1
|
Joshi S, Garlapati C, Nguyen T, Sharma S, Chandrashekar DS, Bhattarai S, Varambally S, Krishnamurti U, Li X, Aneja R. C/EBPβ increases tumor aggressiveness by enhancing KIFC1 expression in androgen receptor negative triple negative breast cancer. Cell Commun Signal 2025; 23:255. [PMID: 40448099 DOI: 10.1186/s12964-025-02243-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Accepted: 05/09/2025] [Indexed: 06/02/2025] Open
Abstract
Quadruple-negative breast cancers (also known as AR-triple negative (TN) BC) lack the expression of estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), and androgen receptor (AR). AR-TNBC exhibits aggressive characteristics and a poor prognosis. Because of the lack of expression of therapeutic targets, limited therapeutic options exist for patients with AR-TNBC. Hence, new therapeutic targets and risk-predictive biomarkers are required for patients with AR-TNBC. In this study, we investigated the role of kinesin-like protein 1 (KIFC1) in AR-TNBC. We found that C/EBPβ binds to the KIFC1 promoter and induces its expression in the AR-TNBC cells. Notably, AR status was negatively correlated with KIFC1 levels. We also found that AR transcriptionally repressed the transcription factor C/EBPβ, which regulates the expression of KIFC1. The lack of AR expression in AR-TNBC led to C/EBPβ upregulation, thereby enhancing KIFC1 expression. Moreover, upregulation of KIFC1 in AR-TNBC increased cancer cell proliferation and promoted epithelial-mesenchymal transition (EMT), contributing to the aggressive characteristics of AR-TNBC. Inhibiting KIFC1 using the small molecule inhibitor CW069 significantly reduced tumor volume in mice bearing AR-TNBC xenografts, but not in those with triple-negative breast tumors. These data suggest that upregulation of C/EBPβ and KIFC1 contributes to the aggressive characteristics and poor prognosis of AR-TNBC, providing strong evidence that targeting KIFC1 using kinesin inhibitors could be a viable therapeutic approach for patients with AR-TNBC.
Collapse
Affiliation(s)
- Shriya Joshi
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
- Alkermes Inc, Waltham, MA, 02451, USA
- Discovery and Development Sciences, Leads Discovery and Optimization, Bristol Myers Squibb, Cambridge, MA, 02141, USA
| | - Chakravarthy Garlapati
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA.
- Alkermes Inc, Waltham, MA, 02451, USA.
| | - Thi Nguyen
- Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Shaligram Sharma
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
- Chemical Insights Research Institute of UL Research Institutes, Marietta, GA, 30067, USA
| | | | - Shristi Bhattarai
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Sooryanarayana Varambally
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Uma Krishnamurti
- Department of Pathology, Yale University, New Haven, CT, 06510, USA
| | - Xiaoxian Li
- Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA.
- Department of Nutrition Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
| |
Collapse
|
2
|
Bhattarai S, Sugita BM, Nunes-Souza E, Fonseca AS, Chandrashekar DS, Bhargava M, Cavalli LR, Aneja R. Dysregulated miRNA Expression and Androgen Receptor Loss in Racially Distinct Triple-Negative Breast Cancer. Int J Mol Sci 2024; 25:13679. [PMID: 39769441 PMCID: PMC11679545 DOI: 10.3390/ijms252413679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/23/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Androgen receptor (AR)-negative triple-negative breast cancer (TNBC), often termed quadruple-negative breast cancer (QNBC), disproportionately impacts women of African descent, leading to poorer overall survival (OS). MiRNAs regulate the expression of gene drivers involved in critical signaling pathways in TNBC, such as the AR gene, and their expression varies across races and breast cancer subtypes. This study investigates whether differentially expressed miRNAs influence AR transcription, potentially contributing to the observed disparities between African American (AA) and European American (EA) QNBC patients. Race-annotated TNBC samples (n = 129) were analyzed for AR expression status and revealed the prevalence of QNBC in AA patients compared to EA (76.6% vs. 57.7%) and a significant association of AR loss with poor survival among AAs. The Cancer Genome Atlas (TCGA) RNA-seq data showed that AAs with TNBC (n = 32) had lower AR mRNA levels than EAs (n = 67). Among TCGA patients in the AR-low group, AAs had significantly poorer OS than EAs. In our cohort, 46 miRNAs exhibited differential expression between AAs and EAs with QNBC. Ten of these miRNAs (miR-1185-5p, miR-1305, miR-3161, miR-3690, miR-494-3p, miR-509-3-5p, miR-619-3p, miR-628-3p, miR-873-5p, and miR-877-5p) were predicted to target the AR gene/signaling. The loss of AR expression is linked to poorer prognoses in AA women. The understanding of the specific miRNAs involved and their regulatory mechanisms on AR expression could provide valuable insights into why AA women are more prone to QNBC.
Collapse
Affiliation(s)
- Shristi Bhattarai
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA
| | - Bruna M. Sugita
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (B.M.S.)
| | - Emanuelle Nunes-Souza
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (B.M.S.)
| | - Aline S. Fonseca
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (B.M.S.)
| | - Darshan Shimoga Chandrashekar
- Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Mahak Bhargava
- Department of Nutrition Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Luciane R. Cavalli
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (B.M.S.)
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA
- Department of Nutrition Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
3
|
Lantz AE, Gebert R, Li J, Oliveras JA, Gordián ER, Perez-Morales J, Eschrich S, Chen DT, Rosa M, Dutil J, Saavedra HI, Muñoz-Antonia T, Flores I, Cress WD. Worse Clinical and Survival Outcomes in Breast Cancer Patients Living in Puerto Rico Compared to Hispanics, Non-Hispanic Blacks, and Non-Hispanic Whites from Florida. J Racial Ethn Health Disparities 2024:10.1007/s40615-024-02232-5. [PMID: 39543072 DOI: 10.1007/s40615-024-02232-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Herein, we report the characterization of four cohorts of breast cancer patients including (1) non-Hispanic Whites in Florida, (2) non-Hispanic Blacks in Florida, (3) Hispanics in Florida, and (4) Hispanics in Puerto Rico. METHODS Data from female breast cancer patients were collected from cancer registry (n = 9361) and self-reported patient questionnaires (n = 4324). Several statistical tests were applied to identify significant group differences. RESULTS Breast cancer patients from Puerto Rico were least frequently employed and had the lowest rates of college education among the groups. They also reported more live births and less breastfeeding. Both Hispanic groups reported a higher fraction experiencing menstruation at age 11 or younger (Floridian Hispanics [38%] and Puerto Ricans [36%]) compared to non-Hispanic Whites (20%) and non-Hispanic Blacks (22%). Non-Hispanic Black and Puerto Rican women were significantly older at breast cancer diagnosis than their non-Hispanic White and Floridian Hispanic counterparts. The Puerto Rican and non-Hispanic Black groups more frequently had pathology stage T2 or higher primary breast tumors at diagnosis (non-Hispanic Whites [29%], non-Hispanic Blacks [39%], Floridian Hispanics [33%], Puerto Ricans [46%]). The Puerto Rican (73%, 95% CI [66, 82]) and non-Hispanic Black (79%, 95% CI [75, 84]) groups demonstrate reduced 5-year survival compared to non-Hispanic Whites (89%, 95% CI [86, 92]) and Floridian Hispanics (89%, 95% CI [86, 90]). CONCLUSIONS These findings demonstrate that Puerto Rican breast cancer patients suffer significant breast cancer health disparities relative to non-Hispanic Whites and Hispanics from Florida similar to the disparities observed for non-Hispanic Blacks. Future work must seek to better understand and address these disparities.
Collapse
Affiliation(s)
- Abigail E Lantz
- Puerto Rico Biobank, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
- Ponce Health Sciences University, Ponce, Puerto Rico
| | - Ryan Gebert
- Puerto Rico Biobank, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
- Ponce Health Sciences University, Ponce, Puerto Rico
| | - Jiannong Li
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Jose A Oliveras
- Puerto Rico Biobank, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
- Ponce Health Sciences University, Ponce, Puerto Rico
| | - Edna R Gordián
- Puerto Rico Biobank, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
- Ponce Health Sciences University, Ponce, Puerto Rico
| | - Jaileene Perez-Morales
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Steven Eschrich
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Dung-Tsa Chen
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Marilin Rosa
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Julie Dutil
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Harold I Saavedra
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Teresita Muñoz-Antonia
- Puerto Rico Biobank, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
- Ponce Health Sciences University, Ponce, Puerto Rico
| | - Idhaliz Flores
- Puerto Rico Biobank, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
- Ponce Health Sciences University, Ponce, Puerto Rico
| | - William D Cress
- Puerto Rico Biobank, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA.
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.
- Ponce Health Sciences University, Ponce, Puerto Rico.
| |
Collapse
|
4
|
Miyahira AK, Soule HR. The 30th Annual Prostate Cancer Foundation Scientific Retreat Report. Prostate 2024; 84:1271-1289. [PMID: 39021296 DOI: 10.1002/pros.24768] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND The 30th Annual Prostate Cancer Foundation (PCF) Scientific Retreat was held at the Omni La Costa Resort in Carlsbad, CA, from October 26 to 28, 2023. A hybrid component was included for virtual attendees. METHODS The Annual PCF Scientific Retreat is a leading international scientific conference focused on pioneering, unpublished, and impactful studies across the spectrum of basic through clinical prostate cancer research, as well as research from related fields with significant potential for improving prostate cancer research and patient outcomes. RESULTS The 2023 PCF Retreat concentrated on key areas of research, including: (i) the biology of cancer stem cells and prostate cancer lineage plasticity; (ii) mechanisms of treatment resistance; (iii) emerging AI applications in diagnostic medicine; (iv) analytical and computational biology approaches in cancer research; (v) the role of nerves in prostate cancer; (vi) the biology of prostate cancer bone metastases; (vii) the contribution of ancestry and genomics to prostate cancer disparities; (viii) prostate cancer 3D genomics; (ix) progress in new targets and treatments for prostate cancer; (x) the biology and translational applications of tumor extracellular vesicles; (xi) updates from PCF TACTICAL Award teams; (xii) novel platforms for small molecule molecular glues and binding inhibitors; and (xiii) diversity, equity and inclusion strategies for advancing cancer care equity. CONCLUSIONS This meeting report summarizes the presentations and discussions from the 2023 PCF Scientific Retreat. We hope that sharing this information will deepen our understanding of current and emerging research and drive future advancements in prostate cancer patient care.
Collapse
Affiliation(s)
- Andrea K Miyahira
- Department of Science, Prostate Cancer Foundation, Santa Monica, California, USA
| | - Howard R Soule
- Department of Science, Prostate Cancer Foundation, Santa Monica, California, USA
| |
Collapse
|
5
|
Rida P, Baker S, Saidykhan A, Bown I, Jinna N. FOXM1 Transcriptionally Co-Upregulates Centrosome Amplification and Clustering Genes and Is a Biomarker for Poor Prognosis in Androgen Receptor-Low Triple-Negative Breast Cancer. Cancers (Basel) 2024; 16:3191. [PMID: 39335162 PMCID: PMC11429756 DOI: 10.3390/cancers16183191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
There are currently no approved targeted treatments for quadruple-negative breast cancer [QNBC; ER-/PR-/HER2-/androgen receptor (AR)-], a subtype of triple-negative breast cancer (TNBC). AR-low TNBC is more proliferative and clinically aggressive than AR-high TNBC. Centrosome amplification (CA), a cancer hallmark, is rampant in TNBC, where it induces spindle multipolarity-mediated cell death unless centrosome clustering pathways are co-upregulated to avert these sequelae. We recently showed that genes that confer CA and centrosome clustering are strongly overexpressed in AR-low TNBCs relative to AR-high TNBCs. However, the molecular mechanisms that index centrosome clustering to the levels of CA are undefined. We argue that FOXM1, a cell cycle-regulated oncogene, links the expression of genes that drive CA to the expression of genes that act at kinetochores and along microtubules to facilitate centrosome clustering. We provide compelling evidence that upregulation of the FOXM1-E2F1-ATAD2 oncogene triad in AR-low TNBC is accompanied by CA and the co-upregulation of centrosome clustering proteins such as KIFC1, AURKB, BIRC5, and CDCA8, conferring profound dysregulation of cell cycle controls. Targeting FOXM1 in AR-low TNBC may render cancer cells incapable of clustering their centrosomes and impair their ability to generate excess centrosomes. Hence, our review illuminates FOXM1 as a potential actionable target for AR-low TNBC.
Collapse
Affiliation(s)
- Padmashree Rida
- Department of Science, Rowland Hall, Salt Lake City, UT 84102, USA; (P.R.)
| | - Sophia Baker
- Department of Science, Rowland Hall, Salt Lake City, UT 84102, USA; (P.R.)
| | - Adam Saidykhan
- Department of Science, Rowland Hall, Salt Lake City, UT 84102, USA; (P.R.)
| | - Isabelle Bown
- Department of Science, Rowland Hall, Salt Lake City, UT 84102, USA; (P.R.)
| | - Nikita Jinna
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
6
|
Martini R, Davis MB. The DARC side of genetics in cancer: Breast cancer disparities. Am J Hum Genet 2024; 111:1261-1264. [PMID: 38996469 PMCID: PMC11383922 DOI: 10.1016/j.ajhg.2024.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 07/14/2024] Open
Abstract
Highlighting the Distinguished Speakers Symposium on "The Future of Human Genetics and Genomics," this collection of articles is based on presentations at the ASHG 2023 Annual Meeting in Washington, DC, in celebration of all our field has accomplished in the past 75 years, since the founding of ASHG in 1948.
