1
|
Zhang J, Yue Z, Zhu N, Zhao N. Identification of potential biomarkers associated with cuproptosis and immune microenvironment analysis in acute myocardial infarction: A diagnostic accuracy study. Medicine (Baltimore) 2025; 104:e40817. [PMID: 39889200 PMCID: PMC11789903 DOI: 10.1097/md.0000000000040817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/24/2024] [Accepted: 11/15/2024] [Indexed: 02/02/2025] Open
Abstract
Acute myocardial infarction (AMI), a critical cardiovascular condition, is often associated with serious health risks. Recent studies suggest a link between copper-induced apoptosis and immune cell infiltration. Specifically, abnormal accumulation of copper ions can lead to intracellular oxidative stress and apoptosis, while also affecting immune cell function and infiltration. Nevertheless, studies exploring this relationship in the context of AMI are notably scarce, underscoring the necessity of identifying biomarkers associated with cuproptosis in AMI. Consensus clustering analysis was employed to classify distinct subtypes of AMI in the GSE66360 dataset. Concurrently, differential expression analysis was performed to identify differentially expressed genes (DEGs) across subtypes and between AMI and control samples. We employed Venn diagrams to validate the selection of cuproptosis-related DEGs in patients with AMI. A protein-protein interaction network was constructed to pinpoint potential candidate genes. Receiver operating characteristic curves were generated to identify promising biomarkers. The immune infiltration milieu was analyzed using CIBERSORT algorithms. Finally, the expression levels of identified cuproptosis-related biomarkers were validated at the transcriptional level. We classified AMI into 2 distinct cuproptosis-related subtypes, leading to the identification of 157 cuproptosis-related DEGs. Further analysis refined this list to 10 potential candidate genes. Among these, 5 emerged as significant biomarkers for AMI: granzyme A (GZMA), GTPase immunity-associated proteins (GIMPAs) GIMAP7, GIMAP5, GIMAP6, and TRAF3 interacting protein 3 (TRAF3IP3). A comprehensive examination of immune infiltration in AMI samples revealed significant differences in the levels of 11 types of immune cells, with GZMA displaying the highest correlation with activated mast cells and CD8 + T cells. We observed markedly lower expression levels of GZMA, GIMAP6, and TRAF3IP3 in the AMI group compared to controls. This study identified 5 cuproptosis-related biomarkers (GZMA, GIMAP7, GIMAP5, GIMAP6, and TRAF3IP3) associated with AMI, laying a theoretical foundation for the treatment of AMI.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Cardiovascular Internal Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhijie Yue
- Department of Cardiovascular Internal Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Na Zhu
- Department of Medical Record Management, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Na Zhao
- Department of Imaging and Nuclear Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
2
|
Liu J, Shi Y, Mo D, Luo L, Xu S, Lv F. The goat pan-genome reveals patterns of gene loss during domestication. J Anim Sci Biotechnol 2024; 15:132. [PMID: 39367490 PMCID: PMC11453020 DOI: 10.1186/s40104-024-01092-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/19/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Unveiling genetic diversity features and understanding the genetic mechanisms of diverse goat phenotypes are pivotal in facilitating the preservation and utilization of these genetic resources. However, the total genetic diversity within a species can't be captured by the reference genome of a single individual. The pan-genome is a collection of all the DNA sequences that occur in a species, and it is expected to capture the total genomic diversity of the specific species. RESULTS We constructed a goat pan-genome using map-to-pan assemble based on 813 individuals, including 723 domestic goats and 90 samples from their wild relatives, which presented a broad regional and global representation. In total, 146 Mb sequences and 974 genes were identified as absent from the reference genome (ARS1.2; GCF_001704415.2). We identified 3,190 novel single nucleotide polymorphisms (SNPs) using the pan-genome analysis. These novel SNPs could properly reveal the population structure of domestic goats and their wild relatives. Presence/absence variation (PAV) analysis revealed gene loss and intense negative selection during domestication and improvement. CONCLUSIONS Our research highlights the importance of the goat pan-genome in capturing the missing genetic variations. It reveals the changes in genomic architecture during goat domestication and improvement, such as gene loss. This improves our understanding of the evolutionary and breeding history of goats.
