1
|
Lv J, Li X, Mu R, Zheng W, Yang P, Huang B, Liu F, Liu X, Song Z, Qin X, Zhu X. Comparison of the diagnostic efficacy between imaging features and iodine density values for predicting microvascular invasion in hepatocellular carcinoma. Front Oncol 2024; 14:1437347. [PMID: 39469645 PMCID: PMC11513251 DOI: 10.3389/fonc.2024.1437347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/09/2024] [Indexed: 10/30/2024] Open
Abstract
Background In recent years, studies have confirmed the predictive capability of spectral computer tomography (CT) in determining microvascular invasion (MVI) in patients with hepatocellular carcinoma (HCC). Discrepancies in the predicted MVI values between conventional CT imaging features and spectral CT parameters necessitate additional validation. Methods In this retrospective study, 105 cases of small HCC were reviewed, and participants were divided into MVI-negative (n=53, Male:48 (90.57%); mean age, 59.40 ± 11.79 years) and MVI-positive (n=52, Male:50(96.15%); mean age, 58.74 ± 9.21 years) groups using pathological results. Imaging features and iodine density (ID) obtained from three-phase enhancement spectral CT scans were gathered from all participants. The study evaluated differences in imaging features and ID values of HCC between two groups, assessing their diagnostic accuracy in predicting MVI occurrence in HCC patients. Furthermore, the diagnostic efficacy of imaging features and ID in predicting MVI was compared. Results Significant differences were noted in the presence of mosaic architecture, nodule-in-nodule architecture, and corona enhancement between the groups, all with p-values < 0.001. There were also notable disparities in IDs between the two groups across the arterial phase, portal phase, and delayed phases, all with p-values < 0.001. The imaging features of nodule-in-nodule architecture, corona enhancement, and nonsmooth tumor margin demonstrate significant diagnostic efficacy, with area under the curve (AUC) of 0.761, 0.742, and 0.752, respectively. In spectral CT analysis, the arterial, portal, and delayed phase IDs exhibit remarkable diagnostic accuracy in detecting MVI, with AUCs of 0.821, 0.832, and 0.802, respectively. Furthermore, the combined models of imaging features, ID, and imaging features with ID reveal substantial predictive capabilities, with AUCs of 0.846, 0.872, and 0.904, respectively. DeLong test results indicated no statistically significant differences between imaging features and IDs. Conclusions Substantial differences were noted in imaging features and ID between the MVI-negative and MVI-positive groups in this study. The ID and imaging features exhibited a robust diagnostic precision in predicting MVI. Additionally, our results suggest that both imaging features and ID showed similar predictive efficacy for MVI.
Collapse
Affiliation(s)
- Jian Lv
- Department of Radiology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Xin Li
- Department of Radiology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Ronghua Mu
- Department of Radiology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Wei Zheng
- Department of Radiology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Peng Yang
- Department of Radiology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Bingqin Huang
- Department of Radiology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
- Graduate School, Guilin Medical University, Guilin, China
| | - Fuzhen Liu
- Department of Radiology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Xiaomin Liu
- Philips (China) Investment Co., Ltd., Guangzhou Branch, Guangzhou, China
| | - Zhixuan Song
- Philips (China) Investment Co., Ltd., Guangzhou Branch, Guangzhou, China
| | - Xiaoyan Qin
- Department of Radiology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Xiqi Zhu
- Department of Radiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Life Science and clinical Medicine Research Center, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
2
|
Ren X, Zhao Y, Wang N, Liu J, Zhang S, Zhuang M, Wang H, Wang J, Zhang Y, Song Q, Liu A. Intravoxel incoherent motion and enhanced T2*-weighted angiography for preoperative prediction of microvascular invasion in hepatocellular carcinoma. Front Oncol 2024; 14:1389769. [PMID: 39184049 PMCID: PMC11341411 DOI: 10.3389/fonc.2024.1389769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/16/2024] [Indexed: 08/27/2024] Open
Abstract
Objective To investigate the value of the combined application of intravoxel incoherent motion (IVIM) and enhanced T2*-weighted angiography (ESWAN) for preoperative prediction of microvascular invasion (MVI) in hepatocellular carcinoma (HCC). Materials and methods 76 patients with pathologically confirmed HCC were retrospectively enrolled and divided into the MVI-positive group (n=26) and MVI-negative group (n=50). Conventional MRI, IVIM, and ESWAN sequences were performed. Three region of interests (ROIs) were placed on the maximum axial slice of the lesion on D, D*, and f maps derived from IVIM sequence, and R2* map derived from ESWAN sequence, and intratumoral susceptibility signal (ITSS) from the phase map derived from ESWAN sequence was also automatically measured. Receiver operating characteristic (ROC) curves were drawn to evaluate the ability for predicting MVI. Univariate and multivariate logistic regression were used to screen independent risk predictors in clinical and imaging information. The Delong's test was used to compare the differences between the area under curves (AUCs). Results The D and D* values of MVI-negative group were significantly higher than those of MVI-positive group (P=0.038, and P=0.023), which in MVI-negative group were 0.892×10-3 (0.760×10-3, 1.303×10-3) mm2/s and 0.055 (0.025, 0.100) mm2/s, and in MVI-positive group were 0.591×10-3 (0.372×10-3, 0.824×10-3) mm2/s and 0.028 (0.006, 0.050)mm2/s, respectively. The R2* and ITSS values of MVI-negative group were significantly lower than those of MVI-positive group (P=0.034, and P=0.005), which in MVI-negative group were 29.290 (23.117, 35.228) Hz and 0.146 (0.086, 0.236), and in MVI-positive group were 43.696 (34.914, 58.083) Hz and 0.199 (0.155, 0.245), respectively. After univariate and multivariate analyses, only AFP (odds ratio, 0.183; 95% CI, 0.041-0.823; P = 0.027) was the independent risk factor for predicting the status of MVI. The AUCs of AFP, D, D*, R2*, and ITSS for prediction of MVI were 0.652, 0.739, 0.707, 0.798, and 0.657, respectively. The AUCs of IVIM (D+D*), ESWAN (R2*+ITSS), and combination (D+D*+R2*+ITSS) for predicting MVI were 0.772, 0.800, and, 0.855, respectively. When IVIM combined with ESWAN, the performance was improved with a sensitivity of 73.1% and a specificity of 92.0% (cut-off value: 0.502) and the AUC was significantly higher than AFP (P=0.001), D (P=0.038), D* (P=0.023), R2* (P=0.034), and ITSS (P=0.005). Conclusion The IVIM and ESWAN parameters showed good efficacy in prediction of MVI in patients with HCC. The combination of IVIM and ESWAN may be useful for noninvasive prediction of MVI before clinical operation.
Collapse
Affiliation(s)
- Xue Ren
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Zhao
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Nan Wang
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiahui Liu
- College of Medical Imaging, Dalian Medical University, Dalian, China
| | - Shuo Zhang
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Mingrui Zhuang
- College of Biomedical Engineering, Dalian University of Technology, Dalian, China
| | - Hongkai Wang
- College of Biomedical Engineering, Dalian University of Technology, Dalian, China
| | - Jixiang Wang
- College of Medical Imaging, Dalian Medical University, Dalian, China
| | - Yindi Zhang
- College of Medical Imaging, Dalian Medical University, Dalian, China
| | - Qingwei Song
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ailian Liu
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
3
|
Wang Q, Yu G, Qiu J, Lu W. Application of Intravoxel Incoherent Motion in Clinical Liver Imaging: A Literature Review. J Magn Reson Imaging 2024; 60:417-440. [PMID: 37908165 DOI: 10.1002/jmri.29086] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
Intravoxel incoherent motion (IVIM) modeling is a widely used double-exponential model for describing diffusion-weighted imaging (DWI) signal, with a slow component related to pure molecular diffusion and a fast component associated with microcirculatory perfusion, which compensates for the limitations of traditional DWI. IVIM is a noninvasive technique for obtaining liver pathological information and characterizing liver lesions, and has potential applications in the initial diagnosis and treatment monitoring of liver diseases. Recent studies have demonstrated that IVIM-derived parameters are useful for evaluating liver lesions, including nonalcoholic fatty liver disease (NAFLD), liver fibrosis and liver tumors. However, the results are not stable. Therefore, it is necessary to summarize the current applications of IVIM in liver disease research, identify existing shortcomings, and point out the future development direction. In this review, we searched for studies related to hepatic IVIM-DWI applications over the past two decades in the PubMed database. We first introduce the fundamental principles and influential factors of IVIM, and then discuss its application in NAFLD, liver fibrosis, and focal hepatic lesions. It has been found that IVIM is still unstable in ensuring the robustness and reproducibility of measurements in the assessment of liver fibrosis grade and liver tumors differentiation, due to inconsistent and substantial overlap in the range of IVIM-derived parameters for different fibrotic stages. In the end, the future direction of IVIM-DWI in the assessment of liver diseases is discussed, emphasizing the need for further research on the stability of IVIM-derived parameters, particularly perfusion-related parameters, in order to promote the clinical practice of IVIM-DWI. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Qi Wang
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Guanghui Yu
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Jianfeng Qiu
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Weizhao Lu
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| |
Collapse
|
4
|
Wang F, Liao HZ, Chen XL, Lei H, Luo GH, Chen GD, Zhao H. Preoperative prediction of microvascular invasion: new insights into personalized therapy for early-stage hepatocellular carcinoma. Quant Imaging Med Surg 2024; 14:5205-5223. [PMID: 39022260 PMCID: PMC11250313 DOI: 10.21037/qims-24-44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/29/2024] [Indexed: 07/20/2024]
Abstract
Owing to advances in diagnosis and treatment methods over past decades, a growing number of early-stage hepatocellular carcinoma (HCC) diagnoses has enabled a greater of proportion of patients to receive curative treatment. However, a high risk of early recurrence and poor prognosis remain major challenges in HCC therapy. Microvascular invasion (MVI) has been demonstrated to be an essential independent predictor of early recurrence after curative therapy. Currently, biopsy is not generally recommended before treatment to evaluate MVI in HCC according clinical guidelines due to sampling error and the high risk of tumor cell seeding following biopsy. Therefore, the postoperative histopathological examination is recognized as the gold standard of MVI diagnosis, but this lagging indicator greatly impedes clinicians in selecting the optimal effective treatment for prognosis. As imaging can now noninvasively and completely assess the whole tumor and host situation, it is playing an increasingly important role in the preoperative assessment of MVI. Therefore, imaging criteria for MVI diagnosis would be highly desirable for optimizing individualized therapeutic decision-making and achieving a better prognosis. In this review, we summarize the emerging image characteristics of different imaging modalities for predicting MVI. We also discuss whether advances in imaging technique have generated evidence that could be practice-changing and whether advanced imaging techniques will revolutionize therapeutic decision-making of early-stage HCC.