Collapse
Affiliation(s)
- Rachel Martini
- Institute of Translational Genomic Medicine, Morehouse School of Medicine, Atlanta, GA, USA
| | - Melissa B Davis
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
7
|
Oladeru O, Rajack F, Esnakula A, Naab TJ, Kanaan Y, Ricks-Santi L. Beyond Triple-Negative: High Prevalence of Quadruple-Negative Breast Cancer in African Americans. Biomedicines 2024; 12:1522. [PMID: 39062096 PMCID: PMC11275194 DOI: 10.3390/biomedicines12071522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Quadruple-negative breast cancer (QNBC) is a triple-negative breast cancer (TNBC) subtype that lacks expression of the androgen (AR) receptor. Few studies have focused on this highly aggressive breast cancer, portending worse survival rates. We aimed to determine the following: (1) QNBC's molecular and clinical characteristics and compare them with other subtypes and (2) QNBC's association with clinicopathological factors and prognostic markers. We performed immunohistochemical evaluations of ARs on tissue tumor microarrays from FFPE tumor blocks of invasive ductal breast carcinomas in 202 African American women. Univariate analysis was performed using the chi-square test, with survival rates calculated using Kaplan-Meier curves. Overall, 75.8% of TNBCs were AR-negative. Compared to the luminal subtypes, TNBC and QNBC tumors were likely to be a higher grade (p < 0.001); HER2+/AR- and QNBCs were also larger than the other subtypes (p < 0.001). They also expressed increasing mean levels of proteins involved in invasion, such as CD44, fascin, and vimentin, as well as decreasing the expression of proteins involved in mammary differentiation, such as GATA3 and mammaglobin. We found no association between QNBC and stage, recurrence-free survival, or overall survival rates. The high prevalence of TNBC AR-negativity in these women could explain observed worse outcomes, supporting the existence of the unique QNBC subtype.
Collapse
Affiliation(s)
| | - Fareed Rajack
- Department of Pathology, Howard University Hospital, Washington, DC 20059, USA; (F.R.)
| | - Ashwini Esnakula
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Tammey J. Naab
- Department of Pathology, Howard University Hospital, Washington, DC 20059, USA; (F.R.)
| | - Yasmine Kanaan
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA
| | - Luisel Ricks-Santi
- Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL 32610, USA
| |
Collapse
|
8
|
Woriax HE, Thomas SM, Plichta JK, Rosenberger LH, Botty van den Bruele A, Chiba A, Hwang ES, DiNome ML. Racial/Ethnic Disparities in Pathologic Complete Response and Overall Survival in Patients With Triple-Negative Breast Cancer Treated With Neoadjuvant Chemotherapy. J Clin Oncol 2024; 42:1635-1645. [PMID: 38394476 PMCID: PMC11095870 DOI: 10.1200/jco.23.01199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 12/03/2023] [Accepted: 12/15/2023] [Indexed: 02/25/2024] Open
Abstract
PURPOSE Black women have higher rates of death from triple-negative breast cancer (TNBC) than White women. We hypothesized that pathologic complete response (pCR) to neoadjuvant chemotherapy (NAC) and overall survival (OS) may vary by race/ethnicity in patients with TNBC. METHODS We identified women 18 years and older with stage I-III TNBC who received NAC followed by surgery from the National Cancer Database (2010-2019). We excluded patients without race/ethnicity or pathology data. Primary outcomes were pCR rates and OS on the basis of race/ethnicity. RESULTS Forty thousand eight hundred ninety women with TNBC met inclusion criteria (median age [IQR], 53 [44-61] years): 26,150 Non-Hispanic White (64%, NHW), 9,672 Non-Hispanic Black (23.7%, NHB), 3,267 Hispanic (8%), 1,368 Non-Hispanic Asian (3.3%, NHA), and 433 Non-Hispanic Other (1.1%, NHO) patients. Overall, 29.8% demonstrated pCR (NHW: 30.5%, NHB: 27%, Hispanic: 32.6%, NHA: 28.8%, NHO: 29.8%). Unadjusted OS was significantly higher for those with pCR compared with those with residual disease (5-year OS, 0.917 [95% CI, 0.911 to 0.923] v 0.667 [95% CI, 0.661 to 0.673], log-rank P < .001), and this association persisted after adjustment for demographic and tumor factors. The effect of achieving pCR on OS did not differ by race/ethnicity (interaction P = .10). However, NHB patients were less likely (odds ratio [OR], 0.89 [95% CI, 0.83 to 0.95], P = .001) and Hispanic patients were more likely (OR, 1.19 [95% CI, 1.08 to 1.31], P = .001) to achieve pCR than NHW patients. After adjustment for patient and disease factors, including achievement of pCR, Hispanic (hazard ratio [HR], 0.76 [95% CI, 0.69 to 0.85], P < .001) and NHA (HR, 0.64 [95% CI, 0.55 to 0.75], P < .001) race/ethnicity remained associated with OS. CONCLUSION Odds of achieving pCR and OS in patients with TNBC appear to be associated with race/ethnicity. Additional research is necessary to understand how race/ethnicity is associated with rates of pCR and OS, whether related to socioeconomic factors or biologic variables, or both.
Collapse
Affiliation(s)
- Hannah E. Woriax
- Division of Surgical Oncology, Department of Surgery, Duke University School of Medicine, Durham, NC
- Duke Cancer Institute, Durham, NC
| | - Samantha M. Thomas
- Duke Cancer Institute, Durham, NC
- Department of Biostatistics & Bioinformatics, Duke University School of Medicine, Durham, NC
| | - Jennifer K. Plichta
- Division of Surgical Oncology, Department of Surgery, Duke University School of Medicine, Durham, NC
- Duke Cancer Institute, Durham, NC
| | - Laura H. Rosenberger
- Division of Surgical Oncology, Department of Surgery, Duke University School of Medicine, Durham, NC
- Duke Cancer Institute, Durham, NC
| | - Astrid Botty van den Bruele
- Division of Surgical Oncology, Department of Surgery, Duke University School of Medicine, Durham, NC
- Duke Cancer Institute, Durham, NC
| | - Akiko Chiba
- Division of Surgical Oncology, Department of Surgery, Duke University School of Medicine, Durham, NC
- Duke Cancer Institute, Durham, NC
| | - E. Shelley Hwang
- Division of Surgical Oncology, Department of Surgery, Duke University School of Medicine, Durham, NC
- Duke Cancer Institute, Durham, NC
| | - Maggie L. DiNome
- Division of Surgical Oncology, Department of Surgery, Duke University School of Medicine, Durham, NC
- Duke Cancer Institute, Durham, NC
| |
Collapse
|
9
|
Bhat Y, Thrishna MR, Banerjee S. Molecular targets and therapeutic strategies for triple-negative breast cancer. Mol Biol Rep 2023; 50:10535-10577. [PMID: 37924450 DOI: 10.1007/s11033-023-08868-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/29/2023] [Indexed: 11/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is known for its heterogeneous complexity and is often difficult to treat. TNBC lacks the expression of major hormonal receptors like estrogen receptor, progesterone receptor, and human epidermal growth factor receptor-2 and is further subdivided into androgen receptor (AR) positive and AR negative. In contrast, AR negative is also known as quadruple-negative breast cancer (QNBC). Compared to AR-positive TNBC, QNBC has a great scarcity of prognostic biomarkers and therapeutic targets. QNBC shows excessive cellular growth and proliferation of tumor cells due to increased expression of growth factors like EGF and various surface proteins. This study briefly reviews the limited data available as protein biomarkers that can be used as molecular targets in treating TNBC as well as QNBC. Targeted therapy and immune checkpoint inhibitors have recently changed cancer treatment. Many studies in medicinal chemistry continue to focus on the synthesis of novel compounds to discover new antiproliferative medicines capable of treating TNBC despite the abundance of treatments currently on the market. Drug repurposing is one of the therapeutic methods for TNBC that has been examined. Moreover, some additional micronutrients, nutraceuticals, and functional foods may be able to lower cancer risk or slow the spread of malignant diseases that have already been diagnosed with cancer. Finally, nanomedicines, or applications of nanotechnology in medicine, introduce nanoparticles with variable chemistry and architecture for the treatment of cancer. This review emphasizes the most recent research on nutraceuticals, medication repositioning, and novel therapeutic strategies for the treatment of TNBC.
Collapse
Affiliation(s)
- Yashasvi Bhat
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - M R Thrishna
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Satarupa Banerjee
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
10
|
Jinna N, Yuan YC, Rida P. Kinesin Family Member C1 (KIFC1/HSET) Underlies Aggressive Disease in Androgen Receptor-Low and Basal-Like Triple-Negative Breast Cancers. Int J Mol Sci 2023; 24:16072. [PMID: 38003261 PMCID: PMC10671256 DOI: 10.3390/ijms242216072] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Quadruple-negative breast cancer (QNBC) lacks traditional actionable targets, including androgen receptor (AR). QNBC disproportionately afflicts and impacts patients of African genetic ancestry. Kinesin family member C1 (KIFC1/HSET), a centrosome clustering protein that prevents cancer cells from undergoing centrosome-amplification-induced apoptosis, has been reported to be upregulated in TNBCs and African-American (AA) TNBCs. Herein, we analyzed KIFC1 RNA levels and their associations with clinical features and outcomes among AR-low and AR-high TNBC tumors in three distinct publicly available gene expression datasets and in the breast cancer gene expression database (bc-GenExMiner). KIFC1 levels were significantly higher in AR-low and basal-like TNBCs than in AR-high and non-basal-like TNBCs, irrespective of the stage, grade, tumor size, and lymph node status. KIFC1 levels were also upregulated in AR-low tumors relative to AR-high tumors among Black and premenopausal women with TNBC. High KIFC1 levels conferred significantly shorter overall survival, disease-free survival, and distant metastasis-free survival among AR-low and basal-like TNBC patients in Kaplan-Meier analyses. In conclusion, KIFC1 levels may be upregulated in AR-low tumors and, specifically, in those of African descent, wherein it may promote poor outcomes. KIFC1 may be an actionable cancer-cell-specific target for the AR-low TNBC subpopulation and could aid in alleviating racial disparities in TNBC outcomes.
Collapse
Affiliation(s)
- Nikita Jinna
- Department of Population Science, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Yate-Ching Yuan
- Department of Integrative Genomics and Bioinformatics, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | - Padmashree Rida
- Department of Science, Rowland Hall, Salt Lake City, UT 84102, USA;
| |
Collapse
|
11
|
Ensenyat-Mendez M, Solivellas-Pieras M, Llinàs-Arias P, Íñiguez-Muñoz S, Baker JL, Marzese DM, DiNome ML. Epigenetic Profiles of Triple-Negative Breast Cancers of African American and White Females. JAMA Netw Open 2023; 6:e2335821. [PMID: 37796506 PMCID: PMC10556970 DOI: 10.1001/jamanetworkopen.2023.35821] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/22/2023] [Indexed: 10/06/2023] Open
Abstract
Importance Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype and appears to have disproportionately higher incidence and worse outcomes among younger African American females. Objective To investigate whether epigenetic differences exist in TNBCs of younger African American females that may explain clinical disparities seen in this patient group. Design, Setting, and Participants This cross-sectional study used clinical, demographic, DNA methylation (HumanMethylation450; Illumina), and gene expression (RNA sequencing) data for US patient populations from publicly available data repositories (The Cancer Genome Atlas [TCGA], 2006-2012, and Gene Expression Omnibus [GEO], 2004-2013) accessed on April 13, 2021. White and African American females with TNBC identified in TCGA (69 patients) and a validation cohort of 210 African American patients from GEO (GSE142102) were included. Patients without available race or age data were excluded. Data were analyzed from September 2022 through April 2023. Main Outcomes and Measures DNA methylation and gene expression profiles of TNBC tumors by race (self-reported) and age were assessed. Age was considered a dichotomous variable using age 50 years as the cutoff (younger [<50 years] vs older [≥50 years]). Results A total of 69 female patients (34 African American [49.3%] and 35 White [50.7%]; mean [SD; range] age, 55.7 [11.6; 29-82] years) with TNBC were included in the DNA methylation analysis; these patients and 210 patients in the validation cohort were included in the gene expression analysis (279 patients). There were 1115 differentially methylated sites among younger African American females. The DNA methylation landscape on TNBC tumors in this population had increased odds of enrichment of hormone (odds ratio [OR], 1.82; 95% CI, 1.21 to 2.67; P = .003), muscle (OR, 1.85; 95% CI, 1.44 to 2.36; P < .001), and proliferation (OR, 3.14; 95% CI, 2.71 to 3.64; P < .001) pathways vs other groups (older African American females and all White females). Alterations in regulators of these molecular features in TNBCs of younger African American females were identified involving hormone modulation (downregulation of androgen receptor: fold change [FC] = -2.93; 95% CI, -4.76 to -2.11; P < .001) and upregulation of estrogen-related receptor α (FC = 0.86; 95% CI, 0.34 to 1.38; P = .002), muscle metabolism (upregulation of FOXC1: FC = 1.33; 95% CI, 0.62 to 2.03; P < .001), and proliferation mediators (upregulation of NOTCH1: FC = 0.71; 95% CI, 0.23 to 1.19; P = .004 and MYC (FC = 0.81; 95% CI, 0.18 to 1.45; P = .01). Conclusions and Relevance These findings suggest that TNBC of younger African American females may represent a distinct epigenetic entity and offer novel insight into molecular alterations associated with TNBCs of this population. Understanding these epigenetic differences may lead to the development of more effective therapies for younger African American females, who have the highest incidence and worst outcomes from TNBC of any patient group.
