1
|
Góngora-Canul CC, Volkening A, Cuéllar J, Calderón L, Fernández-Campos M, Lee DY, Salgado J, Cruz-Sancan A, Cruz CD. Effect of Initial Inoculum on the Temporal and Spatial Dynamics of Wheat Blast Under Field Conditions in Bolivia. PHYTOPATHOLOGY 2024; 114:2273-2286. [PMID: 38976565 DOI: 10.1094/phyto-12-23-0491-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Epidemiological studies to better understand wheat blast (WB) spatial and temporal patterns were conducted in three field environments in Bolivia between 2019 and 2020. The temporal dynamics of wheat leaf blast (WLB) and spike blast (WSB) were best described by the logistic model compared with the Gompertz and exponential models. The nonlinear logistic infection rates were higher under defined inoculation in experiments two and three than under undefined inoculation in experiment one, and they were also higher for WSB than for WLB. The onset of WLB began with a spatial clustering pattern according to autocorrelation analysis and Moran's index values, with higher severity and earlier onset for defined than for undefined inoculation until the last sampling time. The WSB onset did not start with a spatial clustering pattern; instead, it was detected later until the last sampling date across experiments, with higher severity and earlier onset for defined than for undefined inoculation. Maximum severity (Kmax) was 1.0 for WSB and less than 1.0 for WLB. Aggregation of WLB and WSB was higher for defined than for undefined inoculation. The directionality of hotspot development was similar for both WLB and WSB, mainly occurring concentrically for defined inoculation. Our results show no evidence of synchronized development but suggest a temporal and spatial progression of disease symptoms on wheat leaves and spikes. Thus, we recommend that monitoring and management of WB should be considered during early growth stages of wheat planted in areas of high risk.
Collapse
Affiliation(s)
- Carlos C Góngora-Canul
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, U.S.A
- Tecnológico Nacional de México/IT de Ciudad Valles, Calle Al Ingenio 2, 79033 Ciudad Valles, San Luis Potosí, México
| | | | - Jorge Cuéllar
- Asociación de Productores de Oleaginosas y Trigo, ANAPO, Santa Cruz de la Sierra, Bolivia
| | - Lidia Calderón
- Asociación de Productores de Oleaginosas y Trigo, ANAPO, Santa Cruz de la Sierra, Bolivia
| | | | - Da Young Lee
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, U.S.A
| | - Jorge Salgado
- Department of Plant Pathology, Ohio State University and the Ohio Agricultural Research and Development Center, Wooster, OH 44691, U.S.A
| | - Andres Cruz-Sancan
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, U.S.A
| | - C D Cruz
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, U.S.A
| |
Collapse
|
2
|
Islam T, Danishuddin, Tamanna NT, Matin MN, Barai HR, Haque MA. Resistance Mechanisms of Plant Pathogenic Fungi to Fungicide, Environmental Impacts of Fungicides, and Sustainable Solutions. PLANTS (BASEL, SWITZERLAND) 2024; 13:2737. [PMID: 39409607 PMCID: PMC11478979 DOI: 10.3390/plants13192737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
The significant reduction in agricultural output and the decline in product quality are two of the most glaring negative impacts caused by plant pathogenic fungi (PPF). Furthermore, contaminated food or transit might introduce mycotoxins produced by PPF directly into the food chain. Eating food tainted with mycotoxin is extremely dangerous for both human and animal health. Using fungicides is the first choice to control PPF or their toxins in food. Fungicide resistance and its effects on the environment and public health are becoming more and more of a concern, despite the fact that chemical fungicides are used to limit PPF toxicity and control growth in crops. Fungicides induce target site alteration and efflux pump activation, and mutations in PPF result in resistance. As a result, global trends are shifting away from chemically manufactured pesticides and toward managing fungal plant diseases using various biocontrol techniques, tactics, and approaches. However, surveillance programs to monitor fungicide resistance and their environmental impact are much fewer compared to bacterial antibiotic resistance surveillance programs. In this review, we discuss the PPF that contributes to disease development in plants, the fungicides used against them, factors causing the spread of PPF and the emergence of new strains, the antifungal resistance mechanisms of PPF, health, the environmental impacts of fungicides, and the use of biocontrol agents (BCAs), antimicrobial peptides (AMPs), and nanotechnologies to control PPF as a safe and eco-friendly alternative to fungicides.
Collapse
Affiliation(s)
- Tarequl Islam
- Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh;
| | - Danishuddin
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (D.); (M.N.M.)
| | - Noshin Tabassum Tamanna
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh;
| | - Muhammad Nurul Matin
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (D.); (M.N.M.)