Collapse
Affiliation(s)
- Fang Wang
- Department of Radiology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, China
- Departments of Radiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Hua-Zhi Liao
- Department of Radiology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiao-Long Chen
- Department of Radiology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, China
| | - Hao Lei
- Department of Radiology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, China
| | - Guang-Hua Luo
- Department of Radiology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, China
| | - Guo-Dong Chen
- Department of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, China
| | - Heng Zhao
- Department of Radiology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
5
|
Zhang R, Wang Y, Li Z, Shi Y, Yu D, Huang Q, Chen F, Xiao W, Hong Y, Feng Z. Dynamic radiomics based on contrast-enhanced MRI for predicting microvascular invasion in hepatocellular carcinoma. BMC Med Imaging 2024; 24:80. [PMID: 38584254 PMCID: PMC11000376 DOI: 10.1186/s12880-024-01258-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/26/2024] [Indexed: 04/09/2024] Open
Abstract
OBJECTIVE To exploit the improved prediction performance based on dynamic contrast-enhanced (DCE) MRI by using dynamic radiomics for microvascular invasion (MVI) in hepatocellular carcinoma (HCC). METHODS We retrospectively included 175 and 75 HCC patients who underwent preoperative DCE-MRI from September 2019 to August 2022 in institution 1 (development cohort) and institution 2 (validation cohort), respectively. Static radiomics features were extracted from the mask, arterial, portal venous, and equilibrium phase images and used to construct dynamic features. The static, dynamic, and dynamic-static radiomics (SR, DR, and DSR) signatures were separately constructed based on the feature selection method of LASSO and classification algorithm of logistic regression. The receiver operating characteristic (ROC) curves and the area under the curve (AUC) were plotted to evaluate and compare the predictive performance of each signature. RESULTS In the three radiomics signatures, the DSR signature performed the best. The AUCs of the SR, DR, and DSR signatures in the training set were 0.750, 0.751 and 0.805, respectively, while in the external validation set, the corresponding AUCs were 0.706, 0756 and 0.777. The DSR signature showed significant improvement over the SR signature in predicting MVI status (training cohort: P = 0.019; validation cohort: P = 0.044). After external validation, the AUC value of the SR signature decreased from 0.750 to 0.706, while the AUC value of the DR signature did not show a decline (AUCs: 0.756 vs. 0.751). CONCLUSIONS The dynamic radiomics had an improved effect on the MVI prediction in HCC, compared with the static DCE MRI-based radiomics models.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Wang
- Department of Ultrasound, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi Li
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yushu Shi
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danping Yu
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Huang
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Chen
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenbo Xiao
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuan Hong
- College of Mathematical Medicine, Zhejiang Normal University School, Jinhua, China
| | - Zhan Feng
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
6
|
Zheng X, Xu YJ, Huang J, Cai S, Wang W. Predictive value of radiomics analysis of enhanced CT for three-tiered microvascular invasion grading in hepatocellular carcinoma. Med Phys 2023; 50:6079-6095. [PMID: 37517073 DOI: 10.1002/mp.16597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/22/2023] [Accepted: 06/07/2023] [Indexed: 08/01/2023] Open
Abstract
BACKGROUND Microvascular invasion (MVI) is a major risk factor, for recurrence and metastasis of hepatocellular carcinoma (HCC) after radical surgery and liver transplantation. However, its diagnosis depends on the pathological examination of the resected specimen after surgery; therefore, predicting MVI before surgery is necessary to provide reference value for clinical treatment. Meanwhile, predicting only the existence of MVI is not enough, as it ignores the degree, quantity, and distribution of MVI and may lead to MVI-positive patients suffering due to inappropriate treatment. Although some studies have involved M2 (high risk of MVI), majority have adopted the binary classification method or have not included radiomics. PURPOSE To develop three-class classification models for predicting the grade of MVI of HCC by combining enhanced computed tomography radiomics features with clinical risk factors. METHODS The data of 166 patients with HCC confirmed by surgery and pathology were analyzed retrospectively. The patients were divided into the training (116 cases) and test (50 cases) groups at a ratio of 7:3. Of them, 69 cases were MVI positive in the training group, including 45 cases in the low-risk group (M1) and 24 cases in the high-risk group (M2), and 47 cases were MVI negative (M0). In the training group, the optimal subset features were obtained through feature selection, and the arterial phase radiomics model, portal venous phase radiomics model, delayed phase radiomics model, three-phase radiomics model, clinical imaging model, and combined model were developed using Linear Support Vector Classification. The test group was used for validation, and the efficacy of each model was evaluated through the receiver operating characteristic curve (ROC). RESULTS The clinical imaging features of MVI included alpha-fetoprotein, tumor size, tumor margin, peritumoral enhancement, intratumoral artery, and low-density halo. The area under the curve (AUC) of the ROC values of the clinical imaging model for M0, M1, and M2 were 0.831, 0.701, and 0.847, respectively, in the training group and 0.782, 0.534, and 0.785, respectively, in the test group. After combined radiomics analyis, the AUC values for M0, M1, and M2 in the test group were 0.818, 0.688, and 0.867, respectively. The difference between the clinical imaging model and the combined model was statistically significant (p = 0.029). CONCLUSION The clinical imaging model and radiomics model developed in this study had a specific predictive value for HCC MVI grading, which can provide precise reference value for preoperative clinical diagnosis and treatment. The combined application of the two models had a high predictive efficacy.
Collapse
Affiliation(s)
- Xin Zheng
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Department of Radiology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Yun-Jun Xu
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jingcheng Huang
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Shengxian Cai
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wanwan Wang
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
7
|
Zhang Y, Sheng R, Yang C, Dai Y, Zeng M. The Feasibility of Using Tri-Exponential Intra-Voxel Incoherent Motion DWI for Identifying the Microvascular Invasion in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:1659-1671. [PMID: 37799828 PMCID: PMC10547827 DOI: 10.2147/jhc.s433948] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023] Open
Abstract
Purpose To assess the effectiveness of tri-exponential Intra-Voxel Incoherent Motion (tri-IVIM) MRI in preoperatively identifying microvascular invasion (MVI) in hepatocellular carcinoma (HCC). Patients and Methods In this prospective study, 67 patients with HCC were included. Metrics from bi-exponential IVIM (bi-IVIM) and tri-IVIM were calculated. Subgroup comparisons were analyzed using the independent Student's t-test or Mann-Whitney U-test. Logistic regression was performed to explore clinical risk factors. Diagnostic performance was assessed using receiver operating characteristic (ROC) curves, calibration curves and decision curve analysis. Results MVI-positive HCCs exhibited significantly lower true diffusion coefficient (Dt) from bi-IVIM, as well as fast-diffusion coefficients (Df) and slow-diffusion coefficients (Ds) from tri-IVIM, compared to MVI-negative HCCs (p < 0.05). Tumor size and alpha-fetoprotein (AFP) were identified as risk factors. The combination of tri-IVIM-derived metrics (Ds and Df) yielded higher diagnostic accuracy (AUC = 0.808) compared to bi-IVIM (AUC = 0.741). A predictive model based on a nomogram was constructed using Ds, Df, tumor size, and AFP, resulting in the highest diagnostic accuracy (AUC = 0.859). Decision curve analysis indicated that the constructed model, provided the highest net benefit by accurately stratifying the risk of MVI, followed by tri-IVIM and bi-IVIM. Conclusion Tri-IVIM can provide information on perfusion and diffusion for evaluating MVI in HCC. Additionally, tri-IVIM outperformed bi-IVIM in identifying MVI-positive HCC. By integrating clinical risk factors and metrics from tri-IVIM, a predictive nomogram exhibited the highest diagnostic accuracy, potentially aiding in the noninvasive and preoperative assessment of MVI.
Collapse
Affiliation(s)
- Yunfei Zhang
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, 200032, People’s Republic of China
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Ruofan Sheng
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, 200032, People’s Republic of China
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Chun Yang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Yongming Dai
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, 200032, People’s Republic of China
| | - Mengsu Zeng
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, 200032, People’s Republic of China
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
| |
Collapse
|
8
|
Zhang L, Pang G, Zhang J, Yuan Z. Perfusion parameters of triphasic computed tomography hold preoperative prediction value for microvascular invasion in hepatocellular carcinoma. Sci Rep 2023; 13:8629. [PMID: 37244941 DOI: 10.1038/s41598-023-35913-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/25/2023] [Indexed: 05/29/2023] Open
Abstract
The purpose of this study was to evaluate perfusion parameters of triphasic computed tomography (CT) scans in predicting microvascular invasion (MVI) in hepatocellular carcinoma (HCC). All patients were pathologically diagnosed as HCC and underwent triple-phase enhanced CT imaging, which was used to calculate the blood perfusion parameters of hepatic arterial supply perfusion (HAP), portal vein blood supply perfusion (PVP), hepatic artery perfusion Index (HPI), and arterial enhancement fraction (AEF). Receiver operating characteristic (ROC) curve was used to evaluate the performance. The mean values of PVP(Min), AEF(Min), the difference in PVP, HPI and AEF related parameters, the relative PVP(Min) and AEF(Min) in MVI negative group were significantly higher than those in MVI positive group, while for the difference in HPI(Max), the relative HPI(Max) and AEF(Max), the value of MVI positive group significantly higher than that of negative group. The combination of PVP, HPI and AEF had the highest diagnostic efficacy. The two parameters related to HPI had the highest sensitivity, while the combination of PVP related parameters had higher specificity. A combination of perfusion parameters in patients with HCC derived from traditional triphasic CT scans can be used as a preoperative biomarker for predicting MVI.
Collapse
Affiliation(s)
- Li Zhang
- Department of Radiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
| | - Guodong Pang
- Department of Radiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
| | - Jing Zhang
- Department of Radiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
| | - Zhenguo Yuan
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
9
|
Ippolito D, Maino C, Gatti M, Marra P, Faletti R, Cortese F, Inchingolo R, Sironi S. Radiological findings in non-surgical recurrent hepatocellular carcinoma: From locoregional treatments to immunotherapy. World J Gastroenterol 2023; 29:1669-1684. [PMID: 37077517 PMCID: PMC10107213 DOI: 10.3748/wjg.v29.i11.1669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/10/2023] [Accepted: 03/02/2023] [Indexed: 03/17/2023] Open
Abstract
Since hepatocellular carcinoma (HCC) represents an important cause of mortality and morbidity all over the world. Currently, it is fundamental not only to achieve a curative treatment but also to manage in the best way any possible recurrence. Even if the latest update of the Barcelona Clinic Liver Cancer guidelines for HCC treatment has introduced new locoregional techniques and confirmed others as well-established clinical practices, there is still no consensus about the treatment of recurrent HCC (RHCC). Locoregional treatments and medical therapy represent two of the most widely accepted approaches for disease control, especially in the advanced stage of liver disease. Different medical treatments are now approved, and others are under investigation. On this basis, radiology plays a central role in the diagnosis of RHCC and the assessment of response to locoregional treatments and medical therapy for RHCC. This review summarized the actual clinical practice by underlining the importance of the radiological approach both in the diagnosis and treatment of RHCC.