Collapse
Affiliation(s)
- Miquel Ensenyat-Mendez
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Health Research Institute of the Balearic Islands, Palma, Spain
| | - Maria Solivellas-Pieras
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Health Research Institute of the Balearic Islands, Palma, Spain
| | - Pere Llinàs-Arias
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Health Research Institute of the Balearic Islands, Palma, Spain
| | - Sandra Íñiguez-Muñoz
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Health Research Institute of the Balearic Islands, Palma, Spain
| | - Jennifer L. Baker
- Department of Surgery, David Geffen School of Medicine, University California, Los Angeles
| | - Diego M. Marzese
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Health Research Institute of the Balearic Islands, Palma, Spain
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Maggie L. DiNome
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
12
|
Jinna ND, Van Alsten S, Rida P, Seewaldt VL, Troester MA. Molecular features of androgen-receptor low, estrogen receptor-negative breast cancers in the Carolina breast cancer study. Breast Cancer Res Treat 2023; 201:171-181. [PMID: 37438515 PMCID: PMC10361868 DOI: 10.1007/s10549-023-07014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/19/2023] [Indexed: 07/14/2023]
Abstract
PURPOSE Androgen receptor (AR) expression is absent in 40-90% of estrogen receptor (ER)-negative breast cancers. The prognostic value of AR in ER-negative patients and therapeutic targets for patients absent in AR remains poorly explored. METHODS We used an RNA-based multigene classifier to identify AR-low and AR-high ER-negative participants in the Carolina Breast Cancer Study (CBCS; N = 669) and The Cancer Genome Atlas (TCGA; N = 237). We compared AR-defined subgroups by demographics, tumor characteristics, and established molecular signatures [PAM50 risk of recurrence (ROR), homologous recombination deficiency (HRD), and immune response]. RESULTS AR-low tumors were more prevalent among younger (RFD = + 10%, 95% CI = 4% to 16%) participants in CBCS and were associated with HER2 negativity (RFD = - 35%, 95% CI = - 44% to - 26%), higher grade (RFD = + 17%, 95% CI = 8% to 26%), and higher risk of recurrence scores (RFD = + 22%, 95% CI = 16.1% to 28%), with similar results in TCGA. The AR-low subgroup was strongly associated with HRD in CBCS (RFD = + 33.3%, 95% CI = 23.8% to 43.2%) and TCGA (RFD = + 41.5%, 95% CI = 34.0% to 48.6%). In CBCS, AR-low tumors had high adaptive immune marker expression. CONCLUSION Multigene, RNA-based low AR expression is associated with aggressive disease characteristics as well as DNA repair defects and immune phenotypes, suggesting plausible precision therapies for AR-low, ER-negative patients.
Collapse
Affiliation(s)
- Nikita D Jinna
- Department of Population Sciences, City of Hope Beckman Research Institute, Duarte, CA, 91010, USA.
| | - Sarah Van Alsten
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Padmashree Rida
- Department of Science, Rowland Hall, Salt Lake City, UT, 84102, USA
| | - Victoria L Seewaldt
- Department of Population Sciences, City of Hope Beckman Research Institute, Duarte, CA, 91010, USA
| | - Melissa A Troester
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
13
|
Iyer HS, Zeinomar N, Omilian AR, Perlstein M, Davis MB, Omene CO, Pawlish K, Demissie K, Hong CC, Yao S, Ambrosone CB, Bandera EV, Qin B. Neighborhood Disadvantage, African Genetic Ancestry, Cancer Subtype, and Mortality Among Breast Cancer Survivors. JAMA Netw Open 2023; 6:e2331295. [PMID: 37647068 PMCID: PMC10469269 DOI: 10.1001/jamanetworkopen.2023.31295] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023] Open
Abstract
Importance Racial disparities in breast cancer (BC) survival arise from multilevel causes, which may exert influence at different stages of BC progression. Clarifying the importance of genetic and social factors could help prioritize interventions. Objective To jointly examine associations between African genetic ancestry, social environment, and mortality from any cause and BC in Black BC survivors. Design, Setting, and Participants This population-based cohort study enrolled self-identified Black women aged 20 to 75 years with histologically confirmed BC from June 2005 to May 2019 and followed them up until death or censoring in September 2021. Participants lived in 10 New Jersey counties. Data were analyzed between December 2022 and April 2023. Exposures A neighborhood socioeconomic status (nSES) index composed of census tract measures (education, income, wealth, employment status, and occupation) was linked to residential addresses at diagnosis. Percentage African ancestry was estimated using the ADMIXTURE program. Main Outcomes and Measures Sequentially adjusted (age adjusted: age and interview year; fully adjusted: age adjusted with individual SES, lifestyle factors, and comorbidities) logistic regression models were fit to estimate associations with tumor subtypes (estrogen receptor-negative [ER-] vs estrogen receptor-positive [ER+]; triple-negative breast cancer [TNBC] vs luminal A), and Cox models were fit for associations with all-cause mortality (ACM) and breast cancer-specific mortality (BCSM). Models for BCSM were fit using Fine-Gray competing risks models, and robust standard errors were used to account for census tract-level clustering. Results Among 1575 participants, median (IQR) African ancestry was 85% (76%-90%), and median (IQR) age was 55 (46-63) years. A 10-percentage point increase in African ancestry was associated with higher odds of ER- vs ER+ (adjusted odds ratio [aOR], 1.08; 95% CI, 0.98-1.18) and TNBC vs luminal (aOR, 1.15; 95% CI, 1.02-1.31) tumors, but not with ACM or BCSM. A 1-IQR increase in nSES was associated with lower ACM (adjusted hazard ratio [aHR], 0.76; 95% CI, 0.63-0.93), and the HR for BCSM was less than 1 but not statistically significant (aHR, 0.81; 95% CI, 0.62-1.04) in age-adjusted models, but associations attenuated following further adjustment for potential mediators (individual SES, lifestyles, comorbidities). Conclusions and Relevance In this cohort study of Black female BC survivors, higher African ancestry was associated with aggressive tumor subtypes. Compared with genetic ancestry, mediating pathways related to social environments may be more important for survival in these patients.
Collapse
Affiliation(s)
- Hari S. Iyer
- Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, New Brunswick
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Nur Zeinomar
- Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, New Brunswick
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Angela R. Omilian
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Marley Perlstein
- Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, New Brunswick
| | - Melissa B. Davis
- Institute of Genomic Medicine, Morehouse School of Medicine, Atlanta, Georgia
| | - Coral O. Omene
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
- Rutgers Cancer Institute of New Jersey, New Brunswick
| | - Karen Pawlish
- Cancer Epidemiology Services, New Jersey State Cancer Registry, New Jersey Department of Health, Trenton
| | - Kitaw Demissie
- Department of Epidemiology and Biostatistics, SUNY Downstate Health Sciences University School of Public Health, Brooklyn, New York
| | - Chi-Chen Hong
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Christine B. Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Elisa V. Bandera
- Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, New Brunswick
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Bo Qin
- Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, New Brunswick
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| |
Collapse
|
14
|
Zhou D, Li M, Yasin MH, Lu Q, Fu J, Jiang K, Hong R, Wang S, Xu F. The prognostic value and immune microenvironment association of AR in HER2+ nonmetastatic breast cancer. NPJ Breast Cancer 2023; 9:30. [PMID: 37085500 PMCID: PMC10121570 DOI: 10.1038/s41523-023-00527-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/30/2023] [Indexed: 04/23/2023] Open
Abstract
This study aimed to investigate the prognostic value of AR in HER2+ nonmetastatic breast invasive ductal carcinoma (IDC) and its relationship with the immune microenvironment. HER2+ nonmetastatic breast IDC patients diagnosed by pathology who underwent surgery at Sun Yat-sen University Cancer Center from 2016 to 2017 were included. AR+ and AR- breast IDC samples were matched 1:1 in age, T stage, and N stage for immune infiltration analysis. A total of 554 patients with HER2+ nonmetastatic breast cancer were included in this retrospective study, regardless of HR status. The cut-off value for AR was set at 10%. ER+ (p < 0.001) and PR+ (p < 0.001) were associated with positive AR expression. Kaplan-Meier survival curve analysis suggested that AR was closely correlated with overall survival (OS) (p = 0.001) but not disease-free survival (DFS) (p = 0.051). After eliminating the potential impact caused by HR, AR also predicted longer OS (p = 0.014) and was an independent predictive factor for OS of HER2+HR- nonmetastatic breast IDC patients, as revealed by multivariate analysis (p = 0.036). For AR+ and AR- matched HER2+HR- patients, TILs (p = 0.043) and PD-L1 (p = 0.027) levels were significantly lower in AR+ patients. The strongest negative correlation was observed between AR and PD-L1 (Pearson's r = -0.299, p = 0.001). AR+ status was markedly related to better OS in HER2+HR- nonmetastatic breast cancer patients, while a negative correlation was observed between AR and PD-L1/TILs. We provide new insights into the prognostic value of AR and its association with the immune microenvironment to optimize treatment strategies in HER2+ nonmetastatic breast IDCs.
Collapse
Affiliation(s)
- Danyang Zhou
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Mei Li
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510000, China
| | - Mohamed Hussein Yasin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Qianyi Lu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jia Fu
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510000, China
| | - Kuikui Jiang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ruoxi Hong
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shusen Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Fei Xu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
15
|
Ahmed MSU, Lord BD, Adu Addai B, Singhal SK, Gardner K, Salam AB, Ghebremedhin A, White J, Mahmud I, Martini R, Bedi D, Lin H, Jones JD, Karanam B, Dean-Colomb W, Grizzle W, Wang H, Davis M, Yates CC. Immune Profile of Exosomes in African American Breast Cancer Patients Is Mediated by Kaiso/THBS1/CD47 Signaling. Cancers (Basel) 2023; 15:cancers15082282. [PMID: 37190208 DOI: 10.3390/cancers15082282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
African American (AA) women with breast cancer are more likely to have higher inflammation and a stronger overall immune response, which correlate with poorer outcomes. In this report, we applied the nanostring immune panel to identify differences in inflammatory and immune gene expression by race. We observed a higher expression of multiple cytokines in AA patients compared to EA patients, with high expression of CD47, TGFB1, and NFKB1 associated with the transcriptional repressor Kaiso. To investigate the mechanism associated with this expression pattern, we observed that Kaiso depletion results in decreased expression of CD47, and its ligand SIRPA. Furthermore, Kaiso appears to directly bind to the methylated sequences of the THBS1 promotor and repress gene expression. Similarly, Kaiso depletion attenuated tumor formation in athymic nude mice, and these Kaiso-depleted xenograft tissues showed significantly higher phagocytosis and increased infiltration of M1 macrophages. In vitro validation using MCF7 and THP1 macrophages treated with Kaiso-depleted exosomes showed a reduced expression of immune-related markers (CD47 and SIRPA) and macrophage polarization towards the M1 phenotype compared to MCF7 cells treated with exosomes isolated from high-Kaiso cells. Lastly, analysis of TCGA breast cancer patient data demonstrates that this gene signature is most prominent in the basal-like subtype, which is more frequently observed in AA breast cancer patients.
Collapse
Affiliation(s)
- Md Shakir Uddin Ahmed
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
- Bangladesh Council of Scientific and Industrial Research, Dhaka 1205, Bangladesh
| | - Brittany D Lord
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Benjamin Adu Addai
- School of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA
| | - Sandeep K Singhal
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
- Department of Biomedical Engineering, School of Electrical Engineering and Computer Science, University of North Dakota, Grand Forks, ND 58202, USA
| | - Kevin Gardner
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Ahmad Bin Salam
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Anghesom Ghebremedhin
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Jason White
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Iqbal Mahmud
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Rachel Martini
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Deepa Bedi
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Huixian Lin
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Jacqueline D Jones
- Department of Biological and Environmental Sciences, Troy University, Troy, AL 36082, USA
| | | | - Windy Dean-Colomb
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
- Piedmont Oncology-Newnan, Newnan, GA 30265, USA
| | - William Grizzle
- Department of Pathology, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Honghe Wang
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Melissa Davis
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Clayton C Yates
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
16
|
Jinna N, Van Alsten S, Rida P, Seewaldt V, Troester M. Molecular Features of Androgen-Receptor Low, Estrogen Receptor-Negative Breast Cancers in the Carolina Breast Cancer Study. RESEARCH SQUARE 2023:rs.3.rs-2693555. [PMID: 36993425 PMCID: PMC10055609 DOI: 10.21203/rs.3.rs-2693555/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
PURPOSE Androgen receptor (AR) expression is absent in 40-90% of estrogen receptor (ER)-negative breast cancers. The prognostic value of AR in ER-negative patients and therapeutic targets for patients absent in AR remains poorly explored. METHODS We used an RNA-based multigene classifier to identify AR-low and AR-high ER-negative participants in the Carolina Breast Cancer Study (CBCS; n=669) and The Cancer Genome Atlas (TCGA; n=237). We compared AR-defined subgroups by demographics, tumor characteristics, and established molecular signatures [PAM50 risk of recurrence (ROR), homologous recombination deficiency (HRD), and immune response]. RESULTS AR-low tumors were more prevalent among Black (relative frequency difference (RFD) = +7%, 95% CI = 1% to 14%) and younger (RFD = +10%, 95% CI = 4% to 16%) participants in CBCS and were associated with HER2-negativity (RFD = -35%, 95% CI = -44% to -26%), higher grade (RFD = +17%, 95% CI = 8% to 26%), and higher risk of recurrence scores (RFD = +22%, 95% CI = 16.1% to 28%), with similar results in TCGA. The AR-low subgroup was strongly associated with HRD in CBCS (RFD = +33.3%, 95% CI = 23.8% to 43.2%) and TCGA (RFD = +41.5%, 95% CI = 34.0% to 48.6%). In CBCS, AR-low tumors had high adaptive immune marker expression. CONCLUSION Multigene, RNA-based low AR expression is associated with aggressive disease characteristics as well as DNA repair defects and immune phenotypes, suggesting plausible precision therapies for AR-low, ER-negative patients.
Collapse
Affiliation(s)
| | | | | | | | - Melissa Troester
- UNC-Chapel Hill: The University of North Carolina at Chapel Hill
| |
Collapse
|
17
|
Systemically Identifying Triple-Negative Breast Cancer Subtype-Specific Prognosis Signatures, Based on Single-Cell RNA-Seq Data. Cells 2023; 12:cells12030367. [PMID: 36766710 PMCID: PMC9913740 DOI: 10.3390/cells12030367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 01/21/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly heterogeneous disease with different molecular subtypes. Although progress has been made, the identification of TNBC subtype-associated biomarkers is still hindered by traditional RNA-seq or array technologies, since bulk data detected by them usually have some non-disease tissue samples, or they are confined to measure the averaged properties of whole tissues. To overcome these constraints and discover TNBC subtype-specific prognosis signatures (TSPSigs), we proposed a single-cell RNA-seq-based bioinformatics approach for identifying TSPSigs. Notably, the TSPSigs we developed mostly were found to be disease-related and involved in cancer development through investigating their enrichment analysis results. In addition, the prognostic power of TSPSigs was successfully confirmed in four independent validation datasets. The multivariate analysis results showed that TSPSigs in two TNBC subtypes-BL1 and LAR, were two independent prognostic factors. Further, analysis results of the TNBC cell lines revealed that the TSPSigs expressions and drug sensitivities had significant associations. Based on the preceding data, we concluded that TSPSigs could be exploited as novel candidate prognostic markers for TNBC patients and applied to individualized treatment in the future.