Collapse
Affiliation(s)
- Jiaxin Liu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yilong Shi
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dongxin Mo
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Lingyun Luo
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Songsong Xu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Fenghua Lv
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
3
|
Chen X, Li Z, Wang X, Zhou J, Wei Q, Chen K, Jiang R. Investigation and verification of GIMAP6 as a robust biomarker for prognosis and tumor immunity in lung adenocarcinoma. J Cancer Res Clin Oncol 2023; 149:11041-11055. [PMID: 37338641 DOI: 10.1007/s00432-023-04980-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/10/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND AND AIM According to previous reports, GTPase of immunity-associated protein 6 (GIMAP6) is essential for autophagy. However, it is unclear how GIMAP6 affects the development and tumor immunity of lung adenocarcinoma (LUAD). METHODS In the present study, the role of GIMAP6 in vivo and in vitro was examined using reverse transcription-quantitative PCR, western blotting, and Cell Counting Kit-8, colony formation and Transwell assays. Datasets from The Cancer Genome Atlas and Genotype-Tissue Expression databases were thoroughly analyzed using R software. A nomogram was created using GIMAP6 and prognostic characteristics. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes and Gene Set Enrichment Analysis were applied to explore the potential mechanism of GIMAP6 in lung cancer. The link between GIMAP6 and the immunological landscape was studied using single-cell RNA sequencing datasets from Tumor Immune Estimation Resource (TIMER) 2.0 and Tumor Immune Single-cell Hub. RESULTS Patients with high GIMAP6 expression had improved overall and disease-specific survival compared with those patients with low GIMAP6 expression. According to the receiver operating characteristic and calibration curve, the nomogram based on T stage, N stage and GIMAP6 had predictive value for prognosis. According to functional enrichment analysis, GIMAP6 was primarily involved in T-cell receptor signaling pathway, chemokine signaling pathway, cytokine and cytokine receptor interaction. GIMAP6 was shown to be favorably linked with the infiltration of immune cells and immune-related molecules, including cytotoxic T-lymphocyte associated protein 4, programmed death-ligand 1, and T cell immunoreceptor with Ig and ITIM domains, by single-cell sequencing and TIMER2.0 analysis. The role of GIMAP6 in lung cancer cell proliferation, invasion, migration and immunity was experimentally verified. CONCLUSION These findings confirmed that GIMAP6 was an effective prognostic molecule that was involved in the regulation of the immune microenvironment of LUAD, and may become a predictor for the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Xiuqiong Chen
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, People's Republic of China
| | - Zhaona Li
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, People's Republic of China
| | - Xinyue Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, People's Republic of China
| | - Jing Zhou
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, People's Republic of China
| | - Qianhui Wei
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, People's Republic of China
| | - Kaidi Chen
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, People's Republic of China
| | - Richeng Jiang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, China.
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, People's Republic of China.