Collapse
Affiliation(s)
- Davide Ippolito
- Department of Radiology, IRCCS San Gerardo dei Tintori, Monza 20900, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milano 20121, Italy
| | - Cesare Maino
- Department of Radiology, IRCCS San Gerardo dei Tintori, Monza 20900, Italy
| | - Marco Gatti
- Department of Surgical Sciences, University of Turin, Turin 10126, Italy
| | - Paolo Marra
- Department of Diagnostic and Interventional Radiology, Papa Giovanni XXIII Hospital, Bergamo 24127, Italy
| | - Riccardo Faletti
- Department of Surgical Sciences, University of Turin, Turin 10126, Italy
| | - Francesco Cortese
- Interventional Radiology Unit, “F. Miulli” Regional General Hospital, Bari 70121, Italy
| | - Riccardo Inchingolo
- Interventional Radiology Unit, “F. Miulli” Regional General Hospital, Bari 70121, Italy
| | - Sandro Sironi
- School of Medicine and Surgery, University of Milano-Bicocca, Milano 20121, Italy
- Department of Diagnostic and Interventional Radiology, Papa Giovanni XXIII Hospital, Bergamo 24127, Italy
| |
Collapse
|
10
|
Huang H, Liu B, Xu Y, Zhou W. Synthetic-to-real domain adaptation with deep learning for fitting the intravoxel incoherent motion model of diffusion-weighted imaging. Med Phys 2023; 50:1614-1622. [PMID: 36308503 DOI: 10.1002/mp.16031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Intravoxel incoherent motion (IVIM) is a type of diffusion-weighted imaging (DWI), and IVIM model parameters (water molecule diffusion rate Dt , pseudo-diffusion coefficient Dp , and tissue perfusion fraction Fp ) have been widely used in the diagnosis and characterization of malignant lesions. PURPOSE This study proposes a deep-learning model with synthetic-to-real domain adaptation to fit the IVIM model parameters of DWI. METHODS Ninety-eight consecutive patients diagnosed with hepatocellular carcinoma between January 2017 and September 2020 were included in the study, and routine IVIM-DWI serial examinations were performed using a 3.0 T magnetic resonance imaging system in preoperative MR imaging. The proposed method is mainly composed of two modules: a convolutional neural network-based IVIM model fitting network to map b-value images to the IVIM parameter maps and a domain discriminator to improve the accuracy of the IVIM parameter maps in the real data. The proposed method was compared with previously reported fitting methods, including the nonlinear least squares (NLSs), IVIM-NEToptim , and self-supervised U-network methods. The IVIM parameter-fitting performance was assessed by measuring the DWI reconstruction performance and testing the robustness of each method against noise using noise-corrupted data. RESULTS The DWI reconstruction performance demonstrates that the proposed method has better reconstruction accuracy for DWI with a low signal-to-noise ratio, which implies that the proposed method improves the fitting accuracy of the IVIM parameters. Noise-corrupt experiments show that the proposed method is more robust against noise-corrupted signals. With the proposed method, no outliers were found in Dt , and outliers were reduced for Fp in the abnormal regions (proposed method: 1.85%; NLS: 5.90%; IVIM-NEToptim : 6.61%; and self-U-net: 25.36%). Moreover, experiments show that the proposed method has a more stable parameter estimation performance than the existing methods in the absence of real data. CONCLUSIONS IVIM parameters can be estimated using a synthetic-to-real domain-adaptation framework with deep learning, and the proposed method outperforms previously reported methods.
Collapse
Affiliation(s)
- Haoyuan Huang
- School of Medical Information Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Baoer Liu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wu Zhou
- School of Medical Information Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
11
|
Wang W, Fan X, Yang J, Wang X, Gu Y, Chen M, Jiang Y, Liu L, Zhang M. Preliminary MRI Study of Extracellular Volume Fraction for Identification of Lymphovascular Space Invasion of Cervical Cancer. J Magn Reson Imaging 2023; 57:587-597. [PMID: 36094153 DOI: 10.1002/jmri.28423] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Lymphovascular space invasion (LVSI) is a risk factor for poor prognosis of cervical cancer. Preoperative identification of LVSI is very difficult. PURPOSE To evaluate the potential of extracellular volume (ECV) fraction based on T1 mapping in preoperative identification of LVSI in cervical cancer compared with dynamic contrast-enhanced MRI (DCE-MRI). STUDY TYPE Retrospective. SUBJECTS A total of 79 patients (median age 54 years) with cervical cancer were classified into LVSI group (n = 29) and without LVSI group (n = 50) according to postoperative pathology. FIELD STRENGTH/SEQUENCE A 3-T, noncontrast and contrast-enhanced T1 mapping performed with volume interpolated breath hold examination (VIBE) sequence, DCE-MRI applied with 3D T1-weighted VIBE sequence. ASSESSMENT Regions of interest along the medial edge of the lesion were drawn on slices depicting the maximum cross-section of the tumor. The noncontrast and contrast-enhanced T1 value of the tumor and arteries in the same slice were measured, and ECV was calculated from T1 values. The parametric maps (Ktrans , kep , and ve ) derived from DCE-MRI standard Toft's model were evaluated. STATISTICAL TESTS ECV, Ktrans , kep , and ve between groups with and without LVSI were compared using Student's t-test. The receiver operating characteristic (ROC) curve and DeLong test were used to evaluate and compare the diagnostic performance of ECV, Ktrans , kep , and ve for differentiating LVSI. P < 0.05 was considered statistically significant. RESULTS The ECV and Ktrans of the LVSI group were significantly higher than that of non-LVSI group (52.86% vs. 36.77%, 0.239 vs. 0.176, respectively), and no significant differences in Kep or ve values were observed (P = 0.071 and P = 0.168, respectively). The ECV fraction showed significantly higher area under ROC curve than Ktrans for differentiating LVSI (0.874 vs. 0.655, respectively). DATA CONCLUSION ECV measurements based on T1 mapping might improve the discrimination between patients with and without LVSI in cervical cancer, showing better performance for this purpose than DCE-MRI. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Wei Wang
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiaofei Fan
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jie Yang
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xuemei Wang
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yu Gu
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Mingxin Chen
- Inpatient Service Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yueluan Jiang
- MR Scientific Marketing, Diagnostic Imaging, Siemens Healthineers Ltd., Beijing, China
| | - Lin Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Mengchao Zhang
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
12
|
Zhang J, Zeng F, Jiang S, Tang H, Zhang J. Preoperative prediction model of microvascular invasion in patients with hepatocellular carcinoma. HPB (Oxford) 2023; 25:45-53. [PMID: 36085261 DOI: 10.1016/j.hpb.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 07/23/2022] [Accepted: 08/15/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Microvascular invasion (MVI) is an adverse factor for the prognosis of patients with hepatocellular carcinoma (HCC). We aimed to construct a preoperative prediction model for MVI, thereby providing a reference for clinicians in formulating treatment options for HCC. METHODS A total of 360 patients with non-metastatic HCC were retrospectively enrolled. We used logistic regression analysis to screen out independent risk factors for MVI and further constructed a predictive model for MVI. The performance of the model was evaluated by receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA). RESULTS Logistic regression analysis revealed that fibrinogen (>4 g/L) (OR: 6.529), alpha-fetoprotein (≥ 400 ng/mL) (OR: 2.676), cirrhosis (OR: 2.25), tumor size (OR: 1.239), and poor tumor border (OR: 3.126) were independent risk factors of MVI. The prediction model of MVI had C-index of 0.746 and 0.772 in the training and validation cohorts, respectively. The calibration curves showed good agreement between actual and predicted MVI risk. Finally, DCA reveals that this model has good clinical utility. CONCLUSION The nomogram-based model we established can predict the preoperative MVI well and provides reference for surgeons to make clinical treatment decisions.
Collapse
Affiliation(s)
- Jianfeng Zhang
- Department of Liver Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China
| | - Fanxin Zeng
- Department of Liver Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China
| | - Shijie Jiang
- Department of Liver Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China
| | - Hui Tang
- Department of Liver Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China.
| | - Jian Zhang
- Department of Liver Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China.
| |
Collapse
|
13
|
Tang J, Zhang X, Chang H, Wang D. Investigating the effect of ARHGEF10L gene on tumor growth in gastric cancer in a nude mouse model using quantitative MRI parameters. J Cancer Res Ther 2022; 18:1926-1930. [PMID: 36647951 DOI: 10.4103/jcrt.jcrt_816_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Background The quantitative magnetic resonance imaging (MRI) parameters were initially used in the study of central nervous system diseases and has since been widely used in the diagnosis of breast, liver, rectum, and prostate diseases. In our study, we aimed to evaluate the effect of ARHGEF10L gene on tumor growth in gastric cancer in nude mice using quantitative MRI parameters. Subjects and Methods A nude mice model of gastric cancer was established, and the mice were divided into a control group and an shARHGEF10L group (N = 10). T2-fs and intravoxel incoherent motions (IVIM) imaging were performed in the mice coil with a 3.0 T MR system. The differences in quantitative parameters (apparent diffusion coefficient [ADC], D, D *, f values) were compared between both groups, and the effect of ARHGEF10L expression on tumor growth in tumor-bearing mice was investigated. The data were analyzed using Statistical Package for the Social Sciences (SPSS) 17.0 software package. Results The ADC and D values of tumor imaging in the shARHGEF10L group were higher than those in the control group, and the differences were statistically significant. There was no significant difference in the D* or F values between both groups. Conclusions The ADC and D values of the quantitative IVIM imaging parameters can be used to effectively assess the growth of gastric cancer in nude mice, suggesting that ARHGEF10L may promote the growth of tumor cells.
Collapse
Affiliation(s)
- Junyi Tang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key of Laboratory of Laboratory Medicine, Jinan, Shandong, China
| | - Xuping Zhang
- Department of Medicine Ultrasound, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key of Laboratory of Abdominal Medical Imaging, Jinan, Shandong, China
| | - Huan Chang
- Department of Radiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Dawei Wang
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key of Laboratory of Abdominal Medical Imaging, Shandong Lung Cancer Institute, Shandong institute of Neuroimmunology, Jinan, Shandong, P. R. China
| |
Collapse
|
14
|
TED: Two-stage expert-guided interpretable diagnosis framework for microvascular invasion in hepatocellular carcinoma. Med Image Anal 2022; 82:102575. [DOI: 10.1016/j.media.2022.102575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 07/08/2022] [Accepted: 08/11/2022] [Indexed: 12/16/2022]
|
15
|
Deng Y, Li J, Xu H, Ren A, Wang Z, Yang D, Yang Z. Diagnostic Accuracy of the Apparent Diffusion Coefficient for Microvascular Invasion in Hepatocellular Carcinoma: A Meta-analysis. J Clin Transl Hepatol 2022; 10:642-650. [PMID: 36062283 PMCID: PMC9396311 DOI: 10.14218/jcth.2021.00254] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/13/2021] [Accepted: 10/27/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS Microvascular invasion (MVI) is a major risk factor for the early recurrence of hepatocellular carcinoma (HCC) and it seriously worsens the prognosis. Accurate preoperative evaluation of the presence of MVI could greatly benefit the treatment management and prognosis prediction of HCC patients. The study aim was to evaluate the diagnostic performance of the apparent diffusion coefficient (ADC), a quantitative parameter for the preoperative diagnosis MVI in HCC patients. METHODS Original articles about diffusion-weighted imaging (DWI) and/or intravoxel incoherent motion (IVIM) conducted on a 3.0 or 1.5 Tesla magnetic resonance imaging (MRI) system indexed through January 17, 2021were collected from MEDLINE/PubMed, Web of Science, EMBASE, and the Cochrane Library. Methodological quality was evaluated using Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2). The pooled sensitivity, specificity, and summary area under the receiver operating characteristic curve (AUROC) were calculated, and meta-regression analysis was performed using a bivariate random effects model through a meta-analysis. RESULTS Nine original articles with a total of 988 HCCs were included. Most studies had low bias risk and minimal applicability concerns. The pooled sensitivity, specificity and AUROC of the ADC value were 73%, 70%, and 0.78, respectively. The time interval between the index test and the reference standard was identified as a possible source of heterogeneity by subgroup meta-regression analysis. CONCLUSIONS Meta-analysis showed that the ADC value had moderate accuracy for predicting MVI in HCC. The time interval accounted for the heterogeneity.