Collapse
|
18
|
Angajala A, Raymond H, Muhammad A, Uddin Ahmed MS, Haleema S, Haque M, Wang H, Campbell M, Martini R, Karanam B, Kahn AG, Bedi D, Davis M, Tan M, Dean-Colomb W, Yates C. MicroRNAs within the Basal-like signature of Quadruple Negative Breast Cancer impact overall survival in African Americans. Sci Rep 2022; 12:22178. [PMID: 36550153 PMCID: PMC9780260 DOI: 10.1038/s41598-022-26000-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
We previously found that QNBC tumors are more frequent in African Americans compared to TNBC tumors. To characterize this subtype further, we sought to determine the miRNA-mRNA profile in QNBC patients based on race. Both miRNA and mRNA expression data were analyzed from TCGA and validated using datasets from the METABRIC, TCGA proteomic, and survival analysis by KMPLOT. miRNA-mRNAs which include FOXA1 and MYC (mir-17/20a targets); GATA3 and CCNG2 (mir-135b targets); CDKN2A, CDK6, and B7-H3 (mir-29c targets); and RUNX3, KLF5, IL1-β, and CTNNB1 (mir-375 targets) were correlated with basal-like and immune subtypes in QNBC patients and associated with a worse survival. Thus, QNBC tumors have an altered gene signature implicated in racial disparity and poor survival.
Collapse
Affiliation(s)
- Anusha Angajala
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL, 36088, USA
- Department of Pathology, University of South Alabama, Mobile, AL, 36604, USA
| | - Hughley Raymond
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL, 36088, USA
| | - Aliyu Muhammad
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL, 36088, USA
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, 810107, Kaduna State, Nigeria
| | - Md Shakir Uddin Ahmed
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL, 36088, USA
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Saadia Haleema
- Department of Pathology, University of South Alabama, Mobile, AL, 36604, USA
| | - Monira Haque
- Department of Pathology, University of South Alabama, Mobile, AL, 36604, USA
| | - Honghe Wang
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL, 36088, USA
| | - Moray Campbell
- Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Rachel Martini
- Department of Surgery, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Balasubramanian Karanam
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL, 36088, USA
| | - Andrea G Kahn
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, 35249-7331, USA
| | - Deepa Bedi
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL, 36088, USA
| | - Melissa Davis
- Department of Surgery, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Ming Tan
- Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan
| | - Windy Dean-Colomb
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL, 36088, USA
- Department of Hematology/Oncology, Piedmont Hospital, Newnan, GA, 30265, USA
| | - Clayton Yates
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL, 36088, USA.
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21218, USA.
- Cancer Genetics and Epigenetics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, The Bunting-Blaustein Cancer Research Building 1, 1650 Orleans Street - Room 1M44, Baltimore, MD, 21287-0013, USA.
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA.
| |
Collapse
|
19
|
Jinna N, Rida P, Su T, Gong Z, Yao S, LaBarge M, Natarajan R, Jovanovic-Talisman T, Ambrosone C, Seewaldt V. The DARC Side of Inflamm-Aging: Duffy Antigen Receptor for Chemokines (DARC/ACKR1) as a Potential Biomarker of Aging, Immunosenescence, and Breast Oncogenesis among High-Risk Subpopulations. Cells 2022; 11:cells11233818. [PMID: 36497078 PMCID: PMC9740232 DOI: 10.3390/cells11233818] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
The proclivity of certain pre-malignant and pre-invasive breast lesions to progress while others do not continues to perplex clinicians. Clinicians remain at a crossroads with effectively managing the high-risk patient subpopulation owing to the paucity of biomarkers that can adequately risk-stratify and inform clinical decisions that circumvent unnecessary administration of cytotoxic and invasive treatments. The immune system mounts the most important line of defense against tumorigenesis and progression. Unfortunately, this defense declines or "ages" over time-a phenomenon known as immunosenescence. This results in "inflamm-aging" or the excessive infiltration of pro-inflammatory chemokines, which alters the leukocyte composition of the tissue microenvironment, and concomitant immunoediting of these leukocytes to diminish their antitumor immune functions. Collectively, these effects can foster the sequelae of neoplastic transformation and progression. The erythrocyte cell antigen, Duffy antigen receptor for chemokines(DARC/ACKR1), binds and internalizes chemokines to maintain homeostatic levels and modulate leukocyte trafficking. A negative DARC status is highly prevalent among subpopulations of West African genetic ancestry, who are at higher risk of developing breast cancer and disease progression at a younger age. However, the role of DARC in accelerated inflamm-aging and malignant transformation remains underexplored. Herein, we review compelling evidence suggesting that DARC may be protective against inflamm-aging and, therefore, reduce the risk of a high-risk lesion progressing to malignancy. We also discuss evidence supporting that immunotherapeutic intervention-based on DARC status-among high-risk subpopulations may evade malignant transformation and progression. A closer look into this unique role of DARC could glean deeper insight into the immune response profile of individual high-risk patients and their predisposition to progress as well as guide the administration of more "cyto-friendly" immunotherapeutic intervention to potentially "turn back the clock" on inflamm-aging-mediated oncogenesis and progression.
Collapse
Affiliation(s)
- Nikita Jinna
- Department of Population Science, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Padmashree Rida
- Department of Science, Rowland Hall, Salt Lake City, UT 84102, USA
| | - Tianyi Su
- Department of Science, Rowland Hall, Salt Lake City, UT 84102, USA
| | - Zhihong Gong
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Mark LaBarge
- Department of Population Science, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | | | - Christine Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Victoria Seewaldt
- Department of Population Science, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
- Correspondence:
| |
Collapse
|
20
|
Martini R, Delpe P, Chu TR, Arora K, Lord B, Verma A, Bedi D, Karanam B, Elhussin I, Chen Y, Gebregzabher E, Oppong JK, Adjei EK, Jibril Suleiman A, Awuah B, Muleta MB, Abebe E, Kyei I, Aitpillah FS, Adinku MO, Ankomah K, Osei-Bonsu EB, Chitale DA, Bensenhaver JM, Nathanson DS, Jackson L, Petersen LF, Proctor E, Stonaker B, Gyan KK, Gibbs LD, Monojlovic Z, Kittles RA, White J, Yates CC, Manne U, Gardner K, Mongan N, Cheng E, Ginter P, Hoda S, Elemento O, Robine N, Sboner A, Carpten JD, Newman L, Davis MB. African Ancestry-Associated Gene Expression Profiles in Triple-Negative Breast Cancer Underlie Altered Tumor Biology and Clinical Outcome in Women of African Descent. Cancer Discov 2022; 12:2530-2551. [PMID: 36121736 PMCID: PMC9627137 DOI: 10.1158/2159-8290.cd-22-0138] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/17/2022] [Accepted: 08/23/2022] [Indexed: 01/12/2023]
Abstract
Women of sub-Saharan African descent have disproportionately higher incidence of triple-negative breast cancer (TNBC) and TNBC-specific mortality across all populations. Population studies show racial differences in TNBC biology, including higher prevalence of basal-like and quadruple-negative subtypes in African Americans (AA). However, previous investigations relied on self-reported race (SRR) of primarily U.S. populations. Due to heterogeneous genetic admixture and biological consequences of social determinants, the true association of African ancestry with TNBC biology is unclear. To address this, we conducted RNA sequencing on an international cohort of AAs, as well as West and East Africans with TNBC. Using comprehensive genetic ancestry estimation in this African-enriched cohort, we found expression of 613 genes associated with African ancestry and 2,000+ associated with regional African ancestry. A subset of African-associated genes also showed differences in normal breast tissue. Pathway enrichment and deconvolution of tumor cellular composition revealed that tumor-associated immunologic profiles are distinct in patients of African descent. SIGNIFICANCE Our comprehensive ancestry quantification process revealed that ancestry-associated gene expression profiles in TNBC include population-level distinctions in immunologic landscapes. These differences may explain some differences in race-group clinical outcomes. This study shows the first definitive link between African ancestry and the TNBC immunologic landscape, from an African-enriched international multiethnic cohort. See related commentary by Hamilton et al., p. 2496. This article is highlighted in the In This Issue feature, p. 2483.
Collapse
Affiliation(s)
- Rachel Martini
- Department of Surgery, Weill Cornell Medical College, New York, New York
- Department of Genetics, University of Georgia, Athens, Georgia
| | - Princesca Delpe
- Englander Institute for Precision Medicine, Weill Cornell Medical College, New York, New York
| | | | | | - Brittany Lord
- Department of Surgery, Weill Cornell Medical College, New York, New York
- Department of Genetics, University of Georgia, Athens, Georgia
| | - Akanksha Verma
- Englander Institute for Precision Medicine, Weill Cornell Medical College, New York, New York
| | - Deepa Bedi
- Department of Biomedical Sciences, Tuskegee University, Tuskegee, Alabama
| | | | - Isra Elhussin
- Center for Cancer Research, Tuskegee University, Tuskegee, Alabama
| | - Yalei Chen
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan
| | - Endale Gebregzabher
- Department of Biochemistry, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Joseph K. Oppong
- Department of Surgery, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Ernest K. Adjei
- Department of Pathology, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Aisha Jibril Suleiman
- Department of Pathology, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Baffour Awuah
- Directorate of Oncology, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Mahteme Bekele Muleta
- Department of Surgery, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Engida Abebe
- Department of Surgery, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Ishmael Kyei
- Department of Surgery, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Frances S. Aitpillah
- Department of Surgery, Komfo Anokye Teaching Hospital, Kumasi, Ghana
- Department of Surgery, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Michael O. Adinku
- Department of Surgery, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kwasi Ankomah
- Directorate of Radiology, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | | | | | | | | | - LaToya Jackson
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan
| | | | - Erica Proctor
- Department of Surgery, Henry Ford Health System, Detroit, Michigan
| | - Brian Stonaker
- Department of Surgery, Weill Cornell Medical College, New York, New York
| | - Kofi K. Gyan
- Department of Surgery, Weill Cornell Medical College, New York, New York
| | - Lee D. Gibbs
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Zarko Monojlovic
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Rick A. Kittles
- Department of Population Sciences, City of Hope, Duarte, California
| | - Jason White
- Department of Biology, Tuskegee University, Tuskegee, Alabama
| | - Clayton C. Yates
- Center for Cancer Research, Tuskegee University, Tuskegee, Alabama
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kevin Gardner
- Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Nigel Mongan
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- Department of Pharmacology, Weill Cornell Medical College, New York, New York
| | - Esther Cheng
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
| | - Paula Ginter
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
| | - Syed Hoda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Weill Cornell Medical College, New York, New York
- Institute of Computational Biomedicine, Weill Cornell Medical College, New York, New York
| | | | - Andrea Sboner
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
| | - John D. Carpten
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Lisa Newman
- Department of Surgery, Weill Cornell Medical College, New York, New York
| | - Melissa B. Davis
- Department of Surgery, Weill Cornell Medical College, New York, New York
- Department of Genetics, University of Georgia, Athens, Georgia
- Englander Institute for Precision Medicine, Weill Cornell Medical College, New York, New York
- New York Genome Center, New York, New York
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan
| |
Collapse
|
21
|
Racial Disparity in Quadruple Negative Breast Cancer: Aggressive Biology and Potential Therapeutic Targeting and Prevention. Cancers (Basel) 2022; 14:cancers14184484. [PMID: 36139643 PMCID: PMC9497140 DOI: 10.3390/cancers14184484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Quadruple negative breast cancer (QNBC), a subgroup of triple negative BC, has emerged as a highly aggressive BC subtype that disproportionately afflicts and impacts Black/African-American (AA) women. In this article, we review molecular distinctions in Black/AA and White/European-American (EA) QNBC biology as well as address potential non-genetic risk factors that could be underlying this racially disparate burden. We aim to provide deeper insight and provide a framework for novel discovery of actionable therapeutic targets and identify lifestyle changes to improve outcomes for Black/AA QNBC patients. Abstract Black/African-American (AA) women, relative to their White/European-American (EA) counterparts, experience disproportionately high breast cancer mortality. Central to this survival disparity, Black/AA women have an unequal burden of aggressive breast cancer subtypes, such as triple-negative breast cancer (ER/PR-, HER2-wild type; TNBC). While TNBC has been well characterized, recent studies have identified a highly aggressive androgen receptor (AR)-negative subtype of TNBC, quadruple-negative breast cancer (ER/PR-, HER2-wildtype, AR-; QNBC). Similar to TNBC, QNBC disproportionately impacts Black/AA women and likely plays an important role in the breast cancer survival disparities experienced by Black/AA women. Here, we discuss the racial disparities of QNBC and molecular signaling pathways that may contribute to the aggressive biology of QNBC in Black/AA women. Our immediate goal is to spotlight potential prevention and therapeutic targets for Black/AA QNBC; ultimately our goal is to provide greater insight into reducing the breast cancer survival burden experienced by Black/AA women.
Collapse
|
22
|
Muhammad A, Forcados GE, Katsayal BS, Bako RS, Aminu S, Sadiq IZ, Abubakar MB, Yusuf AP, Malami I, Faruk M, Ibrahim S, Pase PA, Ahmed S, Abubakar IB, Abubakar M, Yates C. Potential epigenetic modifications implicated in triple- to quadruple-negative breast cancer transition: a review. Epigenomics 2022; 14:711-726. [PMID: 35473304 DOI: 10.2217/epi-2022-0033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Current research on triple-negative breast cancer (TNBC) has resulted in delineation into the quadruple-negative breast cancer (QNBC) subgroup. Epigenetic modifications such as DNA methylation, histone posttranslational modifications and associated changes in chromatin architecture have been implicated in breast cancer pathogenesis. Herein, the authors highlight genes with observed epigenetic modifications that are associated with more aggressive TNBC/QNBC pathogenesis and possible interventions. Advanced literature searches were done on PubMed/MEDLINE, Scopus and Google Scholar. The results suggest that nine epigenetically altered genes/differentially expressed proteins in addition to the downregulated androgen receptor are associated with TNBC aggressiveness and could be implicated in the TNBC to QNBC transition. Thus, restoring the normal expression of these genes via epigenetic reprogramming could be therapeutically beneficial to TNBC and QNBC patients.