| |
Collapse
|
4
|
Yao Y, Du Jiang P, Chao BN, Cagdas D, Kubo S, Balasubramaniyam A, Zhang Y, Shadur B, NaserEddin A, Folio LR, Schwarz B, Bohrnsen E, Zheng L, Lynberg M, Gottlieb S, Leney-Greene MA, Park AY, Tezcan I, Akdogan A, Gocmen R, Onder S, Rosenberg A, Soilleux EJ, Johnson E, Jackson PK, Demeter J, Chauvin SD, Paul F, Selbach M, Bulut H, Clatworthy MR, Tuong ZK, Zhang H, Stewart BJ, Bosio CM, Stepensky P, Clare S, Ganesan S, Pascall JC, Daumke O, Butcher GW, McMichael AJ, Simon AK, Lenardo MJ. GIMAP6 regulates autophagy, immune competence, and inflammation in mice and humans. J Exp Med 2022; 219:213217. [PMID: 35551368 PMCID: PMC9111091 DOI: 10.1084/jem.20201405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/18/2022] [Accepted: 03/16/2022] [Indexed: 11/26/2022] Open
Abstract
Inborn errors of immunity (IEIs) unveil regulatory pathways of human immunity. We describe a new IEI caused by mutations in the GTPase of the immune-associated protein 6 (GIMAP6) gene in patients with infections, lymphoproliferation, autoimmunity, and multiorgan vasculitis. Patients and Gimap6−/− mice show defects in autophagy, redox regulation, and polyunsaturated fatty acid (PUFA)–containing lipids. We find that GIMAP6 complexes with GABARAPL2 and GIMAP7 to regulate GTPase activity. Also, GIMAP6 is induced by IFN-γ and plays a critical role in antibacterial immunity. Finally, we observed that Gimap6−/− mice died prematurely from microangiopathic glomerulosclerosis most likely due to GIMAP6 deficiency in kidney endothelial cells.
Collapse
Affiliation(s)
- Yikun Yao
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, Rockville, MD
| | - Ping Du Jiang
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, Rockville, MD
| | - Brittany N Chao
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, Rockville, MD.,Nuffield Department of Medicine Research Building, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Deniz Cagdas
- Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey.,Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey.,Ihsan Dogramaci Childrens Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Satoshi Kubo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, Rockville, MD
| | - Arasu Balasubramaniyam
- Crystallography, Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, Berlin, Germany
| | - Yu Zhang
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Bella Shadur
- Hadassah University Medical Center, Department of Bone Marrow Transplantation and Cancer Immunotherapy, Jerusalem, Israel.,The Garvan Institute of Medical Research, Immunology Division, Darlinghurst, Sydney, Australia.,St Vincent's Clinical School, University of New South Wales, Darlinghurst, Sydney, Australia
| | - Adeeb NaserEddin
- Hadassah University Medical Center, Department of Bone Marrow Transplantation and Cancer Immunotherapy, Jerusalem, Israel
| | - Les R Folio
- Clinical Center, National Institutes of Health, Bethesda, MD
| | - Benjamin Schwarz
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Eric Bohrnsen
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Lixin Zheng
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, Rockville, MD
| | - Matthew Lynberg
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, Rockville, MD
| | - Simone Gottlieb
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, Rockville, MD
| | - Michael A Leney-Greene
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Ann Y Park
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, Rockville, MD
| | - Ilhan Tezcan
- Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey.,Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey.,Ihsan Dogramaci Childrens Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ali Akdogan
- Division of Rheumatology, Department of Internal Medicine, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Rahsan Gocmen
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Sevgen Onder
- Department of Pathology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Avi Rosenberg
- Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD.,Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD
| | | | - Errin Johnson
- The Dunn School of Pathology, South Parks Road, Oxford, UK
| | - Peter K Jackson
- Baxter Laboratory, Departments of Microbiology & Immunology and Pathology Stanford University School of Medicine, Stanford, CA
| | - Janos Demeter
- Baxter Laboratory, Departments of Microbiology & Immunology and Pathology Stanford University School of Medicine, Stanford, CA
| | - Samuel D Chauvin