Collapse
Affiliation(s)
- Yuhui Deng
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Medical Imaging Division, Heilongjiang Provincial Hospital, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Jisheng Li
- Department of Interventional Radiology, Yantai Penglai Traditional Chinese Medicine Hospital, Yantai, Shandong, China
| | - Hui Xu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ahong Ren
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Dawei Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Correspondence to: Dawei Yang and Zhenghan Yang, Beijing Friendship Hospital, Capital Medical University, Yongan Road 95, West District, Beijing 100050, China. ORCID: https://orcid.org/0000-0002-1868-2746 (DY) and https://orcid.org/0000-0003-3986-1732 (ZY). Tel: +86-13488676354 (DY) and +86-13910831365 (ZY), Fax: +86-10-63138490, E-mail: (DY) and (ZY)
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Correspondence to: Dawei Yang and Zhenghan Yang, Beijing Friendship Hospital, Capital Medical University, Yongan Road 95, West District, Beijing 100050, China. ORCID: https://orcid.org/0000-0002-1868-2746 (DY) and https://orcid.org/0000-0003-3986-1732 (ZY). Tel: +86-13488676354 (DY) and +86-13910831365 (ZY), Fax: +86-10-63138490, E-mail: (DY) and (ZY)
| |
Collapse
|
16
|
Zhou Y, Zheng J, Yang C, Peng J, Liu N, Yang L, Zhang XM. Application of intravoxel incoherent motion diffusion-weighted imaging in hepatocellular carcinoma. World J Gastroenterol 2022; 28:3334-3345. [PMID: 36158259 PMCID: PMC9346463 DOI: 10.3748/wjg.v28.i27.3334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/26/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023] Open
Abstract
The morbidity and mortality of hepatocellular carcinoma (HCC) rank 6th and 4th, respectively, among malignant tumors worldwide. Traditional diffusion-weighted imaging (DWI) uses the apparent diffusion coefficient (ADC) obtained by applying the monoexponential model to reflect water molecule diffusion in active tissue; however, the value of ADC is affected by microcirculation perfusion. Using a biexponential model, intravoxel incoherent motion (IVIM)-DWI quantitatively measures information related to pure water molecule diffusion and microcirculation perfusion, thus compensating for the shortcomings of DWI. The number of studies examining the application of IVIM-DWI in patients with HCC has gradually increased over the last few years, and many results show that IVIM-DWI has vital value for HCC differentiation, pathological grading, and predicting and evaluating the treatment response. The present study principally reviews the principle of IVIM-DWI and its research progress in HCC differentiation, pathological grading, predicting and evaluating the treatment response, predicting postoperative recurrence and predicting gene expression prediction.
Collapse
Affiliation(s)
- Yi Zhou
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
- Department of Radiology, People's Hospital of Deyang City, Deyang 618000, Sichuan Province, China
| | - Jing Zheng
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Cui Yang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
- Department of Radiology, Panzhihua Central Hospital, Panzhihua 617000, Sichuan Province, China
| | - Juan Peng
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
- Department of Radiology, Sichuan Provincial People's Hospital Jinniu Hospital, Chengdu Jinniu District People's Hospital, Chengdu 610007, Sichuan Province, China
| | - Ning Liu
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Lin Yang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Xiao-Ming Zhang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| |
Collapse
|
17
|
Liao CC, Cheng YF, Yu CY, Tsang LCL, Chen CL, Hsu HW, Chang WC, Lim WX, Chuang YH, Huang PH, Ou HY. A Scoring System for Predicting Microvascular Invasion in Hepatocellular Carcinoma Based on Quantitative Functional MRI. J Clin Med 2022; 11:3789. [PMID: 35807074 PMCID: PMC9267530 DOI: 10.3390/jcm11133789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Microvascular invasion (MVI) in hepatocellular carcinoma (HCC) is a histopathological marker and risk factor for HCC recurrence. We integrated diffusion-weighted imaging (DWI) and magnetic resonance (MR) image findings of tumors into a scoring system for predicting MVI. In total, 228 HCC patients with pathologically confirmed MVI who underwent surgical resection or liver transplant between November 2012 and March 2021 were enrolled retrospectively. Patients were divided into a right liver lobe group (n = 173, 75.9%) as the model dataset and a left liver lobe group (n = 55, 24.1%) as the model validation dataset. Multivariate logistic regression identified two-segment involved tumor (Score: 1; OR: 3.14; 95% CI: 1.22 to 8.06; p = 0.017); ADCmin ≤ 0.95 × 10-3 mm2/s (Score: 2; OR: 10.88; 95% CI: 4.61 to 25.68; p = 0.000); and largest single tumor diameter ≥ 3 cm (Score: 1; OR: 5.05; 95% CI: 2.25 to 11.30; p = 0.000), as predictive factors for the scoring model. Among all patients, sensitivity was 89.66%, specificity 58.04%, positive predictive value 68.87%, and negative predictive value 84.41%. For validation of left lobe group, sensitivity was 80.64%, specificity 70.83%, positive predictive value 78.12%, and negative predictive value 73.91%. The scoring model using ADCmin, largest tumor diameter, and two-segment involved tumor provides high sensitivity and negative predictive value in MVI prediction for use in routine functional MR.
Collapse
Affiliation(s)
- Chien-Chang Liao
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung District, Kaohsiung 833, Taiwan; (C.-C.L.); (Y.-F.C.); (C.-Y.Y.); (L.-C.L.T.); (H.-W.H.); (W.-C.C.); (W.-X.L.); (Y.-H.C.); (P.-H.H.)
| | - Yu-Fan Cheng
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung District, Kaohsiung 833, Taiwan; (C.-C.L.); (Y.-F.C.); (C.-Y.Y.); (L.-C.L.T.); (H.-W.H.); (W.-C.C.); (W.-X.L.); (Y.-H.C.); (P.-H.H.)
| | - Chun-Yen Yu
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung District, Kaohsiung 833, Taiwan; (C.-C.L.); (Y.-F.C.); (C.-Y.Y.); (L.-C.L.T.); (H.-W.H.); (W.-C.C.); (W.-X.L.); (Y.-H.C.); (P.-H.H.)
| | - Leung-Chit Leo Tsang
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung District, Kaohsiung 833, Taiwan; (C.-C.L.); (Y.-F.C.); (C.-Y.Y.); (L.-C.L.T.); (H.-W.H.); (W.-C.C.); (W.-X.L.); (Y.-H.C.); (P.-H.H.)
| | - Chao-Long Chen
- Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung District, Kaohsiung 833, Taiwan;
| | - Hsien-Wen Hsu
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung District, Kaohsiung 833, Taiwan; (C.-C.L.); (Y.-F.C.); (C.-Y.Y.); (L.-C.L.T.); (H.-W.H.); (W.-C.C.); (W.-X.L.); (Y.-H.C.); (P.-H.H.)
| | - Wan-Ching Chang
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung District, Kaohsiung 833, Taiwan; (C.-C.L.); (Y.-F.C.); (C.-Y.Y.); (L.-C.L.T.); (H.-W.H.); (W.-C.C.); (W.-X.L.); (Y.-H.C.); (P.-H.H.)
| | - Wei-Xiong Lim
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung District, Kaohsiung 833, Taiwan; (C.-C.L.); (Y.-F.C.); (C.-Y.Y.); (L.-C.L.T.); (H.-W.H.); (W.-C.C.); (W.-X.L.); (Y.-H.C.); (P.-H.H.)
| | - Yi-Hsuan Chuang
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung District, Kaohsiung 833, Taiwan; (C.-C.L.); (Y.-F.C.); (C.-Y.Y.); (L.-C.L.T.); (H.-W.H.); (W.-C.C.); (W.-X.L.); (Y.-H.C.); (P.-H.H.)
| | - Po-Hsun Huang
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung District, Kaohsiung 833, Taiwan; (C.-C.L.); (Y.-F.C.); (C.-Y.Y.); (L.-C.L.T.); (H.-W.H.); (W.-C.C.); (W.-X.L.); (Y.-H.C.); (P.-H.H.)
| | - Hsin-You Ou
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung District, Kaohsiung 833, Taiwan; (C.-C.L.); (Y.-F.C.); (C.-Y.Y.); (L.-C.L.T.); (H.-W.H.); (W.-C.C.); (W.-X.L.); (Y.-H.C.); (P.-H.H.)
| |
Collapse
|
18
|
Wu Y, Zhu M, Liu Y, Cao X, Zhang G, Yin L. Peritumoral Imaging Manifestations on Gd-EOB-DTPA-Enhanced MRI for Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. Front Oncol 2022; 12:907076. [PMID: 35814461 PMCID: PMC9263828 DOI: 10.3389/fonc.2022.907076] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
PURPOSE The aim was to investigate the association between microvascular invasion (MVI) and the peritumoral imaging features of gadolinium ethoxybenzyl DTPA-enhanced magnetic resonance imaging (Gd-EOB-DTPA-enhanced MRI) in hepatocellular carcinoma (HCC). METHODS Up until Feb 24, 2022, the PubMed, Embase, and Cochrane Library databases were carefully searched for relevant material. The software packages utilized for this meta-analysis were Review Manager 5.4.1, Meta-DiSc 1.4, and Stata16.0. Summary results are presented as sensitivity (SEN), specificity (SPE), diagnostic odds ratios (DORs), area under the receiver operating characteristic curve (AUC), and 95% confidence interval (CI). The sources of heterogeneity were investigated using subgroup analysis. RESULTS An aggregate of nineteen articles were remembered for this meta-analysis: peritumoral enhancement on the arterial phase (AP) was described in 13 of these studies and peritumoral hypointensity on the hepatobiliary phase (HBP) in all 19 studies. The SEN, SPE, DOR, and AUC of the 13 investigations on peritumoral enhancement on AP were 0.59 (95% CI, 0.41-0.58), 0.80 (95% CI, 0.75-0.85), 4 (95% CI, 3-6), and 0.73 (95% CI, 0.69-0.77), respectively. The SEN, SPE, DOR, and AUC of 19 studies on peritumoral hypointensity on HBP were 0.55 (95% CI, 0.45-0.64), 0.87 (95% CI, 0.81-0.91), 8 (95% CI, 5-12), and 0.80 (95% CI, 0.76-0.83), respectively. The subgroup analysis of two imaging features identified ten and seven potential factors for heterogeneity, respectively. CONCLUSION The results of peritumoral enhancement on the AP and peritumoral hypointensity on HBP showed high SPE but low SEN. This indicates that the peritumoral imaging features on Gd-EOB-DTPA-enhanced MRI can be used as a noninvasive, excluded diagnosis for predicting hepatic MVI in HCC preoperatively. Moreover, the results of this analysis should be updated when additional data become available. Additionally, in the future, how to improve its SEN will be a new research direction.