Collapse
Affiliation(s)
- Aliyu Muhammad
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria.,Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
| | | | - Babangida Sanusi Katsayal
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Rabiatu Suleiman Bako
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Suleiman Aminu
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Idris Zubairu Sadiq
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Murtala Bello Abubakar
- Department of Physiology, Usmanu Danfodiyo University, P.M.B 2254, Sokoto, Sokoto State, Nigeria.,Centre for Advanced Medical Research & Training (CAMRET), Usmanu Danfodiyo University, P.M.B 2254, Sokoto, Sokoto State, Nigeria
| | | | - Ibrahim Malami
- Department of Pharmacognosy & Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, P.M.B 2254, Sokoto, Nigeria.,Centre for Advanced Medical Research & Training (CAMRET), Usmanu Danfodiyo University, P.M.B 2254, Sokoto, Sokoto State, Nigeria
| | - Mohammed Faruk
- Department of Pathology, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Sani Ibrahim
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Peter Abur Pase
- Department of Surgery, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Saad Ahmed
- Department of Pathology, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Ibrahim Babangida Abubakar
- Deparment of Biochemistry, Kebbi State University of Science & Technology, PMB 1144, Aliero, Kebbi State, Nigeria
| | - Murtala Abubakar
- Department of Pathology, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Clayton Yates
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
| |
Collapse
|
23
|
Melo-Uribe MA, Serrano-Gómez SJ, Abaunza Chagin MC. Androgen receptor expression and prognosis in Hispanic/Latino women with triple negative breast cancer. REVISTA ESPANOLA DE PATOLOGIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ANATOMIA PATOLOGICA Y DE LA SOCIEDAD ESPANOLA DE CITOLOGIA 2022; 55:96-104. [PMID: 35483775 DOI: 10.1016/j.patol.2021.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 06/14/2023]
Abstract
INTRODUCTION AND OBJECTIVE Triple-negative breast cancer (TNBC) is an aggressive subtype that has no available molecular targets. It occurs most often in premenopausal African-American and Hispanic/Latino women. In Colombia, its prevalence has been reported to be 20.6%. Androgen receptor (AR) belongs to the steroid nuclear receptor family and has been recently considered a potential biomarker for breast cancer. Considering the high prevalence of TNBC in Colombian women and the lack of knowledge of AR expression, our aim was to determine the frequency of AR expression and its association with pathological variables. MATERIALS AND METHODS 149 women diagnosed with TNBC between 2011 and 2014 were included. Clinical and pathological data were obtained from medical and pathology reports. Information on hormone receptor status, Ki67 expression and HER2 was reevaluated by a pathologist. AR expression was considered positive when it exceeded 1% of nuclear staining in tumor cells. RESULTS AR expression was detected in 41.6% of the samples. Although we did not find statistically significant differences in clinic-pathological variables according to AR expression, patients with AR expression over 50% were younger (53.92 years vs. 60.78 years, p=0.027) and presented higher Ki67 expression (64.06% vs. 47.32%, p=0.05), compared to patients with a low AR expression. The median overall survival in our sample of TNBC patients was 2.45 years. CONCLUSIONS The expression of AR in our sample was similar to the expression in populations of European descent. We found statistically significant differences in age at diagnosis and Ki67 expression according to AR expression.
Collapse
Affiliation(s)
- Mario Alexander Melo-Uribe
- Department of Pathology, Universidad de La Sabana, Colombia; Department of Oncology-Pathology, Instituto Nacional de Cancerología, Colombia.
| | - Silvia J Serrano-Gómez
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Colombia
| | | |
Collapse
|
24
|
Paul U, Banerjee S. The functional significance and cross-talk of non-coding RNAs in triple negative and quadruple negative breast cancer. Mol Biol Rep 2022; 49:6899-6918. [PMID: 35235157 DOI: 10.1007/s11033-022-07288-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/18/2022] [Indexed: 12/13/2022]
Abstract
One of the leading causes of cancer-related deaths worldwide is breast cancer, among which triple-negative breast cancer (TNBC) is the most malignant and lethal subtype. This cancer accounts for 10-20% of all breast cancer deaths. Proliferation, tumorigenesis, and prognosis of TNBC are affected when the androgen receptor (AR) is not expressed, and it is classified as quadruple negative breast cancer (QNBC). Non-coding RNAs, such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), play a significant role in tumorigenesis by virtue of their oncogenic and tumor-suppressive properties. To regulate tumorigenesis, miRNAs interact with their target mRNAs and modulate their expression, whereas lncRNAs can either act alone or interact with miRNAs or other molecules through various signaling pathways. Conversely, circRNAs regulate tumorigenesis by acting as miRNA sponges predominantly. Recently, non-coding RNAs were studied comprehensively for their roles in tumor proliferation, progression, and metastasis. As a result of existing studies and research progress, non-coding RNAs have been implicated in TNBC, necessitating their use as biomarkers for future diagnostic applications. In this review, the non-coding RNAs are explicitly implicated in the regulation of breast cancer, and their cross-talk between TNBC and QNBC is also discussed.
Collapse
Affiliation(s)
- Utpalendu Paul
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Satarupa Banerjee
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
25
|
Qattan A, Al-Tweigeri T, Suleman K. Translational Implications of Dysregulated Pathways and MicroRNA Regulation in Quadruple-Negative Breast Cancer. Biomedicines 2022; 10:biomedicines10020366. [PMID: 35203574 PMCID: PMC8962346 DOI: 10.3390/biomedicines10020366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/16/2022] Open
Abstract
Triple-negative breast cancers (HER2−, ER−, PR−) continue to present a unique treatment challenge and carry unfavorable prognoses. The elucidation of novel therapeutic targets has necessitated the re-evaluation of stratification approaches to best predict prognosis, treatment response and theranostic and prognostic markers. Androgen receptor expression and function have important implications on proliferation, tumor progression, immunity and molecular signaling in breast cancer. Accordingly, there has been increasing support for classification of androgen receptor-negative triple-negative breast cancer or quadruple-negative breast cancer (QNBC). QNBC has unique molecular, signaling and expression regulation profiles, particularly those affected by microRNA regulatory networks. MicroRNAs are now known to regulate AR-related targets and pathways that are dysregulated in QNBC, including immune checkpoint inhibitors (ICIs), SKP2, EN1, ACSL4 and EGFR. In this review, we explore and define the QNBC tumor subtype, its molecular and clinical distinctions from other subtypes, miRNA dysregulation and function in QNBC, and knowledge gaps in the field. Potential insights into clinical and translational implications of these dysregulated networks in QNBC are discussed.
Collapse
Affiliation(s)
- Amal Qattan
- Translational Cancer Research Section, Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
- Correspondence:
| | - Taher Al-Tweigeri
- Department of Medical Oncology, Oncology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (T.A.-T.); (K.S.)
| | - Kausar Suleman
- Department of Medical Oncology, Oncology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; (T.A.-T.); (K.S.)
| |
Collapse
|
26
|
Nwosu IO, Piccolo SR. A systematic review of datasets that can help elucidate relationships among gene expression, race, and immunohistochemistry-defined subtypes in breast cancer. Cancer Biol Ther 2021; 22:417-429. [PMID: 34412551 DOI: 10.1080/15384047.2021.1953902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Scholarly requirements have led to a massive increase of transcriptomic data in the public domain, with millions of samples available for secondary research. We identified gene-expression datasets representing 10,214 breast-cancer patients in public databases. We focused on datasets that included patient metadata on race and/or immunohistochemistry (IHC) profiling of the ER, PR, and HER-2 proteins. This review provides a summary of these datasets and describes findings from 32 research articles associated with the datasets. These studies have helped to elucidate relationships between IHC, race, and/or treatment options, as well as relationships between IHC status and the breast-cancer intrinsic subtypes. We have also identified broad themes across the analysis methodologies used in these studies, including breast cancer subtyping, deriving predictive biomarkers, identifying differentially expressed genes, and optimizing data processing. Finally, we discuss limitations of prior work and recommend future directions for reusing these datasets in secondary analyses.
Collapse
Affiliation(s)
| | - Stephen R Piccolo
- Department of Biology, Brigham Young University, Provo, Utah, United States
| |
Collapse
|
27
|
Saini G, Bhattarai S, Gogineni K, Aneja R. Quadruple-Negative Breast Cancer: An Uneven Playing Field. JCO Glob Oncol 2021; 6:233-237. [PMID: 32073910 PMCID: PMC7051792 DOI: 10.1200/jgo.19.00366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
| | | | - Keerthi Gogineni
- Department of Hematology and Medical Oncology, Emory University School of Medicine; Atlanta, GA
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA
| |
Collapse
|
28
|
Nwagu GC, Bhattarai S, Swahn M, Ahmed S, Aneja R. Prevalence and Mortality of Triple-Negative Breast Cancer in West Africa: Biologic and Sociocultural Factors. JCO Glob Oncol 2021; 7:1129-1140. [PMID: 34264759 PMCID: PMC8457872 DOI: 10.1200/go.21.00082] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/05/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022] Open
Affiliation(s)
- Gift C. Nwagu
- Department of Biology, Georgia State University, Atlanta, GA
| | | | - Monica Swahn
- International Consortium for Advancing Research on Triple Negative Breast Cancer, Georgia State University, Atlanta, GA
- Department of Population Health Sciences, Georgia State University, Atlanta, GA
| | - Saad Ahmed
- International Consortium for Advancing Research on Triple Negative Breast Cancer, Georgia State University, Atlanta, GA
- Department of Pathology, Ahmadu Bello University, Zaria, Nigeria
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA
- International Consortium for Advancing Research on Triple Negative Breast Cancer, Georgia State University, Atlanta, GA
| |
Collapse
|
29
|
Undercutting efforts of precision medicine: roadblocks to minority representation in breast cancer clinical trials. Breast Cancer Res Treat 2021; 187:605-611. [PMID: 34080093 DOI: 10.1007/s10549-021-06264-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/18/2021] [Indexed: 12/16/2022]
Abstract
Precision (or personalized) medicine holds great promise in the treatment of breast cancer. The success of personalized medicine is contingent upon inclusivity and representation for minority groups in clinical trials. In this article, we focus on the roadblocks for the African American demographic, including the barriers to access and enrollment in breast oncology trials, the prevailing classification of race and ethnicity, and the need to refine monolithic categorization by employing genetic ancestry mapping tools for a more accurate determination of race or ethnicity.
Collapse
|
30
|
Leong SP, Witz IP, Sagi-Assif O, Izraely S, Sleeman J, Piening B, Fox BA, Bifulco CB, Martini R, Newman L, Davis M, Sanders LM, Haussler D, Vaske OM, Witte M. Cancer microenvironment and genomics: evolution in process. Clin Exp Metastasis 2021; 39:85-99. [PMID: 33970362 DOI: 10.1007/s10585-021-10097-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023]
Abstract
Cancer heterogeneity is a result of genetic mutations within the cancer cells. Their proliferation is not only driven by autocrine functions but also under the influence of cancer microenvironment, which consists of normal stromal cells such as infiltrating immune cells, cancer-associated fibroblasts, endothelial cells, pericytes, vascular and lymphatic channels. The relationship between cancer cells and cancer microenvironment is a critical one and we are just on the verge to understand it on a molecular level. Cancer microenvironment may serve as a selective force to modulate cancer cells to allow them to evolve into more aggressive clones with ability to invade the lymphatic or vascular channels to spread to regional lymph nodes and distant sites. It is important to understand these steps of cancer evolution within the cancer microenvironment towards invasion so that therapeutic strategies can be developed to control or stop these processes.
Collapse
Affiliation(s)
- Stanley P Leong
- California Pacific Medical Center and Research Institute, San Francisco, USA
| | - Isaac P Witz
- The Shmunis School of Biomedicine and Cancer Research, School of Molecular Cell Biology & Biotechnology, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Orit Sagi-Assif
- The Shmunis School of Biomedicine and Cancer Research, School of Molecular Cell Biology & Biotechnology, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Sivan Izraely
- The Shmunis School of Biomedicine and Cancer Research, School of Molecular Cell Biology & Biotechnology, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Jonathan Sleeman
- European Center for Angioscience, Medizinische Fakultät Mannheim der Universität Heidelberg, Heidelberg, Germany
| | | | | | | | - Rachel Martini
- Department of Surgery, Weill Cornell Medical College, New York City, NY, USA.,Department of Genetics, University of Georgia, Athens, GA, USA
| | - Lisa Newman
- Department of Surgery, Weill Cornell Medical College, New York City, NY, USA
| | - Melissa Davis
- Department of Surgery, Weill Cornell Medical College, New York City, NY, USA.
| | - Lauren M Sanders
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz and UC Santa Cruz Genomics Institute, Santa Cruz, USA
| | - David Haussler
- UC Santa Cruz Genomics Institute and Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, USA.
| | - Olena M Vaske
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz and UC Santa Cruz Genomics Institute, Santa Cruz, USA
| | - Marlys Witte
- Department of Surgery, Neurosurgery and Pediatrics, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
| |
Collapse
|
31
|
Martini R, Newman L, Davis M. Breast cancer disparities in outcomes; unmasking biological determinants associated with racial and genetic diversity. Clin Exp Metastasis 2021; 39:7-14. [PMID: 33950410 DOI: 10.1007/s10585-021-10087-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/20/2021] [Indexed: 12/28/2022]
Abstract
Breast cancer (BC) remains a leading cause of death among women today, and mortality among African American women in the US remains 40% higher than that of their White counterparts, despite reporting a similar incidence of disease over recent years. Previous meta-analyses and studies of BC mortality highlight that tumor characteristics, rather than socio-economic factors, drive excess mortality among African American women with BC. This is further complicated by the heterogeneity of BC, where BC can more appropriately be defined as a collection of diseases rather than a single disease. Molecular phenotyping and gene expression profiling distinguish subtypes of BC, and these subtypes have distinct prognostic outcomes. Racial disparities transcend these subtype-specific outcomes, where African American women suffer higher mortality rates among all BC subtypes. The most striking differences are observed among the most aggressive molecular subtype, triple-negative BC (TNBC), where incidence and mortality are significantly higher among African American women compared to all other race/ethnicity groups. We and others have shown that this predisposition for triple-negative disease may be linked to shared west African ancestry, where the highest rates of TNBC are observed among west African nations, and these high frequencies follow into the African diaspora. Genetic and molecular characterization of breast tumors among subtypes and racial/ethnic groups have begun to identify targets with future therapeutic potential, but more work needs to be done to identify targeted treatment options for all women who suffer from BC.