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, Rockville, MD
| | - Florian Paul
- Crystallography, Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Matthias Selbach
- Crystallography, Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Haydar Bulut
- Crystallography, Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, Berlin, Germany
| | - Menna R Clatworthy
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.,Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Zewen K Tuong
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.,Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Hanlin Zhang
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Benjamin J Stewart
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.,Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Catharine M Bosio
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Polina Stepensky
- Hadassah University Medical Center, Department of Bone Marrow Transplantation and Cancer Immunotherapy, Jerusalem, Israel
| | - Simon Clare
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Sundar Ganesan
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - John C Pascall
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Oliver Daumke
- Crystallography, Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, Berlin, Germany
| | - Geoffrey W Butcher
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Andrew J McMichael
- Nuffield Department of Medicine Research Building, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Anna Katharina Simon
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, Rockville, MD
| |
Collapse
|
5
|
Huang P, Tang L, Zhang L, Ren Y, Peng H, Xiao Y, Xu J, Mao D, Liu L, Liu L. Identification of Biomarkers Associated With CD4+ T-Cell Infiltration With Gene Coexpression Network in Dermatomyositis. Front Immunol 2022; 13:854848. [PMID: 35711463 PMCID: PMC9196312 DOI: 10.3389/fimmu.2022.854848] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/27/2022] [Indexed: 12/19/2022] Open
Abstract
Background Dermatomyositis is an autoimmune disease characterized by damage to the skin and muscles. CD4+ T cells are of crucial importance in the occurrence and development of dermatomyositis (DM). However, there are few bioinformatics studies on potential pathogenic genes and immune cell infiltration of DM. Therefore, this study intended to explore CD4+ T-cell infiltration–associated key genes in DM and construct a new model to predict the level of CD4+ T-cell infiltration in DM. Methods GSE46239, GSE142807, GSE1551, and GSE193276 datasets were downloaded. The WGCNA and CIBERSORT algorithms were performed to identify the most correlated gene module with CD4+ T cells. Matascape was used for GO enrichment and KEGG pathway analysis of the key gene module. LASSO regression analysis was used to identify the key genes and construct the prediction model. The correlation between the key genes and CD4+ T-cell infiltration was investigated. GSEA was performed to research the underlying signaling pathways of the key genes. The key gene-correlated transcription factors were identified through the RcisTarget and Gene-motif rankings databases. The miRcode and DIANA-LncBase databases were used to build the lncRNA-miRNA-mRNA network. Results In the brown module, 5 key genes (chromosome 1 open reading frame 106 (C1orf106), component of oligomeric Golgi complex 8 (COG8), envoplakin (EVPL), GTPases of immunity-associated protein family member 6 (GIMAP6), and interferon-alpha inducible protein 6 (IFI6)) highly associated with CD4+ T-cell infiltration were identified. The prediction model was constructed and showed better predictive performance in the training set, and this satisfactory model performance was validated in another skin biopsy dataset and a muscle biopsy dataset. The expression levels of the key genes promoted the CD4+ T-cell infiltration. GSEA results revealed that the key genes were remarkably enriched in many immunity-associated pathways, such as JAK/STAT signaling pathway. The cisbp_M2205, transcription factor-binding site, was enriched in C1orf106, EVPL, and IF16. Finally, 3,835 lncRNAs and 52 miRNAs significantly correlated with key genes were used to build a ceRNA network. Conclusion The C1orf106, COG8, EVPL, GIMAP6, and IFI6 genes are associated with CD4+ T-cell infiltration. The prediction model constructed based on the 5 key genes may better predict the level of CD4+ T-cell infiltration in damaged muscle and lesional skin of DM. These key genes could be recognized as potential biomarkers and immunotherapeutic targets of DM.