Collapse
Affiliation(s)
- Ying Wu
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Meilin Zhu
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yiming Liu
- Department of Radiology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xinyue Cao
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Guojin Zhang
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Longlin Yin
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
19
|
Liu B, Zeng Q, Huang J, Zhang J, Zheng Z, Liao Y, Deng K, Zhou W, Xu Y. IVIM using convolutional neural networks predicts microvascular invasion in HCC. Eur Radiol 2022; 32:7185-7195. [PMID: 35713662 DOI: 10.1007/s00330-022-08927-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The study aimed to investigate the diagnostic performance of intravoxel incoherent motion (IVIM) diffusion-weighted magnetic resonance imaging for prediction of microvascular invasion (MVI) in hepatocellular carcinoma (HCC) using convolutional neural networks (CNNs). METHODS This retrospective study included 114 patients with pathologically confirmed HCC from December 2014 to August 2021. All patients underwent MRI examination including IVIM sequence with 9 b-values preoperatively. First, 9 b-value images were superimposed in the channel dimension, and a b-value volume with a shape of 32 × 32 × 9 dimension was obtained. Secondly, an image resampling method was performed for data augmentation to generate more samples for training. Finally, deep features to predict MVI in HCC were directly derived from a b-value volume based on the CNN. Moreover, a deep learning model based on parameter maps and a fusion model combined with deep features of IVIM, clinical characteristics, and IVIM parameters were also constructed. Receiver operating characteristic (ROC) curve analysis was performed to assess the diagnostic performance for MVI prediction in HCC. RESULTS Deep features directly extracted from IVIM-DWI (0.810 (range 0.760, 0.829)) using CNN yielded better performance for prediction of MVI than those from IVIM parameter maps (0.590 (range 0.555, 0.643)). Furthermore, the performance of the fusion model combined with deep features of IVIM-DWI, clinical features (α-fetoprotein (AFP) level and tumor size), and apparent diffusion coefficient (ADC) (0.829 (range 0.776, 0.848)) was slightly improved. CONCLUSIONS Deep learning with CNN based on IVIM-DWI can be conducive to preoperative prediction of MVI in patients with HCC. KEY POINTS • Deep learning assessment of IVIM data for prediction of MVI in HCC can overcome the unstable and low performance of IVIM parameters. • Deep learning model based on IVIM performs better than parameter values, clinical features, and deep learning model based on parameter maps. • The fusion model combined with deep features of IVIM, clinical characteristics, and ADC yields better performance for prediction of MVI than the model only based on IVIM.
Collapse
Affiliation(s)
- Baoer Liu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, No.1838 Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
| | - Qingyuan Zeng
- School of Medical Information Engineering, Guangzhou University of Chinese Medicine, 232 Wide Ring East Road, Panyu District, Guangzhou, 510006, People's Republic of China
| | - Jianbin Huang
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, No.1838 Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
| | - Jing Zhang
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, No.1838 Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
| | - Zeyu Zheng
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, No.1838 Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
| | - Yuting Liao
- GE Healthcare, 10/F, GE Tower, No.87 Hua Cheng Avenue, Pearl River New City, Tianhe District, Guangzhou, 510623, People's Republic of China
| | - Kan Deng
- Philips Healthcare, 18F, Block B, China International Center, No.33 Zhongshan 3rd Road, Guangzhou, 510055, People's Republic of China
| | - Wu Zhou
- School of Medical Information Engineering, Guangzhou University of Chinese Medicine, 232 Wide Ring East Road, Panyu District, Guangzhou, 510006, People's Republic of China.
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, No.1838 Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
20
|
Wang F, Yan CY, Wang CH, Yang Y, Zhang D. The Roles of Diffusion Kurtosis Imaging and Intravoxel Incoherent Motion Diffusion-Weighted Imaging Parameters in Preoperative Evaluation of Pathological Grades and Microvascular Invasion in Hepatocellular Carcinoma. Front Oncol 2022; 12:884854. [PMID: 35646649 PMCID: PMC9131658 DOI: 10.3389/fonc.2022.884854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/31/2022] [Indexed: 12/14/2022] Open
Abstract
Background Currently, there are disputes about the parameters of diffusion kurtosis imaging (DKI), intravoxel incoherent motion (IVIM), and diffusion-weighted imaging (DWI) in predicting pathological grades and microvascular invasion (MVI) in hepatocellular carcinoma (HCC). The aim of our study was to investigate and compare the predictive power of DKI and IVIM-DWI parameters for preoperative evaluation of pathological grades and MVI in HCC. Methods PubMed, Web of Science, and Embase databases were searched for relevant studies published from inception to October 2021. Review Manager 5.3 was used to summarize standardized mean differences (SMDs) of mean kurtosis (MK), mean diffusivity (MD), tissue diffusivity (D), pseudo diffusivity (D*), perfusion fraction (f), mean apparent diffusion coefficient (ADCmean), and minimum apparent diffusion coefficient (ADCmin). Stata12.0 was used to pool the sensitivity, specificity, and area under the curve (AUC). Overall, 42 up-to-standard studies with 3,807 cases of HCC were included in the meta-analysis. Results The SMDs of ADCmean, ADCmin, and D values, but not those of D* and f values, significantly differed between well, moderately, and poorly differentiated HCC (P < 0.01). The sensitivity, specificity, and AUC of the MK, D, ADCmean, and ADCmin for preoperative prediction of poorly differentiated HCC were 69%/94%/0.89, 87%/80%/0.89, 82%/75%/0.86, and 83%/64%/0.81, respectively. In addition, the sensitivity, specificity, and AUC of the D and ADCmean for preoperative prediction of well-differentiated HCC were 87%/83%/0.92 and 82%/88%/0.90, respectively. The SMDs of ADCmean, ADCmin, D, MD, and MK values, but not f values, showed significant differences (P < 0.01) between MVI-positive (MVI+) and MVI-negative (MVI-) HCC. The sensitivity and specificity of D and ADCmean for preoperative prediction of MVI+ were 80%/80% and 74%/71%, respectively; the AUC of the D (0.87) was significantly higher than that of ADCmean (0.78) (Z = −2.208, P = 0.027). Sensitivity analysis showed that the results of the above parameters were stable and reliable, and subgroup analysis confirmed a good prediction effect. Conclusion DKI parameters (MD and MK) and IVIM-DWI parameters (D value, ADCmean, and ADCmin) can be used as a noninvasive and simple preoperative examination method to predict the grade and MVI in HCC. Compared with ADCmean and ADCmin, MD and D values have higher diagnostic efficacy in predicting the grades of HCC, and D value has superior diagnostic efficacy to ADCmean in predicting MVI+ in HCC. However, f value cannot predict the grade or MVI in HCC.
Collapse
Affiliation(s)
- Fei Wang
- Department of Medical Imaging, Luzhou People's Hospital, Luzhou, China.,Department of Radiology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Chun Yue Yan
- Department of Obstetrics, Luzhou People's Hospital, Luzhou, China
| | - Cai Hong Wang
- Department of Radiology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yan Yang
- Department of Radiology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Dong Zhang
- Department of Radiology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
21
|
Combined transarterial iodized oil injection and computed tomography-guided thermal ablation for hepatocellular carcinoma: utility of the iodized oil retention pattern. Abdom Radiol (NY) 2022; 47:431-442. [PMID: 34642785 PMCID: PMC8776722 DOI: 10.1007/s00261-021-03305-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/21/2022]
Abstract
Purpose To investigate whether the iodized oil (Lipiodol, Guerbet Group, Villepinte, France) retention pattern influences the treatment efficacy of combined transarterial Lipiodol injection (TLI) and thermal ablation in patients with hepatocellular carcinoma (HCC). Methods Data of 198 patients (280 HCC lesions), who underwent TLI plus computed tomography (CT)-guided thermal ablation at three separate medical institutions between June 2014 and September 2020, were reviewed and analyzed. The Lipiodol retention pattern was classified as complete or incomplete based on non-enhanced CT at the time of ablation. The primary outcome was local recurrence-free survival (LRFS) for lesions; the secondary outcome was overall survival (OS) for patients. Propensity score matching (PSM) was performed using a caliper width of 0.1 between the two groups. Differences in LRFS and OS between the two groups were compared using the log-rank test. Results A total of 133 lesions exhibited a complete Lipiodol retention pattern, while 147 exhibited an incomplete pattern. After PSM analysis of baseline characteristics of the lesions, 121 pairs of lesions were matched. LRFS was significantly longer for lesions exhibiting complete retention than for those exhibiting incomplete retention (P = 0.030). After PSM analysis of patient baseline characteristics, 74 pairs of patients were matched. There was no significant difference in OS between the two groups (P = 0.456). Conclusion Lipiodol retention patterns may influence the treatment efficacy of combined TLI and thermal ablation for HCC lesions. However, a survival benefit for the Lipiodol retention pattern among HCC patients was not observed and needs further confirmation.
Collapse
|
22
|
Li H, Wang L, Zhang J, Duan Q, Xu Y, Xue Y. Evaluation of microvascular invasion of hepatocellular carcinoma using whole-lesion histogram analysis with the stretched-exponential diffusion model. Br J Radiol 2021; 95:20210631. [PMID: 34928172 DOI: 10.1259/bjr.20210631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES To evaluate the potential role of histogram analysis of stretched exponential model (SEM) through whole-tumor volume for preoperative prediction of microvascular invasion (MVI) in single hepatocellular carcinoma (HCC). METHODS This study included 43 patients with pathologically proven HCCs by surgery who underwent multiple b-values diffusion-weighted imaging (DWI) and contrast-enhanced MRI.The histogram metrics of distributed diffusion coefficient (DDC) and heterogeneity index (α) from SEM were compared between HCCs with and without MVI, by using the independent t-test. Morphologic features of conventional MRI and clinical data were evaluated with chi-squared or Fisher's exact tests. Receiver operating characteristic (ROC) and multivariable logistic regression analyses were performed to evaluate the diagnostic performance of different parameters for predicting MVI. RESULTS The tumor size and non-smooth tumor margin were significantly associated with MVI (all p < 0.05). The mean, fifth, 25th, 50th percentiles of DDC, and the fifth percentile of ADC between HCCs with and without MVI were statistically significant differences (all p < 0.05). The histogram parameters of α showed no statistically significant differences (all p > 0.05). At multivariate analysis,the fifth percentile of DDC was independent risk factor for MVI of HCC(p = 0.006). CONCLUSIONS Histogram parameters DDC and ADC, but not the α value, are useful predictors of MVI. The fifth percentile of DDC was the most useful value to predict MVI of HCC. ADVANCES IN KNOWLEDGE There is limited literature addressing the role of SEM for evaluating MVI of HCC. Our findings suggest that histogram analysis of SEM based on whole-tumor volume can be useful for MVI prediction.
Collapse
Affiliation(s)
- Hongxiang Li
- Department of Radiology, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, Fujian, PR China
| | - LiLi Wang
- Department of Radiology, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Jing Zhang
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Qing Duan
- Department of Radiology, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Yunjing Xue
- Department of Radiology, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, Fujian, PR China
| |
Collapse
|
23
|
Zeng Q, Liu B, Xu Y, Zhou W. An attention-based deep learning model for predicting microvascular invasion of hepatocellular carcinoma using an intra-voxel incoherent motion model of diffusion-weighted magnetic resonance imaging. Phys Med Biol 2021; 66. [PMID: 34469880 DOI: 10.1088/1361-6560/ac22db] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022]
Abstract
The intra-voxel incoherent motion model of diffusion-weighted magnetic resonance imaging (IVIM-DWI) with a series of images with differentb-values has great potential as a tool for detecting, diagnosing, staging, and monitoring disease progression or the response to treatment. The current clinical tumour characterisation using IVIM-DWI is based on the parameter values derived from the IVIM model. On the one hand, the calculation accuracy of such parameter values is susceptible to deviations due to noise and motion; on the other hand, the performance of the parameter values is rather limited with respect to tumour characterisation. In this article, we propose a deep learning approach to directly extract spatiotemporal features from a series ofb-value images of IVIM-DWI using a deep learning network for lesion characterisation. Specifically, we introduce an attention mechanism to select dominant features from specificb-values, channels, and spatial areas of the multipleb-value images for better lesion characterisation. The experimental results for clinical hepatocellular carcinoma (HCC) when using IVIM-DWI demonstrate the superiority of the proposed deep learning model for predicting the microvascular invasion (MVI) of HCC. In addition, the ablation study reflects the effectiveness of the attention mechanism for improving MVI prediction. We believe that the proposed model may be a useful tool for the lesion characterisation of IVIM-DWI in clinical practice.