Collapse
Affiliation(s)
- Rachel Martini
- Department of Surgery, Weill Cornell Medical College, 420 E 70th Street, New York City, NY, 10065, USA.,Department of Genetics, University of Georgia, Athens, GA, USA
| | - Lisa Newman
- Department of Surgery, Weill Cornell Medical College, 420 E 70th Street, New York City, NY, 10065, USA
| | - Melissa Davis
- Department of Surgery, Weill Cornell Medical College, 420 E 70th Street, New York City, NY, 10065, USA.
| |
Collapse
|
32
|
Liao M, Zhang J, Wang G, Wang L, Liu J, Ouyang L, Liu B. Small-Molecule Drug Discovery in Triple Negative Breast Cancer: Current Situation and Future Directions. J Med Chem 2021; 64:2382-2418. [PMID: 33650861 DOI: 10.1021/acs.jmedchem.0c01180] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Triple negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, but an effective targeted therapy has not been well-established so far. Considering the lack of effective targets, where do we go next in the current TNBC drug development? A promising intervention for TNBC might lie in de novo small-molecule drugs that precisely target different molecular characteristics of TNBC. However, an ideal single-target drug discovery still faces a huge challenge. Alternatively, other new emerging strategies, such as dual-target drug, drug repurposing, and combination strategies, may provide new insight into the improvement of TNBC therapeutics. In this review, we focus on summarizing the current situation of a series of candidate small-molecule drugs in TNBC therapy, including single-target drugs, dual-target drugs, as well as drug repurposing and combination strategies that will together shed new light on the future directions targeting TNBC vulnerabilities with small-molecule drugs for future therapeutic purposes.
Collapse
Affiliation(s)
- Minru Liao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Leiming Wang
- The Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Jie Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
33
|
Ntzifa A, Strati A, Koliou GA, Zagouri F, Pectasides D, Pentheroudakis G, Christodoulou C, Gogas H, Magkou C, Petraki C, Kosmidis P, Aravantinos G, Kotoula V, Fountzilas G, Lianidou E. Androgen Receptor and PIM1 Expression in Tumor Tissue of Patients With Triple-negative Breast Cancer. Cancer Genomics Proteomics 2021; 18:147-156. [PMID: 33608311 DOI: 10.21873/cgp.20249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND/AIM Effective targeted therapies for triple-negative breast cancer (TNBC) are limited. In a subset of TNBC, androgen receptor (AR) plays an important role, while the human proviral integration site for Moloney murine leukemia virus-1 (PIM1) overexpression is also implicated. PIM1 kinases phosphorylate AR, thus regulating its transcriptional activity, regardless of the presence or not of androgens. We evaluated the expression of AR and PIM1 and their prognostic significance in TNBC. MATERIALS AND METHODS AR and PIM1 transcripts were quantified by quantitative reverse transcription polymerase chain reaction in formalin-fixed paraffin-embedded tumor from 141 patients with TNBC. RESULTS AR was expressed in 38.3%, PIM1 in 10.6%, while co-expression of AR and PIM1 was detected in 7/141 cases (5.0%). No prognostic significance of AR or PIM1 was reached for overall or disease-free survival. CONCLUSION Co-expression of AR and PIM1 exists in only in a small percentage of patients with TNBC. The implications of this finding in the therapeutic management of patients with TNBC should be investigated in larger patient cohorts.
Collapse
Affiliation(s)
- Aliki Ntzifa
- Analysis of Circulating Tumor Cells Laboratory, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | - Areti Strati
- Analysis of Circulating Tumor Cells Laboratory, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | | | - Flora Zagouri
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Dimitrios Pectasides
- Oncology Section, Second Department of Internal Medicine, Hippokration Hospital, Athens, Greece
| | - George Pentheroudakis
- Department of Medical Oncology, Medical School, University of Ioannina, Ioannina, Greece.,Society for Study of Clonal Heterogeneity of Neoplasia (EMEKEN), Ioannina, Greece
| | | | - Helen Gogas
- First Department of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | | | | | - Paris Kosmidis
- Second Department of Medical Oncology, Hygeia Hospital, Athens, Greece
| | - Gerasimos Aravantinos
- Second Department of Medical Oncology, Agii Anargiri Cancer Hospital, Athens, Greece
| | - Vassiliki Kotoula
- Department of Pathology, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece.,Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George Fountzilas
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece.,Aristotle University of Thessaloniki, Thessaloniki, Greece.,German Oncology Center, Limassol, Cyprus
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells Laboratory, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece;
| |
Collapse
|
34
|
Bhattarai S, Saini G, Gogineni K, Aneja R. Quadruple-negative breast cancer: novel implications for a new disease. Breast Cancer Res 2020; 22:127. [PMID: 33213491 PMCID: PMC7678108 DOI: 10.1186/s13058-020-01369-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023] Open
Abstract
Based on the androgen receptor (AR) expression, triple-negative breast cancer (TNBC) can be subdivided into AR-positive TNBC and AR-negative TNBC, also known as quadruple-negative breast cancer (QNBC). QNBC characterization and treatment is fraught with many challenges. In QNBC, there is a greater paucity of prognostic biomarkers and therapeutic targets than AR-positive TNBC. Although the prognostic role of AR in TNBC remains controversial, many studies revealed that a lack of AR expression confers a more aggressive disease course. Literature characterizing QNBC tumor biology and uncovering novel biomarkers for improved management of the disease remains scarce. In this comprehensive review, we summarize the current QNBC landscape and propose avenues for future research, suggesting potential biomarkers and therapeutic strategies that warrant investigation.
Collapse
Affiliation(s)
- Shristi Bhattarai
- Department of Biology, Georgia State University, 100 Piedmont Ave, Atlanta, GA, 30303, USA
| | - Geetanjali Saini
- Department of Biology, Georgia State University, 100 Piedmont Ave, Atlanta, GA, 30303, USA
| | - Keerthi Gogineni
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ritu Aneja
- Department of Biology, Georgia State University, 100 Piedmont Ave, Atlanta, GA, 30303, USA.
| |
Collapse
|
35
|
Olson J, Cawthra T, Beyer K, Frazer D, Ignace L, Maurana C, Millon-Underwood S, Pinsoneault L, Salazar J, Walker A, Williams C, Stolley M. Community and Research Perspectives on Cancer Disparities in Wisconsin. Prev Chronic Dis 2020; 17:E122. [PMID: 33034557 PMCID: PMC7553208 DOI: 10.5888/pcd17.200183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Introduction Significant disparities are apparent in geographic areas and among racial/ethnic minority groups in Wisconsin. Cancer disparities are complex and multifactorial and require collaborative, multilevel efforts to reduce their impact. Our objective was to understand cancer disparities and identify opportunities to collaborate across community and research sectors to address them. Methods From May 2017 through October 2018, we assembled groups of community members and researchers and conducted 10 listening sessions and 29 interviews with a total of 205 participants from diverse backgrounds. Listening sessions and interviews were scheduled on the basis of participant preference and consisted of a brief review of maps illustrating the breast and lung cancer burden across Wisconsin, and a semistructured set of questions regarding causes, solutions, and opportunities. Interviews followed the same structure as listening sessions, but were conducted between a facilitator and 1 or 2 individuals. Major themes were summarized from all sessions and coded. We used the Model for Analysis of Population Health and Health Disparities to identify areas for collaboration and to highlight differences in emphasis between community participants and researchers. Results Participants identified the need to address individual behavioral risks and medical mistrust and to build equitable multilevel partnerships. Communities provided insights on the impact of environment and location on cancer disparities. Researchers shared thoughts about societal poverty and policy issues, biologic responses, genetic predisposition, and the mechanistic influence of lifestyle factors on cancer incidence and mortality. Conclusion Listening sessions and interviews provided insight into contributors to cancer disparities, barriers to improving outcomes, and opportunities to improve health. The unique perspectives of each group underscored the need for multisector teams to tackle the complex issue of cancer disparities.
Collapse
Affiliation(s)
- Jessica Olson
- Institute for Health & Equity, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, 53226.
| | - Tobi Cawthra
- Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - David Frazer
- University of Wisconsin-Madison, Madison, Wisconsin
| | - Lyle Ignace
- Gerald L. Ignace Indian Health Center, Milwaukee, Wisconsin
| | | | | | | | - Jose Salazar
- Sixteenth Street Community Health Centers, Milwaukee Wisconsin
| | | | | | | |
Collapse
|
36
|
Baltanás FC, Zarich N, Rojas-Cabañeros JM, Santos E. SOS GEFs in health and disease. Biochim Biophys Acta Rev Cancer 2020; 1874:188445. [PMID: 33035641 DOI: 10.1016/j.bbcan.2020.188445] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
SOS1 and SOS2 are the most universal and widely expressed family of guanine exchange factors (GEFs) capable or activating RAS or RAC1 proteins in metazoan cells. SOS proteins contain a sequence of modular domains that are responsible for different intramolecular and intermolecular interactions modulating mechanisms of self-inhibition, allosteric activation and intracellular homeostasis. Despite their homology, analyses of SOS1/2-KO mice demonstrate functional prevalence of SOS1 over SOS2 in cellular processes including proliferation, migration, inflammation or maintenance of intracellular redox homeostasis, although some functional redundancy cannot be excluded, particularly at the organismal level. Specific SOS1 gain-of-function mutations have been identified in inherited RASopathies and various sporadic human cancers. SOS1 depletion reduces tumorigenesis mediated by RAS or RAC1 in mouse models and is associated with increased intracellular oxidative stress and mitochondrial dysfunction. Since WT RAS is essential for development of RAS-mutant tumors, the SOS GEFs may be considered as relevant biomarkers or therapy targets in RAS-dependent cancers. Inhibitors blocking SOS expression, intrinsic GEF activity, or productive SOS protein-protein interactions with cellular regulators and/or RAS/RAC targets have been recently developed and shown preclinical and clinical effectiveness blocking aberrant RAS signaling in RAS-driven and RTK-driven tumors.
Collapse
Affiliation(s)
- Fernando C Baltanás
- Centro de Investigación del Cáncer - IBMCC (CSIC-USAL) and CIBERONC, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Natasha Zarich
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Jose M Rojas-Cabañeros
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Eugenio Santos
- Centro de Investigación del Cáncer - IBMCC (CSIC-USAL) and CIBERONC, Universidad de Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
37
|
Shi J, Liu F, Song Y. Progress: Targeted Therapy, Immunotherapy, and New Chemotherapy Strategies in Advanced Triple-Negative Breast Cancer. Cancer Manag Res 2020; 12:9375-9387. [PMID: 33061626 PMCID: PMC7533235 DOI: 10.2147/cmar.s272685] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most aggressive subtypes of breast cancer, accounting for approximately 15% of cases, and is defined by the lack of expression of hormone receptors (estrogen and progesterone receptors) and lack of amplification or overexpression of human epidermal growth receptor 2 (HER2). Due to the lack of targets of hormone receptors and HER2, treatment of TNBC or advanced TNBC relies on conventional chemotherapeutic agents, but their efficacy and prognosis are poor. In patients with advanced TNBC, poorer outcomes are observed. Recently, with the launch of clinical trials and advancements in molecular studies, targeted therapy for signaling transduction pathways, immunotherapy for immune checkpoints, and new chemotherapy strategies have provided feasible or potential therapeutic options for advanced TNBC. This review aimed to summarize recent progress in targeted therapy, immunotherapy, and chemotherapy for advanced TNBC.
Collapse
Affiliation(s)
- Jinhong Shi
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Feiqi Liu
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Yanqiu Song
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| |
Collapse
|
38
|
Ogony JW, Radisky DC, Ruddy KJ, Goodison S, Wickland DP, Egan KM, Knutson KL, Asmann YW, Sherman ME. Immune Responses and Risk of Triple-negative Breast Cancer: Implications for Higher Rates among African American Women. Cancer Prev Res (Phila) 2020; 13:901-910. [PMID: 32753376 PMCID: PMC9576802 DOI: 10.1158/1940-6207.capr-19-0562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/22/2020] [Accepted: 07/28/2020] [Indexed: 11/16/2022]
Abstract
The etiology of triple-negative breast cancers (TNBC) is poorly understood. As many TNBCs develop prior to the initiation of breast cancer screening or at younger ages when the sensitivity of mammography is comparatively low, understanding the etiology of TNBCs is critical for discovering novel prevention approaches for these tumors. Furthermore, the higher incidence rate of estrogen receptor-negative breast cancers, and specifically, of TNBCs, among young African American women (AAW) versus white women is a source of racial disparities in breast cancer mortality. Whereas immune responses to TNBCs have received considerable attention in relation to prognosis and treatment, the concept that dysregulated immune responses may predispose to the development of TNBCs has received limited attention. We present evidence that dysregulated immune responses are critical in the pathogenesis of TNBCs, based on the molecular biology of the cancers and the mechanisms proposed to mediate TNBC risk factors. Furthermore, proposed risk factors for TNBC, especially childbearing without breastfeeding, high parity, and obesity, are more prevalent among AAW than white women. Limited data suggest genetic differences in immune responses by race, which favor a stronger Thr type 2 (Th2) immune response among AAW than white women. Th2 responses contribute to wound-healing processes, which are implicated in the pathogenesis of TNBCs. Accordingly, we review data on the link between immune responses and TNBC risk and consider whether the prevalence of risk factors that result in dysregulated immunity is higher among AAW than white women.
