset
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Mueang, Chiang Mai, Thailand
| | - Sirivipa Piyamongkol
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Mueang, Chiang Mai, Thailand
| | - Aekkhaluck Intharuksa
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Mueang, Chiang Mai, Thailand
- * E-mail:
| |
Collapse
|
4
|
Ichim MC, Booker A. Chemical Authentication of Botanical Ingredients: A Review of Commercial Herbal Products. Front Pharmacol 2021; 12:666850. [PMID: 33935790 PMCID: PMC8082499 DOI: 10.3389/fphar.2021.666850] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/09/2021] [Indexed: 12/30/2022] Open
Abstract
Chemical methods are the most important and widely used traditional plant identification techniques recommended by national and international pharmacopoeias. We have reviewed the successful use of different chemical methods for the botanical authentication of 2,386 commercial herbal products, sold in 37 countries spread over six continents. The majority of the analyzed products were reported to be authentic (73%) but more than a quarter proved to be adulterated (27%). At a national level, the number of products and the adulteration proportions varied very widely. Yet, the adulteration reported for the four countries, from which more than 100 commercial products were purchased and their botanical ingredients chemically authenticated, was 37% (United Kingdom), 31% (Italy), 27% (United States), and 21% (China). Simple or hyphenated chemical analytical techniques have identified the total absence of labeled botanical ingredients, substitution with closely related or unrelated species, the use of biological filler material, and the hidden presence of regulated, forbidden or allergenic species. Additionally, affecting the safety and efficacy of the commercial herbal products, other low quality aspects were reported: considerable variability of the labeled metabolic profile and/or phytochemical content, significant product-to-product variation of botanical ingredients or even between batches by the same manufacturer, and misleading quality and quantity label claims. Choosing an appropriate chemical technique can be the only possibility for assessing the botanical authenticity of samples which have lost their diagnostic microscopic characteristics or were processed so that DNA cannot be adequately recovered.
Collapse
Affiliation(s)
- Mihael Cristin Ichim
- “Stejarul” Research Centre for Biological Sciences, National Institute of Research and Development for Biological Sciences, Piatra Neamt, Romania
| | - Anthony Booker
- Research Centre for Optimal Health, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
- Pharmacognosy and Phytotherapy, UCL School of Pharmacy, London, United Kingdom
| |
Collapse
|
5
|
Unnikrishnan R, Sumod M, Jayaraj R, Sujanapal P, Dev SA. The efficacy of machine learning algorithm for raw drug authentication in Coscinium fenestratum (Gaertn.) Colebr. employing a DNA barcode database. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:605-617. [PMID: 33854287 PMCID: PMC7981360 DOI: 10.1007/s12298-021-00965-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 05/05/2023]
Abstract
Medicinal plants are a valuable resource for traditional as well as modern medicine. Consequently huge demand has exerted a heavy strain on the existing natural resources. Due to over exploitation and unscientific collection most of the commercially traded ayurvedic plants are in the phase of depletion. Adulteration of expensive raw drugs with inferior taxa has become a common practice to meet the annual demand of the ayurvedic industry. Although there are several recommended methods for proper identification varying from the traditional taxonomic to organoleptic and physiochemical, it is difficult to authenticate ayurvedic raw drugs available in extremely dried, powdered or shredded forms. In this regard, the study addresses proper authentication and illicit trade in Coscinium fenestratum (Gaertn.) Colebr. using CBOL recommended standard barcode regions viz. nuclear ribosomal-Internally Transcribed Spacer (nrDNA- ITS), maturase K (matK), ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL), and psbA-trnH spacer regions. Further, an integrated analytical approach employing Maximum Likelihood phylogenetic tree and Machine Learning Approach, Waikato Environment for Knowledge Analysis was employed to prove efficacy of the method. The automated species identification technique, Artificial Intelligence uses the ability of computers to build models that can receive the input data and then conduct statistical analyses which significantly reduces the human labour. Concurrently, scientific management, restoration, cultivation and conservation measures should be given utmost priority to reduce the depletion of wild resources as well as to meet the rapidly increasing demand of the herbal industries.