Collapse
Affiliation(s)
- Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Children’s Brain Development and Brain injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Tang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Children’s Brain Development and Brain injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lu Zhang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Children’s Brain Development and Brain injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yi Ren
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Children’s Brain Development and Brain injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hong Peng
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Children’s Brain Development and Brain injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yangyang Xiao
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Children’s Brain Development and Brain injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jie Xu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Children’s Brain Development and Brain injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Dingan Mao
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Children’s Brain Development and Brain injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lingjuan Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Children’s Brain Development and Brain injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Liqun Liu, ; Lingjuan Liu,
| | - Liqun Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- Children’s Brain Development and Brain injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Liqun Liu, ; Lingjuan Liu,
| |
Collapse
|
6
|
Coelho JC, Calhoun ED, Calhoun GN, Poole AZ. Patchy Distribution of GTPases of Immunity Associated Proteins (GIMAP) within Cnidarians and Dinoflagellates Suggests a Complex Evolutionary History. Genome Biol Evol 2022; 14:6500283. [PMID: 35015849 PMCID: PMC8857920 DOI: 10.1093/gbe/evac002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2022] [Indexed: 11/24/2022] Open
Abstract
GTPases of Immunity-Associated Proteins (GIMAP) are a group of small GTP-binding proteins found in a variety of organisms, including vertebrates, invertebrates, and plants. These proteins are characterized by the highly conserved AIG1 domain, and in vertebrates, have been implicated in regulation of the immune system as well as apoptosis and autophagy, though their exact mechanism of action remains unclear. Recent work on cnidarian GIMAPs suggests a conserved role in immunity, apoptosis, and autophagy—three processes involved in coral bleaching, or the breakdown of cnidarian-dinoflagellate symbiosis. Therefore, to further understand the evolution of GIMAPs in this group of organisms, the purpose of this study was to characterize GIMAP or GIMAP-like sequences utilizing publicly available genomic and transcriptomic data in species across the cnidarian phylogeny. The results revealed a patchy distribution of GIMAPs in cnidarians, with three distinct types referred to as L-GIMAP, S-GIMAP, and GIMAP-like. Additionally, GIMAPs were present in most dinoflagellate species and formed seven well-supported clades. Overall, these results elucidate the distribution of GIMAPs within two distantly related eukaryotic groups and represent the first in-depth investigation on the evolution of these proteins within both protists and basal metazoans.
Collapse
Affiliation(s)
- Jenny C Coelho
- Department of Biology, Berry College, 2277 Martha Berry Highway NW, Mt. Berry GA, 30149, USA.,Department of Biology, University of North Carolina at Chapel Hill, 120 South Rd, Chapel Hill, NC 27599, USA
| | - Ethan D Calhoun
- Department of Biology, Berry College, 2277 Martha Berry Highway NW, Mt. Berry GA, 30149, USA
| | - Grant N Calhoun
- Department of Biology, Berry College, 2277 Martha Berry Highway NW, Mt. Berry GA, 30149, USA
| | - Angela Z Poole
- Department of Biology, Berry College, 2277 Martha Berry Highway NW, Mt. Berry GA, 30149, USA
| |
Collapse
|
7
|
Ni G, Liu X, Li H, Fogarty CE, Chen S, Zhang P, Liu Y, Wu X, Wei MQ, Chen G, Zhang P, Wang T. Topical Application of Temperature-Sensitive Gel Containing Caerin 1.1 and 1.9 Peptides on TC-1 Tumour-Bearing Mice Induced High-Level Immune Response in the Tumour Microenvironment. Front Oncol 2021; 11:754770. [PMID: 34858827 PMCID: PMC8632150 DOI: 10.3389/fonc.2021.754770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/11/2021] [Indexed: 01/22/2023] Open
Abstract
The development of topical cream drugs that increase the immune activation of tumour-infiltrating lymphocytes against tumour and chronic viral infection-associated lesions is of great immunotherapeutic significance. This study demonstrates that the topical application of a temperature-sensitive gel containing caerin 1.1 and 1.9 peptides reduces nearly 50% of the tumour weight of HPV16 E6/E7-transformed TC-1 tumour-bearing mice via improving the tumour microenvironment. Confocal microscopy confirms the time-dependent penetration of caerin 1.9 through the epidermal layer of the ear skin structure of mice. Single-cell transcriptomic analysis shows that the caerin 1.1/1.9 gel expands the populations with high immune activation level and largely stimulates the pro-inflammatory activity of NK and dendritic cells. Closely associated with INFα response, Cebpb seems to play a key role in altering the function of all Arg1hi macrophages in the caerin group. In addition, the caerin gel treatment recruits almost two-fold more activated CD8+ T cells to the TME, relative to the untreated tumour, which shows a synergistic effect derived from the regulation of S1pr1, Ccr7, Ms4a4b and Gimap family expression. The TMT10plex-labelling proteomic quantification further demonstrates the activation of interferon-alpha/beta secretion and response to cytokine stimulus by the caerin gel, while the protein contents of several key regulators were elevated by more than 30%, such as Cd5l, Gzma, Ifit1, Irf9 and Stat1. Computational integration of the proteome with the single-cell transcriptome consistently suggested greater activation of NK and T cells with the topical application of caerin peptide gel.