Collapse
Affiliation(s)
- Qingyuan Zeng
- School of Medical Information Engineering, Guangzhou University of Chinese Medicine, People's Republic of China
| | - Baoer Liu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Wu Zhou
- School of Medical Information Engineering, Guangzhou University of Chinese Medicine, People's Republic of China
| |
Collapse
|
24
|
The Role of Non-Gaussian Models of Diffusion Weighted MRI in Hepatocellular Carcinoma: A Systematic Review. J Clin Med 2021; 10:jcm10122641. [PMID: 34203995 PMCID: PMC8232758 DOI: 10.3390/jcm10122641] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022] Open
Abstract
The importance of Diffusion Weighted Imaging (DWI) in hepatocellular carcinoma (HCC) has been widely handled in the literature. Due to the mono-exponential model limitations, several studies recently investigated the role of non-Gaussian DWI models in HCC. However, their results are variable and inconsistent. Therefore, the aim of this systematic review is to summarize current knowledge on non-Gaussian DWI techniques in HCC. A systematic search of the literature, including PubMed, Google Scholar, MEDLINE, and ScienceDirect databases, was performed to identify original articles since 2010 that evaluated the role of non-Gaussian DWI models for HCC diagnosis, grading, response to treatment, and prognosis. Studies were grouped and summarized according to the non-Gaussian DWI models investigated. We focused on the most used non-Gaussian DWI models (Intravoxel Incoherent Motion (IVIM), Diffusion Kurtosis Imaging (DKI), and Stretched Exponential—SE). The quality of included studies was evaluated by using QUADAS-2 and QUIPS tools. Forty-three articles were included, with IVIM and DKI being the most investigated models. Although the role of non-Gaussian DWI models in clinical settings has not fully been established, our findings showed that their parameters may potentially play a role in HCC. Further studies are required to identify a standardized DWI acquisition protocol for HCC diagnosis, grading, response to treatment, and prognosis.
Collapse
|
25
|
Cannella R, Sartoris R, Grégory J, Garzelli L, Vilgrain V, Ronot M, Dioguardi Burgio M. Quantitative magnetic resonance imaging for focal liver lesions: bridging the gap between research and clinical practice. Br J Radiol 2021; 94:20210220. [PMID: 33989042 PMCID: PMC8173689 DOI: 10.1259/bjr.20210220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Magnetic resonance imaging (MRI) is highly important for the detection, characterization, and follow-up of focal liver lesions. Several quantitative MRI-based methods have been proposed in addition to qualitative imaging interpretation to improve the diagnostic work-up and prognostics in patients with focal liver lesions. This includes DWI with apparent diffusion coefficient measurements, intravoxel incoherent motion, perfusion imaging, MR elastography, and radiomics. Multiple research studies have reported promising results with quantitative MRI methods in various clinical settings. Nevertheless, applications in everyday clinical practice are limited. This review describes the basic principles of quantitative MRI-based techniques and discusses the main current applications and limitations for the assessment of focal liver lesions.
Collapse
Affiliation(s)
- Roberto Cannella
- Service de Radiologie, Hôpital Beaujon, APHP.Nord, Clichy, France.,Section of Radiology - BiND, University Hospital "Paolo Giaccone", Via del Vespro 129, 90127 Palermo, Italy.,Department of Health Promotion Sciences Maternal and Infant Care, Internal Medicine and Medical Specialties, PROMISE, University of Palermo, 90127 Palermo, Italy
| | | | - Jules Grégory
- Service de Radiologie, Hôpital Beaujon, APHP.Nord, Clichy, France.,Université de Paris, Paris, France
| | - Lorenzo Garzelli
- Service de Radiologie, Hôpital Beaujon, APHP.Nord, Clichy, France.,Université de Paris, Paris, France
| | - Valérie Vilgrain
- Service de Radiologie, Hôpital Beaujon, APHP.Nord, Clichy, France.,Université de Paris, Paris, France.,INSERM U1149, CRI, Paris, France
| | - Maxime Ronot
- Service de Radiologie, Hôpital Beaujon, APHP.Nord, Clichy, France.,Université de Paris, Paris, France.,INSERM U1149, CRI, Paris, France
| | - Marco Dioguardi Burgio
- Service de Radiologie, Hôpital Beaujon, APHP.Nord, Clichy, France.,INSERM U1149, CRI, Paris, France
| |
Collapse
|
26
|
Hong SB, Choi SH, Kim SY, Shim JH, Lee SS, Byun JH, Park SH, Kim KW, Kim S, Lee NK. MRI Features for Predicting Microvascular Invasion of Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. Liver Cancer 2021; 10:94-106. [PMID: 33981625 PMCID: PMC8077694 DOI: 10.1159/000513704] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/08/2020] [Indexed: 02/04/2023] Open
Abstract
PURPOSE Microvascular invasion (MVI) is an important prognostic factor in patients with hepatocellular carcinoma (HCC). However, the reported results of magnetic resonance imaging (MRI) features for predicting MVI of HCC are variable and conflicting. Therefore, this meta-analysis aimed to identify the significant MRI features for MVI of HCC and to determine their diagnostic value. METHODS Original studies reporting the diagnostic performance of MRI for predicting MVI of HCC were identified in MEDLINE and EMBASE up until January 15, 2020. Study quality was assessed using QUADAS-2. A bivariate random-effects model was used to calculate the meta-analytic pooled diagnostic odds ratio (DOR) and 95% confidence interval (CI) for each MRI feature for diagnosing MVI in HCC. The meta-analytic pooled sensitivity and specificity were calculated for the significant MRI features. RESULTS Among 235 screened articles, we found 36 studies including 4,274 HCCs. Of the 15 available MRI features, 7 were significantly associated with MVI: larger tumor size (>5 cm) (DOR = 5.2, 95% CI [3.0-9.0]), rim arterial enhancement (4.2, 95% CI [1.7-10.6]), arterial peritumoral enhancement (4.4, 95% CI [2.8-6.9]), peritumoral hypointensity on hepatobiliary phase imaging (HBP) (8.2, 95% CI [4.4-15.2]), nonsmooth tumor margin (3.2, 95% CI [2.2-4.4]), multifocality (7.1, 95% CI [2.6-19.5]), and hypointensity on T1-weighted imaging (T1WI) (4.9, 95% CI [2.5-9.6]). Both peritumoral hypointensity on HBP and multifocality showed very high meta-analytic pooled specificities for diagnosing MVI (91.1% [85.4-94.8%] and 93.3% [74.5-98.5%], respectively). CONCLUSIONS Seven MRI features including larger tumor size, rim arterial enhancement, arterial peritumoral enhancement, peritumoral hypointensity on HBP, nonsmooth margin, multifocality, and hypointensity on T1WI were significant predictors for MVI of HCC. These MRI features predictive of MVI can be useful in the management of HCC.
Collapse
Affiliation(s)
- Seung Baek Hong
- Department of Radiology, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Sang Hyun Choi
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea,*Sang Hyun Choi, Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympicro 43-gil, Songpa-gu, Seoul 05505 (Republic of Korea),
| | - So Yeon Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Ju Hyun Shim
- Department of Gastroenterology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Seung Soo Lee
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Jae Ho Byun
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Seong Ho Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Kyung Won Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Suk Kim
- Department of Radiology, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Nam Kyung Lee
- Department of Radiology, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Republic of Korea
| |
Collapse
|
27
|
Zhou M, Shan D, Zhang C, Nie J, Wang G, Zhang Y, Zhou Y, Zheng T. Value of gadoxetic acid-enhanced MRI for microvascular invasion of small hepatocellular carcinoma: a retrospective study. BMC Med Imaging 2021; 21:40. [PMID: 33673821 PMCID: PMC7934549 DOI: 10.1186/s12880-021-00572-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
Background The objective of this study was to analyze the accuracy of gadolinium–ethoxybenzyl–diethylenetriamine penta–acetic acid enhanced magnetic resonance imaging (Gd–EOB–DTPA–MRI) for predicting microvascular invasion (MVI) in patients with small hepatocellular carcinoma (sHCC) preoperatively. Methods A total of 60 sHCC patients performed with preoperative Gd–EOB–DTPA–MRI in the Harbin Medical University Cancer Hospital from October 2018 to October 2019 were involved in the study. Univariate and multivariate analyses were performed by chi–square test and logistic regression analysis. The sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of Gd–EOB–DTPA–MRI were performed by receiver operating characteristic (ROC) curves. Results Univariate analysis indicated that alanine aminotransferase (≥ 39.00U/L), poorly differentiated pathology, and imaging features including grim enhancement, capsule enhancement, arterial halo sign and hepatobiliary features (tumor highly uptake, halo sign, spicule sign and brush sign) were associated with the occurrence of MVI (p < 0.05). Multivariate analysis revealed that rim enhancement and hepatobiliary spicule sign were independent predictors of MVI (p < 0.05). The area under the ROC curve was 0.917 (95% confidence interval 0.838–0.996), and the sensitivity was 94.74%. Conclusions The morphologies of hepatobiliary phase imaging, especially the spicule sign, showed high accuracy in diagnosing MVI of sHCC. Rim enhancement played a significant role in diagnosing MVI of sHCC.
Collapse
Affiliation(s)
- Meng Zhou
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Dan Shan
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Chunhui Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Jianhua Nie
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Guangyu Wang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Yang Zhou
- Department of Radiology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150001, Heilongjiang, People's Republic of China.
| | - Tongsen Zheng
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China. .,Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People's Republic of China. .,Heilongjiang Cancer Institute, Harbin, Heilongjiang, People's Republic of China.
| |
Collapse
|
28
|
Surov A, Pech M, Omari J, Fischbach F, Damm R, Fischbach K, Powerski M, Relja B, Wienke A. Diffusion-Weighted Imaging Reflects Tumor Grading and Microvascular Invasion in Hepatocellular Carcinoma. Liver Cancer 2021; 10:10-24. [PMID: 33708636 PMCID: PMC7923880 DOI: 10.1159/000511384] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/06/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND To date, there are inconsistent data about relationships between diffusion-weighted imaging (DWI) and tumor grading/microvascular invasion (MVI) in hepatocellular carcinoma (HCC). Our purpose was to systematize the reported results regarding the role of DWI in prediction of tumor grading/MVI in HCC. METHOD MEDLINE library, Scopus, and Embase data bases were screened up to December 2019. Overall, 29 studies with 2,715 tumors were included into the analysis. There were 20 studies regarding DWI and tumor grading, 8 studies about DWI and MVI, and 1 study investigated DWI, tumor grading, and MVI in HCC. RESULTS In 21 studies (1,799 tumors), mean apparent diffusion coefficient (ADC) values (ADCmean) were used for distinguishing HCCs. ADCmean of G1-3 lesions overlapped significantly. In 4 studies (461 lesions), minimum ADC (ADCmin) was used. ADCmin values in G1/2 lesions were over 0.80 × 10-3 mm2/s and in G3 tumors below 0.80 × 10-3 mm2/s. In 4 studies (241 tumors), true diffusion (D) was reported. A significant overlapping of D values between G1, G2, and G3 groups was found. ADCmean and MVI were analyzed in 9 studies (1,059 HCCs). ADCmean values of MIV+/MVI- lesions overlapped significantly. ADCmin was used in 4 studies (672 lesions). ADCmin values of MVI+ tumors were in the area under 1.00 × 10-3 mm2/s. In 3 studies (227 tumors), D was used. Also, D values of MVI+ lesions were predominantly in the area under 1.00 × 10-3 mm2/s. CONCLUSION ADCmin reflects tumor grading, and ADCmin and D predict MVI in HCC. Therefore, these DWI parameters should be estimated for every HCC lesion for pretreatment tumor stratification. ADCmean cannot predict tumor grading/MVI in HCC.