Collapse
Affiliation(s)
- Remya Unnikrishnan
- Forest Genetics and Biotechnology Division, Kerala Forest Research Institute, Peechi, Thrissur, Kerala 680653 India
- Cochin University of Science and Technology, Kochi, Kerala India
| | - M. Sumod
- Sustainable Forest Management Division, Kerala Forest Research Institute, Peechi, Thrissur, Kerala 680653 India
| | - R. Jayaraj
- Forest Ecology and Biodiversity Division, Kerala Forest Research Institute, Peechi, Thrissur, Kerala 680653 India
| | - P. Sujanapal
- Sustainable Forest Management Division, Kerala Forest Research Institute, Peechi, Thrissur, Kerala 680653 India
| | - Suma Arun Dev
- Forest Genetics and Biotechnology Division, Kerala Forest Research Institute, Peechi, Thrissur, Kerala 680653 India
| |
Collapse
|
6
|
Unnikrishnan R, Dev SA, Jayaraj R. Pitfalls and promises of raw drug identification techniques in the ayurvedic industry: an overview. 3 Biotech 2020; 10:497. [PMID: 33150123 DOI: 10.1007/s13205-020-02482-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 10/13/2020] [Indexed: 11/26/2022] Open
Abstract
India, with a rich heritage of floral diversity, is well-known for its medicinal plant wealth and is the largest producer of medicinal herbs in the world. Ethnobiological Survey of Ministry of Environment and Forests (MOEF) could identify 8000 plant species utilized in various systems of medicine with approximately 25,000 effective herbal formulations. The extensive consumption to meet demand-supply ratio exerts a heavy strain on the existing resources. This subsequently led to the adulteration and substitution of medicinal plants with look-alike species. The consumer's faith on herbal medicine is in the phase of decline due to the extremities in adulteration/substitution and ensuing consequences. It is imperative to bring forth universally acceptable standard tools to authenticate raw drugs before being processed further into formulations. A vast array of techniques such as physical, chemical (analytical), biochemical, anatomical, organoleptic, and recently emerged DNA based molecular methods are widely used for plant species authentication. In recent years, DNA barcoding has made remarkable progress in the field of medicinal plants research. DNA metabarcoding is the latest development for qualitative evaluation of the herbal formulations, whereas for quantitative analysis, combination of pharmacognostic, pharmacovigilance and analytical methods are inevitable for authentication. This review addresses the overall strengths and shortcomings of the existing as well as recently emerged techniques in authenticating ayurvedic raw drugs.
Collapse
Affiliation(s)
- Remya Unnikrishnan
- Forest Genetics and Biotechnology Division, Kerala Forest Research Institute, Peechi, Thrissur, Kerala India
- Cochin University of Science & Technology, Kochi, Kerala India
| | - Suma Arun Dev
- Forest Genetics and Biotechnology Division, Kerala Forest Research Institute, Peechi, Thrissur, Kerala India
| | - R Jayaraj
- Forest Ecology and Biodiversity Division, Kerala Forest Research Institute, Peechi, Thrissur, Kerala India
| |
Collapse
|
7
|
Liu M, Li XW, Liao BS, Luo L, Ren YY. Species identification of poisonous medicinal plant using DNA barcoding. Chin J Nat Med 2020; 17:585-590. [PMID: 31472895 DOI: 10.1016/s1875-5364(19)30060-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Indexed: 11/24/2022]
Abstract
The aim is to select a universal DNA barcode for identifying all poisonous medicinal plants in Chinese pharmacopoeia and their poisonous related species or adulterants. We chose 4 commonly used regions as candidate DNA barcodes (ITS2, psbA-trnH, matK and rbcL) and compared their identification efficiency in 106 species from 27 families and 65 genera totally. Data analysis was performed including the information of sequence alignment, inter/intra-specific genetic distance and data distribution, identification efficiency and the situation of Neighbor-Joining (NJ) phylogenetic trees. We found ITS2 sequence region had high variation, stable genetic distance and identification efficiency relatively. The topological structure of NJ phylogenetic tree showed monophyletic. Our findings show that ITS2 can be applied as a universal barcode for identifying poisonous medicinal plants in Chinese pharmacopoeia and their poisonous related species or adulterants.
Collapse
Affiliation(s)
- Miao Liu
- College of Chinese Medicine Materials, Jilin Agriculture University, Changchun 130118, China; Institute of Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xi-Wen Li
- Institute of Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Bao-Sheng Liao
- Institute of Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lu Luo
- Institute of Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yue-Ying Ren
- College of Chinese Medicine Materials, Jilin Agriculture University, Changchun 130118, China.
| |
Collapse
|
8
|
Wang X, Yan Y, Chen X, Zeng S, Qian L, Ren X, Wei J, Yang X, Zhou Y, Gong Z, Xu Z. The Antitumor Activities of Marsdenia tenacissima. Front Oncol 2018; 8:473. [PMID: 30406035 PMCID: PMC6206208 DOI: 10.3389/fonc.2018.00473] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/05/2018] [Indexed: 02/05/2023] Open
Abstract
Marsdenia tenacissima (MT), a traditional Chinese herbal medicine, has long been used for thousands of years to treat asthma, tracheitis, rheumatism, etc. An increasing number of recent studies have focused on the antitumor effects of MT. The effects of MT on cancer are the result of various activated signaling pathways and inhibiting factors and the high expression levels of regulatory proteins. MT can inhibit different cancer types including non-small cell lung cancer (NSCLC), malignant tumors, hepatic carcinoma, and so on. This article mainly focuses on the activities and mechanisms of MT. In addition, the efficacy and toxicity of MT are also discussed. Further studies of MT are required for improved medicinal utilization.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Long Qian
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxin Ren
- Key Laboratory of Molecular Radiation Oncology of Hunan Province, Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Wei
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xue Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yangying Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|