Collapse
Affiliation(s)
- Joshua W Ogony
- Health Sciences Research, Mayo Clinic College of Medicine, Jacksonville, Florida.,Cancer Biology, Mayo Clinic College of Medicine, Jacksonville, Florida
| | - Derek C Radisky
- Cancer Biology, Mayo Clinic College of Medicine, Jacksonville, Florida
| | - Kathryn J Ruddy
- Medical Oncology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Steven Goodison
- Health Sciences Research, Mayo Clinic College of Medicine, Jacksonville, Florida
| | - Daniel P Wickland
- Health Sciences Research, Mayo Clinic College of Medicine, Jacksonville, Florida
| | - Kathleen M Egan
- Department of Epidemiology, Moffitt Cancer Center, Tampa, Florida
| | - Keith L Knutson
- Department of Immunology, Mayo Clinic College of Medicine, Jacksonville, Florida
| | - Yan W Asmann
- Health Sciences Research, Mayo Clinic College of Medicine, Jacksonville, Florida
| | - Mark E Sherman
- Health Sciences Research, Mayo Clinic College of Medicine, Jacksonville, Florida. .,Cancer Biology, Mayo Clinic College of Medicine, Jacksonville, Florida
| |
Collapse
|
39
|
Kim G, Pastoriza JM, Condeelis JS, Sparano JA, Filippou PS, Karagiannis GS, Oktay MH. The Contribution of Race to Breast Tumor Microenvironment Composition and Disease Progression. Front Oncol 2020; 10:1022. [PMID: 32714862 PMCID: PMC7344193 DOI: 10.3389/fonc.2020.01022] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the second most commonly diagnosed cancer in American women following skin cancer. Despite overall decrease in breast cancer mortality due to advances in treatment and earlier screening, black patients continue to have 40% higher risk of breast cancer related death compared to white patients. This disparity in outcome persists even when controlled for access to care and stage at presentation and has been attributed to differences in tumor subtypes or gene expression profiles. There is emerging evidence that the tumor microenvironment (TME) may contribute to the racial disparities in outcome as well. Here, we provide a comprehensive review of current literature available regarding race-dependent differences in the TME. Notably, black patients tend to have a higher density of pro-tumorigenic immune cells (e.g., M2 macrophages, regulatory T cells) and microvasculature. Although immune cells are classically thought to be anti-tumorigenic, increase in M2 macrophages and angiogenesis may lead to a paradoxical increase in metastasis by forming doorways of tumor cell intravasation called tumor microenvironment of metastasis (TMEM). Furthermore, black patients also have higher serum levels of inflammatory cytokines, which provide a positive feedback loop in creating a pro-metastatic TME. Lastly, we propose that the higher density of immune cells and angiogenesis observed in the TME of black patients may be a result of evolutionary selection for a more robust immune response in patients of African geographic ancestry. Better understanding of race-dependent differences in the TME will aid in overcoming the racial disparity in breast cancer mortality.
Collapse
Affiliation(s)
- Gina Kim
- Department of Anatomy and Structural Biology, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States.,Integrated Imaging Program, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States.,Department of Surgery, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States
| | - Jessica M Pastoriza
- Department of Surgery, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States.,Integrated Imaging Program, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States.,Department of Surgery, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States.,Gruss-Lipper Biophotonics Center, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States
| | - Joseph A Sparano
- Integrated Imaging Program, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States.,Department of Medicine (Oncology), Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States
| | - Panagiota S Filippou
- School of Health & Life Sciences, Teesside University, Middlesbrough, United Kingdom.,National Horizons Centre, Teesside University, Darlington, United Kingdom
| | - George S Karagiannis
- Department of Anatomy and Structural Biology, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States.,Integrated Imaging Program, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States.,Gruss-Lipper Biophotonics Center, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States
| | - Maja H Oktay
- Department of Anatomy and Structural Biology, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States.,Integrated Imaging Program, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States.,Gruss-Lipper Biophotonics Center, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States.,Department of Pathology, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
40
|
Davis M, Martini R, Newman L, Elemento O, White J, Verma A, Datta I, Adrianto I, Chen Y, Gardner K, Kim HG, Colomb WD, Eltoum IE, Frost AR, Grizzle WE, Sboner A, Manne U, Yates C. Identification of Distinct Heterogenic Subtypes and Molecular Signatures Associated with African Ancestry in Triple Negative Breast Cancer Using Quantified Genetic Ancestry Models in Admixed Race Populations. Cancers (Basel) 2020; 12:E1220. [PMID: 32414099 PMCID: PMC7281131 DOI: 10.3390/cancers12051220] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
Triple negative breast cancers (TNBCs) are molecularly heterogeneous, and the link between their aggressiveness with African ancestry is not established. We investigated primary TNBCs for gene expression among self-reported race (SRR) groups of African American (AA, n = 42) and European American (EA, n = 33) women. RNA sequencing data were analyzed to measure changes in genome-wide expression, and we utilized logistic regressions to identify ancestry-associated gene expression signatures. Using SNVs identified from our RNA sequencing data, global ancestry was estimated. We identified 156 African ancestry-associated genes and found that, compared to SRR, quantitative genetic analysis was a more robust method to identify racial/ethnic-specific genes that were differentially expressed. A subset of African ancestry-specific genes that were upregulated in TNBCs of our AA patients were validated in TCGA data. In AA patients, there was a higher incidence of basal-like two tumors and altered TP53, NFB1, and AKT pathways. The distinct distribution of TNBC subtypes and altered oncologic pathways show that the ethnic variations in TNBCs are driven by shared genetic ancestry. Thus, to appreciate the molecular diversity of TNBCs, tumors from patients of various ancestral origins should be evaluated.
Collapse
Affiliation(s)
- Melissa Davis
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA; (M.D.); (R.M.); (L.N.)
| | - Rachel Martini
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA; (M.D.); (R.M.); (L.N.)
| | - Lisa Newman
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA; (M.D.); (R.M.); (L.N.)
| | - Olivier Elemento
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA;
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jason White
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA; (J.W.); (W.D.C.)
| | - Akanksha Verma
- Department of Computational Biology, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Indrani Datta
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI 48202, USA; (I.D.); (I.A.); (Y.C.)
| | - Indra Adrianto
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI 48202, USA; (I.D.); (I.A.); (Y.C.)
| | - Yalei Chen
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI 48202, USA; (I.D.); (I.A.); (Y.C.)
| | - Kevin Gardner
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10027, USA;
| | - Hyung-Gyoon Kim
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (H.-G.K.); (I.-E.E.); (A.R.F.); (W.E.G.)
| | - Windy D. Colomb
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA; (J.W.); (W.D.C.)
- Department of Hematology and Oncology, Our Lady of Lourdes JD Moncus Cancer Center, Lafayette, LA 70508, USA
| | - Isam-Eldin Eltoum
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (H.-G.K.); (I.-E.E.); (A.R.F.); (W.E.G.)
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Andra R. Frost
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (H.-G.K.); (I.-E.E.); (A.R.F.); (W.E.G.)
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - William E. Grizzle
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (H.-G.K.); (I.-E.E.); (A.R.F.); (W.E.G.)
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Andrea Sboner
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10062, USA
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (H.-G.K.); (I.-E.E.); (A.R.F.); (W.E.G.)
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Clayton Yates
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA; (J.W.); (W.D.C.)
| |
Collapse
|
41
|
Salvi S, Bonafè M, Bravaccini S. Androgen receptor in breast cancer: A wolf in sheep’s clothing? A lesson from prostate cancer. Semin Cancer Biol 2020; 60:132-137. [DOI: 10.1016/j.semcancer.2019.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022]
|
42
|
Huang M, Wu J, Ling R, Li N. Quadruple negative breast cancer. Breast Cancer 2020; 27:527-533. [PMID: 31939077 DOI: 10.1007/s12282-020-01047-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 01/05/2020] [Indexed: 12/15/2022]
Abstract
Quadruple negative breast cancer (QNBC), lacking the expression of ER (estrogen receptor), PR (progesterone receptor), HER2 (human epidermal growth factor receptor-2) and AR (androgen receptor), was regarded as one breast cancer subtype with the worst prognosis. Recently, the molecular features of QNBC are not well understood. Different from AR-positive triple-negative breast cancer, QNBC is insensitive to conventional chemotherapeutic agents and has no efficient treatment targets. However, QNBC has been shown to express unique proteins that may be amenable to use in the development of targeted therapies. Here we reviewed the features of QNBC and proteins that may serve as effective targets for QNBC treatment, such as ACSL4, SKP2, immune checkpoint inhibitors, EGFR, MicroRNA signatures and Engrailed 1.
Collapse
Affiliation(s)
- Meiling Huang
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jiang Wu
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Rui Ling
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Nanlin Li
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
43
|
Gatalica Z, Vranic S, Krušlin B, Poorman K, Stafford P, Kacerovska D, Senarathne W, Florento E, Contreras E, Leary A, Choi A, In GK. Comparison of the biomarkers for targeted therapies in primary extra-mammary and mammary Paget's disease. Cancer Med 2020; 9:1441-1450. [PMID: 31899853 PMCID: PMC7013075 DOI: 10.1002/cam4.2820] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 12/14/2022] Open
Abstract
Background Primary Extra‐mammary Paget's disease (EMPD) is a very rare cutaneous adenocarcinoma affecting anogenital or axillary regions. It is characterized by a prolonged course with recurrences and eventually distant metastatic spread for which no specific therapy is known. Methods Eighteen EMPD (13 vulvar and five scrotal) and ten mammary Paget's disease (MPD) cases were comprehensively profiled for gene mutations, fusions and copy number alterations, and for therapy‐relevant protein biomarkers). Results Mutations in TP53 and PIK3CA were the most frequent in both cohorts: 7/15 and 5/15 in EMPD; 1/6 and 4/7 in MPD HER2 gene amplification was detected in 4/18 EMPD (3 vulvar and 1 scrotal case) in contrast to MPD where it was detected in the majority (7/8) of cases. TOP2A gene amplification was seen in 2/12 EMPD and 1/6 MPD, respectively. Similarly, no difference in estrogen receptor expression was seen between the EMPD (4/15) and MPD (3/10). Androgen receptor was also expressed in the majority of both cohorts (12/16 EMPD) and (7/8 MPD).Here ARv7 splice variant was detected in 1/7 EMPD and 1/4 MPD cases, respectively. PD‐L1 expression on immune cells was exclusively observed in three vulvar EMPD. In contrast to MPD, six EMPDs harbored a “high” tumor mutation burden (≥10 mutations/Mb). All tested cases from both cohorts were MSI stable. Conclusions EMPD shares some targetable biomarkers with its mammary counterpart (steroid receptors, PIK3CA signaling pathways, TOP2A amplification). HER2 positivity is notably lower in EMPD while biomarkers to immune checkpoint inhibitors (high TMB and PD‐L1) were observed in some EMPD. Given that no consistent molecular alteration characterizes EMPD, comprehensive theranostic profiling is required to identify individual patients with targetable molecular alterations.
Collapse
Affiliation(s)
| | - Semir Vranic
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Božo Krušlin
- Ljudevit Jurak Department of Pathology and Cytology, Clinical Hospital Center Sestre Milosrdnice, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| | | | | | - Denisa Kacerovska
- Medical Faculty in Pilsen, Sikl's Department of Pathology, Charles University in Prague, Pilsen, Czech Republic.,Bioptical Laboratory, Pilsen, Czech Republic
| | | | | | | | | | - April Choi
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Gino K In
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
44
|
Vranic S, Cyprian FS, Gatalica Z, Palazzo J. PD-L1 status in breast cancer: Current view and perspectives. Semin Cancer Biol 2019; 72:146-154. [PMID: 31883913 DOI: 10.1016/j.semcancer.2019.12.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 12/21/2022]
Abstract
Breast cancer was traditionally not considered a particularly immunogenic tumor. However, recent developments have shown that some aggressive triple-negative breast cancers are immunogenic, exhibit a resistance to chemotherapy and have a poor prognosis. These cancers have been shown to express molecules identified as targets for immunotherapy. Despite the advances, the challenges are many, and include identifying the patients that may benefit from immunotherapy. The best methods to analyze these samples and to evaluate immunogenicity are also major challenges. Therefore, the most accurate and reliable assessment of immune cells as potential targets is one of the most important aims in the current research in breast immunotherapy. In the present review, we briefly discuss the mechanisms of the regulation of checkpoint inhibitors (PD-1/PD-L1) in breast cancer and explore the predictive aspects in the PD-L1 testing.
Collapse
Affiliation(s)
- Semir Vranic
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | | | | | | |
Collapse
|
45
|
Zhu B, Tse LA, Wang D, Koka H, Zhang T, Abubakar M, Lee P, Wang F, Wu C, Tsang KH, Chan WC, Law SH, Li M, Li W, Wu S, Liu Z, Huang B, Zhang H, Tang E, Kan Z, Lee S, Park YH, Nam SJ, Wang M, Sun X, Jones K, Zhu B, Hutchinson A, Hicks B, Prokunina-Olsson L, Shi J, Garcia-Closas M, Chanock S, Yang XR. Immune gene expression profiling reveals heterogeneity in luminal breast tumors. Breast Cancer Res 2019; 21:147. [PMID: 31856876 PMCID: PMC6924001 DOI: 10.1186/s13058-019-1218-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/18/2019] [Indexed: 12/24/2022] Open
Abstract
Background Heterogeneity of immune gene expression patterns of luminal breast cancer (BC), which is clinically heterogeneous and overall considered as low immunogenic, has not been well studied especially in non-European populations. Here, we aimed at characterizing the immune gene expression profile of luminal BC in an Asian population and associating it with patient characteristics and tumor genomic features. Methods We performed immune gene expression profiling of tumor and adjacent normal tissue in 92 luminal BC patients from Hong Kong using RNA-sequencing data and used unsupervised consensus clustering to stratify tumors. We then used luminal patients from The Cancer Genome Atlas (TCGA, N = 564) and a Korean breast cancer study (KBC, N = 112) as replication datasets. Results Based on the expression of 130 immune-related genes, luminal tumors were stratified into three distinct immune subtypes. Tumors in one subtype showed higher level of tumor-infiltrating lymphocytes (TILs), characterized by T cell gene activation, higher expression of immune checkpoint genes, higher nonsynonymous mutation burden, and higher APOBEC-signature mutations, compared with other luminal tumors. The high-TIL subtype was also associated with lower ESR1/ESR2 expression ratio and increasing body mass index. The comparison of the immune profile in tumor and matched normal tissue suggested a tumor-derived activation of specific immune responses, which was only seen in high-TIL patients. Tumors in a second subtype were characterized by increased expression of interferon-stimulated genes and enrichment for TP53 somatic mutations. The presence of three immune subtypes within luminal BC was replicated in TCGA and KBC, although the pattern was more similar in Asian populations. The germline APOBEC3B deletion polymorphism, which is prevalent in East Asian populations and was previously linked to immune activation, was not associated with immune subtypes in our study. This result does not support the hypothesis that the germline APOBEC3B deletion polymorphism is the driving force for immune activation in breast tumors in Asian populations. Conclusion Our findings suggest that immune gene expression and associated genomic features could be useful to further stratify luminal BC beyond the current luminal A/B classification and a subset of luminal BC patients may benefit from checkpoint immunotherapy, at least in Asian populations.