Collapse
Affiliation(s)
- Alexey Surov
- Department of Radiology and Nuclear Medicine University of Magdeburg, Magdeburg, Germany,*Alexey Surov, Department of Radiology and Nuclear Medicine, Ott-Von-Guericke University Magdeburg, Leipziger St., 44, DE–39112 Magdeburg (Germany),
| | - Maciej Pech
- Department of Radiology and Nuclear Medicine University of Magdeburg, Magdeburg, Germany
| | - Jazan Omari
- Department of Radiology and Nuclear Medicine University of Magdeburg, Magdeburg, Germany
| | - Frank Fischbach
- Department of Radiology and Nuclear Medicine University of Magdeburg, Magdeburg, Germany
| | - Robert Damm
- Department of Radiology and Nuclear Medicine University of Magdeburg, Magdeburg, Germany
| | - Katharina Fischbach
- Department of Radiology and Nuclear Medicine University of Magdeburg, Magdeburg, Germany
| | - Maciej Powerski
- Department of Radiology and Nuclear Medicine University of Magdeburg, Magdeburg, Germany
| | - Borna Relja
- Department of Radiology and Nuclear Medicine University of Magdeburg, Magdeburg, Germany
| | - Andreas Wienke
- Institute of Medical Epidemiology, Biostatistics, and Informatics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
29
|
Tao YY, Zhou Y, Wang R, Gong XQ, Zheng J, Yang C, Yang L, Zhang XM. Progress of intravoxel incoherent motion diffusion-weighted imaging in liver diseases. World J Clin Cases 2020; 8:3164-3176. [PMID: 32874971 PMCID: PMC7441263 DOI: 10.12998/wjcc.v8.i15.3164] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/11/2020] [Accepted: 07/14/2020] [Indexed: 02/05/2023] Open
Abstract
Traditional magnetic resonance (MR) diffusion-weighted imaging (DWI) uses a single exponential model to obtain the apparent diffusion coefficient to quantitatively reflect the diffusion motion of water molecules in living tissues, but it is affected by blood perfusion. Intravoxel incoherent motion (IVIM)-DWI utilizes a double-exponential model to obtain information on pure water molecule diffusion and microcirculatory perfusion-related diffusion, which compensates for the insufficiency of traditional DWI. In recent years, research on the application of IVIM-DWI in the diagnosis and treatment of hepatic diseases has gradually increased and has achieved considerable progress. This study mainly reviews the basic principles of IVIM-DWI and related research progress in the diagnosis and treatment of hepatic diseases.
Collapse
Affiliation(s)
- Yun-Yun Tao
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology and Medical Research Center of Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Yi Zhou
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology and Medical Research Center of Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Ran Wang
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology and Medical Research Center of Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Xue-Qin Gong
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology and Medical Research Center of Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Jing Zheng
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology and Medical Research Center of Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Cui Yang
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology and Medical Research Center of Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Lin Yang
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology and Medical Research Center of Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Xiao-Ming Zhang
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology and Medical Research Center of Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| |
Collapse
|
30
|
Huang J, Tian W, Zhang L, Huang Q, Lin S, Ding Y, Liang W, Zheng S. Preoperative Prediction Power of Imaging Methods for Microvascular Invasion in Hepatocellular Carcinoma: A Systemic Review and Meta-Analysis. Front Oncol 2020; 10:887. [PMID: 32676450 PMCID: PMC7333535 DOI: 10.3389/fonc.2020.00887] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022] Open
Abstract
Background: To compare the predictive power between radiomics and non-radiomics (conventional imaging and functional imaging methods) for preoperative evaluation of microvascular invasion (MVI) in hepatocellular carcinoma (HCC). Methods: Comprehensive publications were screened in PubMed, Embase, and Cochrane Library. Studies focusing on the discrimination values of imaging methods, including radiomics and non-radiomics methods, for MVI evaluation were included in our meta-analysis. Results: Thirty-three imaging studies with 5,462 cases, focusing on preoperative evaluation of MVI status in HCC, were included. The sensitivity and specificity of MVI prediction in HCC were 0.78 [95% confidence interval (CI): 0.75–0.80; I2 = 70.7%] and 0.78 (95% CI: 0.76–0.81; I2 = 0.0%) for radiomics, respectively, and were 0.73 (95% CI: 0.71–0.75; I2 = 83.7%) and 0.82 (95% CI: 0.80–0.83; I2 = 86.5%) for non-radiomics, respectively. The areas under the receiver operation curves for radiomics and non-radiomics to predict MVI status in HCC were 0.8550 and 0.8601, respectively, showing no significant difference. Conclusion: The imaging method is feasible to predict the MVI state of HCC. Radiomics method based on medical image data is a promising application in clinical practice and can provide quantifiable image features. With the help of these features, highly consistent prediction performance will be achieved in anticipation.
Collapse
Affiliation(s)
- Jiacheng Huang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wuwei Tian
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, China
| | - Lele Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qiang Huang
- Department of Radiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shengzhang Lin
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yong Ding
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, China
| | - Wenjie Liang
- Department of Radiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shusen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
31
|
Zhang T, Pandey G, Xu L, Chen W, Gu L, Wu Y, Chen X. The Value of TTPVI in Prediction of Microvascular Invasion in Hepatocellular Carcinoma. Cancer Manag Res 2020; 12:4097-4105. [PMID: 32581583 PMCID: PMC7276193 DOI: 10.2147/cmar.s245475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose The objective of our study was to evaluate the value of two-trait predictor of venous invasion (TTPVI) in the prediction of pathological microvascular invasion (pMVI) in patients with hepatocellular carcinoma (HCC) from preoperative computed tomography (CT) and magnetic resonance (MR). Methods A total of 128 preoperative patients with findings of HCC were enrolled. Tumor size, tumor margins, tumor capsule, peritumoral enhancement, and TTPVI was assessed on preoperative CT and MRI images. Histopathological features were reviewed: pathological tumor size, tumor differentiation, pMVI along with alpha-fetoprotein level (AFP). Significant imaging findings and histopathological features were determined with univariate and multivariate logistic regression analysis. Results Univariate analysis revealed that tumor size (p<0.01), AFP level (p=0.043), tumor differentiation (p<0.01), peritumoral enhancement (p=0.003), pathological tumor size (p<0.01), tumor margins (p<0.01) on CT and MRI, and TTPVI (p<0.01) showed statistically significant associations with pMVI. In multivariate logistic regression analysis, tumor size (odds ratio [OR] = 1.294; 95% confidence interval [CI]: 1.155, 1.451; p < 0.001), tumor differentiation (odds ratio [OR] =1.384; 95% confidence interval [CI]: 1.224, 1.564; p < 0.001), and TTPVI (odds ratio [OR] = 4.802; 95% confidence interval [CI]: 1.037, 22.233; p=0.045) were significant independent predictors of pMVI. Using 5.8 as the threshold for size, one could obtain an area-under-curve (AUC) of 0.793, 95% confidence interval [CI]: 0.715 to 0.857. Conclusion Tumor size, tumor differentiation, and TTPVI depicted in preoperative CT and MRI had a statistically significant correlation with pMVI. Hence, TTPVI detected on CT and MRI may be predictive of pMVI in HCC cases.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Radiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Gaurab Pandey
- Department of Radiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Lin Xu
- Department of Radiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Wen Chen
- Department of Radiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Liangrui Gu
- Department of Radiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Yijun Wu
- Department of Radiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Xiuwen Chen
- Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| |
Collapse
|
32
|
Nomogram to Assist in Surgical Plan for Hepatocellular Carcinoma: a Prediction Model for Microvascular Invasion. J Gastrointest Surg 2019; 23:2372-2382. [PMID: 30820799 DOI: 10.1007/s11605-019-04140-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 01/23/2019] [Indexed: 01/31/2023]
Abstract
BACKGROUND Microvascular invasion (MVI) relates to poor survival in hepatocellular carcinoma (HCC) patients. In this study, we aim at developing a nomogram for MVI prediction and potential assistance in surgical planning. METHODS A total of 357 patients were assigned to training (n = 257) and validation (n = 100) cohort. Univariate and multivariate analyses were used to reveal preoperative predictors for MVI. A nomogram incorporating independent predictors was constructed and validated. Disease-free survival was compared between patients, and the potential of the predicted MVI in making surgical procedure was also explored. RESULTS Pathological examination confirmed MVI in 140 (39.2%) patients. Imaging features including larger tumor, intra-tumoral artery, tumor type, and higher serum AFP independently correlated with MVI. The nomogram showed desirable performance with an AUROC of 0.803 (95% CI, 0.746-0.860) and 0.814 (95% CI, 0.720-0.908) in the training and validation cohorts, respectively. Good calibration were also revealed by calibration curve in both cohorts. The decision curve analysis indicated that the prediction nomogram was of promising usefulness in clinical work. In addition, survival analysis revealed that patients with positive-predicted MVI suffered a higher risk of early recurrence (P < 0.01). There was no difference in disease-free survival between anatomic or non-anatomic resection in large HCC or small HCC without nomogram-predicted MVI. However, anatomic resection improved disease-free survival in small HCC with nomogram-predicted MVI. CONCLUSIONS The nomogram obtained desirable results in predicting MVI. Patients with predicted MVI were associated with early recurrence and anatomic resection was recommended for small HCC patients with predicted MVI.
Collapse
|
33
|
Radiomics for diagnosis of dual-phenotype hepatocellular carcinoma using Gd-EOB-DTPA-enhanced MRI and patient prognosis. J Cancer Res Clin Oncol 2019; 145:2995-3003. [PMID: 31664520 PMCID: PMC6861194 DOI: 10.1007/s00432-019-03062-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/17/2019] [Indexed: 12/13/2022]
Abstract
Purpose To describe the clinical characteristics and outcomes of patients with dual-phenotype hepatocellular carcinoma (DPHCC) and investigate the use of radiomics to establish an image-based signature for preoperative differential diagnosis. Methods This study included 50 patients with a postoperative pathological diagnosis of DPHCC (observation group) and 50 patients with CK7- and CK19-negative HCC (control group) who attended our hospital between January 2015 and December 2018. All patients underwent Gd-EOB-DTPA-enhanced MRI within 1 month before surgery. Arterial phase (AP), portal venous phase (PVP), delayed phase (DP) and hepatobiliary phase (HBP) images were transferred into a radiomics platform. Volumes of interest covered the whole tumor. The dimensionality of the radiomics features were reduced using LASSO. Four classifiers, including multi-layer perceptron (MLP), support vector machines (SVM), logistic regression (LR) and K-nearest neighbor (KNN) were used to distinguish DPHCC from CK7- and CK19-negative HCC. Kaplan–Meier survival analysis was used to assess 1-year disease-free survival (DFS) and overall survival (OS) in the observation and control groups. Results The best preoperative diagnostic power for DPHCC will likely be derived from a combination of different phases and classifiers. The sensitivity, specificity and accuracy of LR in PVP (0.740, 0.780, 0.766), DP (0.893, 0.700, 0.798), HBP (0.800, 0.720, 0.756) and MLP in PVP (0.880, 0.720, 0.798) were better performance. The 1-year DFS and OS of the patients in the observation group were 69% and 78%, respectively. The 1-year DFS and OS of the patients in the control group were 83% and 85%, respectively. Kaplan–Meier survival analysis showed no statistical difference in DFS and OS between groups (P = 0.231 and 0.326), but DFS and OS were numerically lower in patients with DPHCC. Conclusion The radiomics features extracted from Gd-EOB-DTPA-enhanced MR images can be used to diagnose preoperative DPHCC. DPHCC is more likely to recur and cause death than HCC, suggesting that active postoperative management of patients with DPHCC is required.