Collapse
Affiliation(s)
- Guoying Ni
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, China.,Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.,The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University , Guangzhou, China
| | - Xiaosong Liu
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, China.,Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, QLD, Australia
| | - Hejie Li
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, QLD, Australia.,School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, Australia
| | - Conor E Fogarty
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, QLD, Australia.,School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, Australia
| | - Shu Chen
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, China
| | - Pingping Zhang
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, China
| | - Ying Liu
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, China
| | - Xiaolian Wu
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, China
| | - Ming Q Wei
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Guoqiang Chen
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, China
| | - Ping Zhang
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Tianfang Wang
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, QLD, Australia.,School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, Australia
| |
Collapse
|
8
|
Limoges MA, Cloutier M, Nandi M, Ilangumaran S, Ramanathan S. The GIMAP Family Proteins: An Incomplete Puzzle. Front Immunol 2021; 12:679739. [PMID: 34135906 PMCID: PMC8201404 DOI: 10.3389/fimmu.2021.679739] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
Overview: Long-term survival of T lymphocytes in quiescent state is essential to maintain their cell numbers in secondary lymphoid organs and in peripheral circulation. In the BioBreeding diabetes-prone strain of rats (BB-DP), loss of functional GIMAP5 (GTPase of the immune associated nucleotide binding protein 5) results in profound peripheral T lymphopenia. This discovery heralded the identification of a new family of proteins initially called Immune-associated nucleotide binding protein (IAN) family. In this review we will use ‘GIMAP’ to refer to this family of proteins. Recent studies suggest that GIMAP proteins may interact with each other and also be involved in the movement of the cellular cargo along the cytoskeletal network. Here we will summarize the current knowledge on the characteristics and functions of GIMAP family of proteins.
Collapse
Affiliation(s)
- Marc-André Limoges
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke and CRCHUS, Sherbrooke, QC, Canada
| | - Maryse Cloutier
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke and CRCHUS, Sherbrooke, QC, Canada
| | - Madhuparna Nandi
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke and CRCHUS, Sherbrooke, QC, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke and CRCHUS, Sherbrooke, QC, Canada
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke and CRCHUS, Sherbrooke, QC, Canada
| |
Collapse
|
9
|
A human case of GIMAP6 deficiency: a novel primary immune deficiency. Eur J Hum Genet 2020; 29:657-662. [PMID: 33328581 PMCID: PMC7739214 DOI: 10.1038/s41431-020-00773-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 09/14/2020] [Accepted: 10/27/2020] [Indexed: 01/08/2023] Open
Abstract
The GTPase of immunity-associated proteins (GIMAPs) are a family of genes believed to contribute to lymphocyte development, signaling, and apoptosis, thus playing an important role in immune system homeostasis. While models of gene derangement have been described in both mice and immortalized cell lines, human examples of these diseases remain exceptionally rare. In this manuscript we describe the first documented human cases of a homozygous deleterious GIMAP6 variant in the GIMAP6 gene and their subsequent clinical and immunological phenotype. In order to interrogate the patients’ immune defect, we performed whole-exome sequencing, western blot, flow cytometry analysis, lymphocyte activation and proliferation studies, cytokine release assays, and apoptosis studies. We found two siblings with a predicted deleterious homozygous variant in the GIMAP6 gene with no expression of GIMAP6 protein on western blot. Patients demonstrated accelerated apoptosis, but largely normal lymphocyte subpopulations, activation and proliferation and cytokine release. There appears to be a spectrum of clinical features associated with deficiency of GIMAP6 protein, with one patient suffering lymphopenia and recurrent sinopulmonary infections, and the other clinically asymptomatic. Biallelic variants in the GIMAP6 gene have now been shown to demonstrate disease in humans. The absence of GIMAP6 protein is associated with a spectrum of clinical manifestations and much remains to be learnt about the pathogenic mechanisms underlying this disease. We suggest that biallelic variants in the gene for GIMAP6 should be considered in children with lymphopenia and recurrent sinopulmonary infections.