Collapse
Affiliation(s)
- Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Lap Ah Tse
- Division of Occupational and Environmental Health, The Chinese University of Hong Kong, Hong Kong, China.
| | - Difei Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA.,Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Hela Koka
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Mustapha Abubakar
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Priscilla Lee
- Division of Occupational and Environmental Health, The Chinese University of Hong Kong, Hong Kong, China
| | - Feng Wang
- Division of Occupational and Environmental Health, The Chinese University of Hong Kong, Hong Kong, China
| | - Cherry Wu
- North District Hospital, Hong Kong, China
| | | | | | | | - Mengjie Li
- Division of Occupational and Environmental Health, The Chinese University of Hong Kong, Hong Kong, China.,Vanderbilt University, Nashville, TN, USA
| | - Wentao Li
- Division of Occupational and Environmental Health, The Chinese University of Hong Kong, Hong Kong, China
| | - Suyang Wu
- Division of Occupational and Environmental Health, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhiguang Liu
- Division of Occupational and Environmental Health, The Chinese University of Hong Kong, Hong Kong, China
| | - Bixia Huang
- Division of Occupational and Environmental Health, The Chinese University of Hong Kong, Hong Kong, China
| | - Han Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Eric Tang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Zhengyan Kan
- Pfizer Oncology Research, San Diego, CA, 92121, USA
| | | | - Yeon Hee Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| | - Seok Jin Nam
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| | - Mingyi Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA.,Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Xuezheng Sun
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kristine Jones
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA.,Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA.,Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Amy Hutchinson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA.,Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Belynda Hicks
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA.,Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ludmila Prokunina-Olsson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Montserrat Garcia-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Stephen Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Xiaohong R Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
46
|
Cyprian FS, Akhtar S, Gatalica Z, Vranic S. Targeted immunotherapy with a checkpoint inhibitor in combination with chemotherapy: A new clinical paradigm in the treatment of triple-negative breast cancer. Bosn J Basic Med Sci 2019; 19:227-233. [PMID: 30915922 DOI: 10.17305/bjbms.2019.4204] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 02/07/2023] Open
Abstract
The treatment of several solid and hematologic malignancies with immune checkpoint inhibitors (against programmed death receptor-1/ligand-1 [PD-1/PD-L1]) has dramatically changed the cancer treatment paradigm. However, no checkpoint inhibitors were previously approved for the treatment of triple-negative breast cancer (TNBC), a difficult-to-treat disease with a high unmet therapeutic need. Based on IMpassion130 clinical trial (NCT02425891), the Food and Drug Administration (FDA) has recently granted an accelerated approval for atezolizumab (TECENTRIQ®), a monoclonal antibody drug targeting PD-L1, plus chemotherapy (Abraxane; nab®-Paclitaxel) for the treatment of adults with PD-L1-positive, unresectable, locally advanced or metastatic TNBC. The FDA has also approved the Ventana diagnostic antibody SP142 as a companion test for selecting TNBC patients for treatment with atezolizumab. In the present review, we briefly discuss the importance of this breakthrough as the first cancer immunotherapy regimen to be approved for the management of breast cancer.
Collapse
|
47
|
Lazarus G, Audrey J, Iskandar AWB. Efficacy and safety profiles of programmed cell death-1/programmed cell death ligand-1 inhibitors in the treatment of triple-negative breast cancer: A comprehensive systematic review. Oncol Rev 2019; 13:425. [PMID: 31857857 PMCID: PMC6886008 DOI: 10.4081/oncol.2019.425] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is associated with worse prognosis, with limited treatment regiments available and higher mortality rate. Immune checkpoint inhibitors targeting programmed cell death-1 (PD-1) or programmed cell death-ligand 1 (PD-L1) showed great potentials in treating malignancies and may serve as potential therapies for TNBC. This systematic review aims to evaluate the efficacy and safety profiles of PD-1/PD-L1 inhibitors in the treatment of TNBC. Literature search was performed via PubMed, EBSCOhost, Scopus, and CENTRAL databases, selecting studies which evaluated the use of anti-PD-1/PDL1 for TNBC from inception until February 2019. Risk of bias was assessed by the Newcastle-Ottawa Scale (NOS). Overall, 7 studies evaluating outcomes of 1395 patients with TNBC were included in this systematic review. Anti-PD-1/PD-L1 showed significant antitumor effect, proven by their promising response (objective response rate (ORR), 18.5-39.4%) and survival rates (median overall survival (OS), 9.2-21.3 months). Moreover, anti- PD-1/PD-L1 yielded better outcomes when given as first-line therapy, and overexpression of PD-L1 in tumors showed better therapeutic effects. On the other hands, safety profiles were similar across agents and generally acceptable, with grade ≥3 treatment- related adverse effects (AEs) ranging from 9.5% to 15.6% and no new AEs were experienced by TNBC patients. Most grade ≥3 AEs are immune-mediated, which are manifested as neutropenia, fatigue, peripheral neuropathy, and anemia. PD-1/PD-L1 inhibitors showed promising efficacy and tolerable AEs, and thus may benefit TNBC patients. Further studies of randomized controlled trials with larger populations are needed to better confirm the potential of these agents.
Collapse
|
48
|
Prognostic Role of Androgen Receptor in Triple Negative Breast Cancer: A Multi-Institutional Study. Cancers (Basel) 2019; 11:cancers11070995. [PMID: 31319547 PMCID: PMC6678933 DOI: 10.3390/cancers11070995] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/05/2019] [Accepted: 07/11/2019] [Indexed: 11/17/2022] Open
Abstract
Background: The androgen receptor (AR) has emerged as a potential therapeutic target for AR-positive triple-negative breast cancer (TNBC). However, conflicting reports regarding AR’s prognostic role in TNBC are putting its usefulness in question. Some studies conclude that AR positivity indicates a good prognosis in TNBC, whereas others suggest the opposite, and some show that AR status has no significant bearing on the patients’ prognosis. Methods: We evaluated the prognostic value of AR in resected primary tumors from TNBC patients from six international cohorts {US (n = 420), UK (n = 239), Norway (n = 104), Ireland (n = 222), Nigeria (n = 180), and India (n = 242); total n = 1407}. All TNBC samples were stained with the same anti-AR antibody using the same immunohistochemistry protocol, and samples with ≥1% of AR-positive nuclei were deemed AR-positive TNBCs. Results: AR status shows population-specific patterns of association with patients’ overall survival after controlling for age, grade, population, and chemotherapy. We found AR-positive status to be a marker of good prognosis in US and Nigerian cohorts, a marker of poor prognosis in Norway, Ireland and Indian cohorts, and neutral in UK cohort. Conclusion: AR status, on its own, is not a reliable prognostic marker. More research to investigate molecular subtype composition among the different cohorts is warranted.
Collapse
|
49
|
Jenkins BD, Martini RN, Hire R, Brown A, Bennett B, Brown I, Howerth EW, Egan M, Hodgson J, Yates C, Kittles R, Chitale D, Ali H, Nathanson D, Nikolinakos P, Newman L, Monteil M, Davis MB. Atypical Chemokine Receptor 1 ( DARC/ACKR1) in Breast Tumors Is Associated with Survival, Circulating Chemokines, Tumor-Infiltrating Immune Cells, and African Ancestry. Cancer Epidemiol Biomarkers Prev 2019; 28:690-700. [PMID: 30944146 PMCID: PMC6450416 DOI: 10.1158/1055-9965.epi-18-0955] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/11/2018] [Accepted: 01/04/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Tumor-specific immune response is an important aspect of disease prognosis and ultimately impacts treatment decisions for innovative immunotherapies. The atypical chemokine receptor 1 (ACKR1 or DARC) gene plays a pivotal role in immune regulation and harbors several single-nucleotide variants (SNV) that are specific to sub-Saharan African ancestry. METHODS Using computational The Cancer Genome Atlas (TCGA) analysis, case-control clinical cohort Luminex assays, and CIBERSORT deconvolution, we identified distinct immune cell profile-associated DARC/ACKR1 tumor expression and race with increased macrophage subtypes and regulatory T cells in DARC/ACKR1-high tumors. RESULTS In this study, we report the clinical relevance of DARC/ACKR1 tumor expression in breast cancer, in the context of a tumor immune response that may be associated with sub-Saharan African ancestry. Briefly, we found that for infiltrating carcinomas, African Americans have a higher proportion of DARC/ACKR1-negative tumors compared with white Americans, and DARC/ACKR1 tumor expression is correlated with proinflammatory chemokines, CCL2/MCP-1 (P <0.0001) and anticorrelated with CXCL8/IL8 (P <0.0001). Sub-Saharan African-specific DARC/ACKR1 alleles likely drive these correlations. Relapse-free survival (RFS) and overall survival (OS) were significantly longer in individuals with DARC/ACKR1-high tumors (P <1.0 × 10-16 and P <2.2 × 10-6, respectively) across all molecular tumor subtypes. CONCLUSIONS DARC/AKCR1 regulates immune responses in tumors, and its expression is associated with sub-Saharan African-specific alleles. DARC/ACKR1-positive tumors will have a distinct immune response compared with DARC/AKCR1-negative tumors. IMPACT This study has high relevance in cancer management, as we introduce a functional regulator of inflammatory chemokines that can determine an infiltrating tumor immune cell landscape that is distinct among patients of African ancestry.
Collapse
Affiliation(s)
- Brittany D Jenkins
- Department of Genetics, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia
| | - Rachel N Martini
- Department of Genetics, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia
| | - Rupali Hire
- Department of Genetics, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia
| | - Andrea Brown
- Department of Genetics, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia
| | - Briana Bennett
- Department of Genetics, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia
| | - I'nasia Brown
- Department of Genetics, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia
| | - Elizabeth W Howerth
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Mary Egan
- University Cancer and Blood Center, Athens, Georgia
| | | | - Clayton Yates
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, Alabama
| | - Rick Kittles
- Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Dhananjay Chitale
- Department of Pathology, Henry Ford Health System, Detroit, Michigan
| | - Haythem Ali
- Department of Hematology and Oncology, Henry Ford Health System, Detroit, Michigan
| | - David Nathanson
- Department of Surgery, Henry Ford Health System, Detroit, Michigan
| | | | - Lisa Newman
- Department of Surgery, Henry Ford Health System, Detroit, Michigan
| | - Michele Monteil
- Department of Molecular Biology and Biochemistry, Augusta University/University of Georgia Medical Partnership, Athens, Georgia
| | - Melissa B Davis
- Department of Genetics, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia.
- Department of Molecular Biology and Biochemistry, Augusta University/University of Georgia Medical Partnership, Athens, Georgia
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan
| |
Collapse
|
50
|
Quadruple Negative Breast Cancers (QNBC) Demonstrate Subtype Consistency among Primary and Recurrent or Metastatic Breast Cancer. Transl Oncol 2018; 12:493-501. [PMID: 30594038 PMCID: PMC6307536 DOI: 10.1016/j.tranon.2018.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Despite the availability of current standards of care treatments for triple negative breast cancer (TNBC), many patients still die from this disease. Quadruple negative tumors, which are TNBC tumors that lack androgen receptor (AR), represent a more aggressive subtype of TNBC; however, the molecular features are not well understood. METHODS Immunohistochemistry of estrogen receptor (ER), progesterone receptor (PR), HER2, and AR was determined in 244 primary and 630 recurrent/metastatic site biopsies. Expression was correlated with a panel of 25 cancer-related genes and proteins by IHC and in situ hybridization (ISH). RESULTS We observed that 80.2% (65 of 81) of primary TNBC tumors and 75.7% (159 of 210) of recurrent/metastatic TNBC tumors are QNBC. Bivariate fit analysis demonstrated that QNBC (n = 224) significantly (P < .03) correlated with younger aged patients at initial biopsy compared to AR positive TNBC patients (n = 51). In paired primary tissue samples and primary to recurrent/metastatic samples, at least 70% Luminal, HER2 enriched, and QNBC subtype did not change molecular profile. But, TNBC seems to be the "unstable" subtype. Within the total cohort, discordance in molecular profiles was identified in both synchronous (20%) and asynchronous (21%) intra-individual analyses. Irrespective of sample type, (Synchronous or Asynchronous), QNBC demonstrated higher concordant than TNBC. IHC and ISH results of the cancer related genes, demonstrated that gene/protein expression differ by molecular profile: TNBC (HR-/HER2-, AR+) and QNBC (HR-/HER2-, AR-). IHC in metastatic tumors, showed that the percentage of tumors positive of EGFR were higher, while PTEN and TLE3 were lower in QNBC compared to TNBC. CONCLUSION Standard treatment of Breast Cancer (BC) relies on reliable assessment by IHC analysis of ER, PR, and HER2. Our analyses suggest that the heterogeneity of TNBC is at least partially associated with the presence or absence of AR expression, suggesting that QNBC should be considered as a clinically relevant BC subtype. IHC analysis of AR appears to be a practical assay to determine the most aggressive TNBC subtypes and identifies tumors that could benefit from available targeted therapies.
Collapse
|