Collapse
|
34
|
Deng G, Yao L, Zeng F, Xiao L, Wang Z. Nomogram For Preoperative Prediction Of Microvascular Invasion Risk In Hepatocellular Carcinoma. Cancer Manag Res 2019; 11:9037-9045. [PMID: 31695495 PMCID: PMC6816236 DOI: 10.2147/cmar.s216178] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/10/2019] [Indexed: 12/24/2022] Open
Abstract
Objective To preoperatively predict the microvascular invasion (MVI) risk in hepatocellular carcinoma (HCC) using nomogram. Methods A retrospective cohort of 513 patients with HCC hospitalized at Xiangya Hospital between January 2014 and December 2018 was included in the study. Univariate and multivariate analysis was performed to identify the independent risk factors for MVI. Based on the independent risk factors, nomogram was established to preoperatively predict the MVI risk in HCC. The accuracy of nomogram was evaluated by using receiver operating characteristic (ROC) curve, calibration curve and decision curve analysis (DCA). Results Tumor size (OR=1.17, 95% CI: 1.11–1.23, p<0.001), preoperative AFP level greater than 155 ng/mL (OR=1.65, 95% CI: 1.13–2.39, p=0.008) and NLR (OR=1.14, 95% CI: 1.00–1.29, p=0.042) were the independent risk factors for MVI. Incorporating these 3 factors, nomogram was established with the concordance index of 0.71 (95% CI, 0.66–0.75) and well-fitted calibration curves. DCA confirmed that using this nomogram added more benefit compared with the measures that treat all patients or treat none patients. At the cutoff value of predicted probability ≥0.44, the model demonstrated sensitivity of 61.64%, specificity of 71.53%, positive predictive value (PPV) of 64.13%, and negative predictive value (NPV) of 69.31%. Conclusion Nomogram was established for preoperative prediction of the MVI risk in HCC patients, and better therapeutic choice will be made if it was applied in clinical practice.
Collapse
Affiliation(s)
- Guangtong Deng
- General Surgery Department, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Lei Yao
- General Surgery Department, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Furong Zeng
- Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Liang Xiao
- General Surgery Department, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Zhiming Wang
- General Surgery Department, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
35
|
Gao J, Jia WD. Expression of Rho Guanine Nucleotide Exchange Factor 39 (ARHGEF39) and Its Prognostic Significance in Hepatocellular Carcinoma. Med Sci Monit 2019; 25:7826-7835. [PMID: 31626606 PMCID: PMC6820342 DOI: 10.12659/msm.918270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Previous studies have reported that ARHGEF39 might be frequently upregulated in different cancer types and relevant to cancer progression. However, the expression pattern and clinicopathological features of ARHGEF39 in patients with hepatocellular carcinoma (HCC) needs further exploration. MATERIAL AND METHODS ARHGEF39 expression level of HCC in The Cancer Genome Atlas (TCGA) dataset was analyzed. Quantitative real-time polymerase chain reaction and immunohistochemistry were employed to determine ARHGEF39 mRNA and protein levels in our own study collected HCC tissues and matched non-cancerous tissues. Moreover, the association of ARHGEF39 expression with the clinicopathological factors and prognosis of HCC were investigated. RESULTS The level of ARHGEF39 in HCC tissues was significantly higher than that in adjacent normal tissues (P<0.05) from TCGA database. High level of ARHGEF39 was a significant prognostic factor of poor overall survival (OS) (TCGA, P=0.006). Consistently, the expression levels of ARHGEF39 mRNA and protein in HCC specimens were significantly higher than those in adjacent liver specimens (P<0.05) from our cohort. Further analysis revealed that high ARHGEF39 level was significantly associated with poor OS (P<0.001) and short disease-free survival (DFS) (P<0.001). Cox multivariate analysis indicated that ARHGEF39 was an independent, unfavorable prognostic factor (P=0.000) of OS and DFS. CONCLUSIONS ARHGEF39 might act as an oncogene in the progression of HCC and might serve as a promising potential prognostic indicator and therapeutic target for HCC.
Collapse
Affiliation(s)
- Jian Gao
- Medical College of Shandong University, Jinan, Shandong, China (mainland).,Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (mainland)
| | - Wei-Dong Jia
- Department of Hepatic Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (mainland)
| |
Collapse
|
36
|
Zhu F, Yang F, Li J, Chen W, Yang W. Incomplete tumor capsule on preoperative imaging reveals microvascular invasion in hepatocellular carcinoma: a systematic review and meta-analysis. Abdom Radiol (NY) 2019; 44:3049-3057. [PMID: 31292671 DOI: 10.1007/s00261-019-02126-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Microvascular invasion (MVI), which is difficult to diagnose before surgery, is a major factor affecting postoperative recurrence in patients with hepatocellular carcinoma (HCC). The relationship between the radiological tumor capsule and MVI is controversial. This study aimed to evaluate the association between the tumor capsule and MVI. METHODS We searched Medline (by PubMed) and Embase (by OvidSP). Two review authors independently screened titles and abstracts, selected studies about MVI prediction with radiologic tumor capsule and studies with enough data for extracted, assessed the methodological quality and collected data. Summary results were presented as the diagnostic odds ratio (DOR), sensitivity, specificity, and 95% confidence interval. RESULTS Fifteen studies with 2038 patients were included; fourteen studies, including 1331 patients, with no significant heterogeneity indicated no relationship between absent tumor capsule and MVI [DOR = 0.90 (0.64, 1.26)]. Six studies, including 541 patients, with no significant heterogeneity showed incomplete capsule could be used to predict MVI of HCC preoperatively [DOR = 1.85 (1.13, 3.04)]. The overall sensitivity and specificity estimate were 0.50 (0.37, 0.64) and 0.64 (0.53, 0.74), respectively. Eight studies, including 1349 patients, with highly significant heterogeneity revealed that complete capsule could be a protective factor for MVI [DOR = 1.97 (1.01, 3.86)]. CONCLUSIONS For MVI of HCC, incomplete tumor capsule is a risk factor, while a complete tumor capsule might be a protective factor. However, absent capsule doesn't show significant relationship with MVI. This might be due to combination of the risk and protective effects of present capsule in MVI.
Collapse
Affiliation(s)
- Fei Zhu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Fan Yang
- Department of Radiology, Chengdu First People's Hospital, Chengdu, 610041, Sichuan, China
| | - Jing Li
- Department of Evidence-Based Medicine and Clinical Epidemiology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Weixia Chen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Weilin Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
37
|
Ni M, Zhou X, Lv Q, Li Z, Gao Y, Tan Y, Liu J, Liu F, Yu H, Jiao L, Wang G. Radiomics models for diagnosing microvascular invasion in hepatocellular carcinoma: which model is the best model? Cancer Imaging 2019; 19:60. [PMID: 31455432 PMCID: PMC6712704 DOI: 10.1186/s40644-019-0249-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/14/2019] [Indexed: 12/16/2022] Open
Abstract
Objectives To explore the feasibility of diagnosing microvascular invasion (MVI) with radiomics, to compare the diagnostic performance of different models established by each method, and to determine the best diagnostic model based on radiomics. Methods A retrospective analysis was conducted with 206 cases of hepatocellular carcinoma (HCC) confirmed through surgery and pathology in our hospital from June 2015 to September 2018. Among the samples, 88 were MVI-positive, and 118 were MVI-negative. The radiomics analysis process included tumor segmentation, feature extraction, data preprocessing, dimensionality reduction, modeling and model evaluation. Results A total of 1044 sets of texture feature parameters were extracted, and 21 methods were used for the radiomics analysis. All research methods could be used to diagnose MVI. Of all the methods, the LASSO+GBDT method had the highest accuracy, the LASSO+RF method had the highest sensitivity, the LASSO+BPNet method had the highest specificity, and the LASSO+GBDT method had the highest AUC. Through Z-tests of the AUCs, LASSO+GBDT, LASSO+K-NN, LASSO+RF, PCA + DT, and PCA + RF had Z-values greater than 1.96 (p<0.05). The DCA results showed that the LASSO + GBDT method was better than the other methods when the threshold probability was greater than 0.22. Conclusions Radiomics can be used for the preoperative, noninvasive diagnosis of MVI, but different dimensionality reduction and modeling methods will affect the diagnostic performance of the final model. The model established with the LASSO+GBDT method had the optimal diagnostic performance and the greatest diagnostic value for MVI.
Collapse
Affiliation(s)
- Ming Ni
- Department of Radiology, The Affiliated Hospital of QingDao University, QingDao, ShanDong, China
| | - Xiaoming Zhou
- Department of Radiology, The Affiliated Hospital of QingDao University, QingDao, ShanDong, China.
| | - Qian Lv
- Department of Radiology, The Affiliated Hospital of QingDao University, QingDao, ShanDong, China
| | - Zhiming Li
- Department of Radiology, The Affiliated Hospital of QingDao University, QingDao, ShanDong, China
| | - Yuanxiang Gao
- Department of Radiology, The Affiliated Hospital of QingDao University, QingDao, ShanDong, China
| | - Yongqi Tan
- College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong, China
| | - Jihua Liu
- Department of Radiology, The Affiliated Hospital of QingDao University, QingDao, ShanDong, China
| | - Fang Liu
- Department of Radiology, The Affiliated Hospital of QingDao University, QingDao, ShanDong, China
| | - Haiyang Yu
- Department of Radiology, The Affiliated Hospital of QingDao University, QingDao, ShanDong, China
| | - Linlin Jiao
- Intervention Medical Center, The Affiliated Hospital of QingDao University, QingDao, ShanDong, China
| | - Gang Wang
- Department of Radiology, The Affiliated Hospital of QingDao University, QingDao, ShanDong, China.
| |
Collapse
|
38
|
Microvascular invasion and grading in hepatocellular carcinoma: correlation with major and ancillary features according to LIRADS. Abdom Radiol (NY) 2019; 44:2788-2800. [PMID: 31089780 DOI: 10.1007/s00261-019-02056-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE To assess major and ancillary parameters that could be correlated with Microvascular Invasion (MIV) and with histologic grade of HCC. MATERIALS AND METHODS In this retrospective study, we assessed 62 patients (14 women-48 men; mean age, 63 years; range 38-80 years) that underwent hepatic resection for HCC. All patients were subject to Multidetector computed tomography (MDCT); 40 to Magnetic Resonance (MR) study. The radiologist assessed major and ancillary features according to LIRADS (v. 2018) and reported any radiological accessory findings if detected. RESULTS No major feature showed statistically significant differences and correlation with grading. Mean ADC value was correlated with grading and with MIV status. No major feature was correlated to MIV; progressive contrast enhancement and satellite nodules showed statistically different percentages with respect to the presence of MIV, so as at the monovariate correlation analysis, satellite nodules were correlated with the presence of MIV. At multivariate regression analysis, no factor proved to be strong predictors of grading while progressive contrast enhancement and satellite nodules were significantly associated with the MIV. CONCLUSION Mean ADC value is correlated to HCC grading and MIV status. Progressive contrast enhancement and the presence of satellite nodules are correlated to MIV status.
Collapse
|
39
|
Ke RS, Cai QC, Chen YT, Lv LZ, Jiang Y. Diagnosis and treatment of microvascular invasion in hepatocellular carcinoma. Eur Surg 2019. [DOI: 10.1007/s10353-019-0573-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|