Collapse
|
10
|
Bailey GF, Coelho JC, Poole AZ. Differential expression of Exaiptasia pallida GIMAP genes upon induction of apoptosis and autophagy suggests a potential role in cnidarian symbiosis and disease. J Exp Biol 2020; 223:jeb229906. [PMID: 32978315 DOI: 10.1242/jeb.229906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/15/2020] [Indexed: 01/11/2023]
Abstract
Coral reefs, one of the world's most productive and diverse ecosystems, are currently threatened by a variety of stressors that result in increased prevalence of both bleaching and disease. Therefore, understanding the molecular mechanisms involved in these responses is critical to mitigate future damage to the reefs. One group of genes that is potentially involved in cnidarian immunity and symbiosis is GTPases of immunity associated proteins (GIMAP). In vertebrates, this family of proteins is involved in regulating the fate of developing lymphocytes and interacts with proteins involved in apoptosis and autophagy. As apoptosis, autophagy and immunity have previously been shown to be involved in cnidarian symbiosis and disease, the goal of this research was to determine the role of cnidarian GIMAPs in these processes using the anemone Exaiptasia pallida To do so, GIMAP genes were characterized in the E. pallida genome and changes in gene expression were measured using qPCR in response to chemical induction of apoptosis, autophagy and treatment with the immune stimulant lipopolysaccharide (LPS) in both aposymbiotic and symbiotic anemones. The results revealed four GIMAP-like genes in E. pallida, referred to as Ep_GIMAPs Induction of apoptosis and autophagy resulted in a general downregulation of Ep_GIMAPs, but no significant changes were observed in response to LPS treatment. This indicates that Ep_GIMAPs may be involved in the regulation of apoptosis and autophagy, and therefore could play a role in cnidarian-dinoflagellate symbiosis. Overall, these results increase our knowledge on the function of GIMAPs in a basal metazoan.
Collapse
Affiliation(s)
- Grace F Bailey
- Department of Biology, Berry College, 2277 Martha Berry Highway NW, Mt. Berry, GA 30161, USA
| | - Jenny C Coelho
- Department of Biology, Berry College, 2277 Martha Berry Highway NW, Mt. Berry, GA 30161, USA
| | - Angela Z Poole
- Department of Biology, Berry College, 2277 Martha Berry Highway NW, Mt. Berry, GA 30161, USA
| |
Collapse
|
11
|
Mégarbané A, Piquemal D, Rebillat AS, Stora S, Pierrat F, Bruno R, Noguier F, Mircher C, Ravel A, Vilaire-Meunier M, Durand S, Lefranc G. Transcriptomic study in women with trisomy 21 identifies a possible role of the GTPases of the immunity-associated proteins (GIMAP) in the protection of breast cancer. Sci Rep 2020; 10:9447. [PMID: 32523132 PMCID: PMC7286899 DOI: 10.1038/s41598-020-66469-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/22/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND People with trisomy 21 (T21) are predisposed to developing hematological tumors, but have significantly lower-than-expected age-adjusted incidence rates of having a solid tumor. MATERIAL AND METHODS To identify novel genetic factors implicated in the lower breast cancer (BC) frequency observed in women with T21 than in the general population, we compared the transcriptome pattern of women with a homogeneous T21, aged more than 30 years, with or without BC, and tumoral BC tissue of control women with a normal karyotype from the study of Varley et al. (2014). RESULTS Differential analysis of gene expression between the 15 women in the T21 without BC group and BC patients in the other groups (two women with T21 and fifteen control women, respectively) revealed 154 differentially expressed genes, of which 63 were found to have similar expression profile (up- or downregulated). Of those 63 genes, four were in the same family, namely GIMAP4, GIMAP6, GIMAP7 and GIMAP8, and were strongly upregulated in the T21 without BC group compared to the other groups. A significant decrease in mRNA levels of these genes in BC tissues compared to non-tumor breast tissues was also noted. CONCLUSION We found that the expression of some GIMAPs is significantly higher in women with T21 without BC than in patients with sporadic BC. Our findings support the hypothesis that GIMAPs may play a tumor-suppressive role against BC, and open the possibility that they may also have the same role for other solid tumors in T21 patients. The search for new prognostic factors and hopefully new therapeutic or preventive strategies against BC are discussed.
Collapse
Affiliation(s)
- André Mégarbané
- Institut Jérôme Lejeune, CRB BioJeL, Paris, France. .,Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.
| | | | | | | | | | | | | | | | - Aimé Ravel
- Institut Jérôme Lejeune, CRB BioJeL, Paris, France
| | | | | | - Gérard Lefranc
- Institut de Génétique Humaine, UMR 9002 CNRS-Université de Montpellier, Montpellier, France
| |
Collapse
|
12
|
Pavlovich SS, Darling T, Hume AJ, Davey RA, Feng F, Mühlberger E, Kepler TB. Egyptian Rousette IFN-ω Subtypes Elicit Distinct Antiviral Effects and Transcriptional Responses in Conspecific Cells. Front Immunol 2020; 11:435. [PMID: 32231668 PMCID: PMC7083018 DOI: 10.3389/fimmu.2020.00435] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/25/2020] [Indexed: 12/15/2022] Open
Abstract
Bats host a number of viruses that cause severe disease in humans without experiencing overt symptoms of disease themselves. While the mechanisms underlying this ability to avoid sickness are not known, deep sequencing studies of bat genomes have uncovered genetic adaptations that may have functional importance in the antiviral response of these animals. Egyptian rousette bats (Rousettus aegyptiacus) are the natural reservoir hosts of Marburg virus (MARV). In contrast to humans, these bats do not become sick when infected with MARV. A striking difference to the human genome is that Egyptian rousettes have an expanded repertoire of IFNW genes. To probe the biological implications of this expansion, we synthesized IFN-ω4 and IFN-ω9 proteins and tested their antiviral activity in Egyptian rousette cells. Both IFN-ω4 and IFN-ω9 showed antiviral activity against RNA viruses, including MARV, with IFN-ω9 being more efficient than IFN-ω4. Using RNA-Seq, we examined the transcriptional response induced by each protein. Although the sets of genes induced by the two IFNs were largely overlapping, IFN-ω9 induced a more rapid and intense response than did IFN-ω4. About 13% of genes induced by IFN-ω treatment are not found in the Interferome or other ISG databases, indicating that they may be uniquely IFN-responsive in this bat.
Collapse
Affiliation(s)
- Stephanie S Pavlovich
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States.,National Emerging Infectious Diseases Laboratory, Boston University, Boston, MA, United States
| | - Tamarand Darling
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Adam J Hume
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States.,Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Robert A Davey
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States.,National Emerging Infectious Diseases Laboratory, Boston University, Boston, MA, United States.,Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Feng Feng
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| | - Elke Mühlberger
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States.,National Emerging Infectious Diseases Laboratory, Boston University, Boston, MA, United States
| | - Thomas B Kepler
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States.,National Emerging Infectious Diseases Laboratory, Boston University, Boston, MA, United States.,Department of Mathematics and Statistics, Boston University, Boston, MA, United States
| |
Collapse
|