- Professor Joarder DNA and Chromosome Research Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Hasi Rani Barai
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Md Azizul Haque
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (D.); (M.N.M.)
| |
Collapse
|
3
|
De Cól M, Coelho M, Del Ponte EM. Weather-Based Logistic Regression Models for Predicting Wheat Head Blast Epidemics. PLANT DISEASE 2024; 108:2206-2213. [PMID: 38549278 DOI: 10.1094/pdis-11-23-2513-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Wheat head blast is a major disease of wheat in the Brazilian Cerrado. Empirical models for predicting epidemics were developed using data from field trials conducted in Patos de Minas (2013 to 2019) and trials conducted across 10 other sites (2012 to 2020) in Brazil, resulting in 143 epidemics, with each being classified as either outbreak (≥20% head blast incidence) or nonoutbreak. Daily weather variables were collected from the National Aeronautics and Space Administration (NASA) Prediction of Worldwide Energy Resources (POWER) website and summarized for each epidemic. Wheat heading date (WHD) served to define four time windows, with each comprising two 7-day intervals (before and after WHD), which combined with weather-based variables resulted in 36 predictors (nine weather variables × four windows). Logistic regression models were fitted to binary data, with variable selection using least absolute shrinkage and selection operator (LASSO) and sequentially best subset analyses. The models were validated using the leave-one-out cross-validation (LOOCV) technique, and their statistical performance was compared. One model was selected, implemented in a 24-year series, and assessed by experts and literature. Models with two to five predictors showed accuracies between 0.80 and 0.85, sensitivities from 0.80 to 0.91, specificities from 0.72 to 0.86, and area under the curve (AUC) from 0.89 to 0.91. The accuracy of LOOCV ranged from 0.76 to 0.81. The model applied to a historical series included temperature and relative humidity in preheading date, as well as postheading precipitation. The model accurately predicted the occurrence of outbreaks, aligning closely with real-world observations, specifically tailored for locations with tropical and subtropical climates.
Collapse
Affiliation(s)
- Monalisa De Cól
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa MG 36570-900, Brazil
| | - Mauricio Coelho
- Campo Experimental de Sertãozinho - Empresa de Pesquisa Agropecuária de Minas Gerais (EPAMIG), Patos de Minas, MG 38700-970, Brazil
| | - Emerson M Del Ponte
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa MG 36570-900, Brazil
| |
Collapse
|
4
|
Surovy MZ, Islam T, von Tiedemann A. Role of seed infection for the near and far distance dissemination of wheat blast caused by Magnaporthe oryzae pathotype Triticum. Front Microbiol 2023; 14:1040605. [PMID: 36819053 PMCID: PMC9929367 DOI: 10.3389/fmicb.2023.1040605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/09/2023] [Indexed: 02/04/2023] Open
Abstract
Magnaporthe oryzae pathotype Triticum (MoT) is a devastating fungal phytopathogen causing wheat blast disease which threatens wheat production particularly in warmer climate zones. Effective disease control is hampered by the limited knowledge on the life cycle, epidemiology, and pathogenicity of MoT. Since MoT mainly infects and colonizes the inflorescences of wheat, infection, invasion routes and colonization of MoT on wheat ears and in wheat seeds were investigated in order to assess potential seed transmission pathways. MoT was spray inoculated on two wheat cultivars (Sumai 3, susceptible and Milan, resistant) at three ear maturity stages [full ear emergence, growth stage (GS) 59; mid flowering, GS 65; and end of flowering, GS 69]. Incidence of MoT on Sumai 3 seeds was 100% and 20-25% on Milan. MoT sporulation rate on Sumai 3 contaminated seeds was more than 15 times higher than on Milan. Repeated washes of seed samples for removing paraffin fixation hampers seed microscopy. To overcome the damage of seed samples, we used hand-sectioned seed samples instead of paraffin-fixed microtome samples to facilitate microscopy. The colonization of MoT within various seed tissues was followed by light and confocal laser scanning microscopy (CLSM). Invasion of MoT in seeds predominantly occurred in the caryopsis germ region, but entry via other seed parts was also observed, confirming the potential of intense colonization of MoT in wheat grains. Fungal spread in wheat plants growing from MoT infected seeds was monitored through plating, microscopic and molecular techniques. Under greenhouse conditions, no spread of MoT from infected seeds to seedlings later than GS 21 or to ears was detected, neither in Milan nor in Sumai 3. We therefore conclude, that MoT may not systemically contaminate inflorescences and seeds in neither susceptible nor resistant wheat cultivars. However, initial blast symptoms, only found on seedlings of Sumai 3 but not Milan, resulted in the formation of new conidia, which may serve as inoculum source for plant-to-plant dissemination by airborne infection of plant stands in the field (short distance spread). Ultimately the inoculum may infect young inflorescences in the field and contaminate seeds. Our findings again stress the risk of long-distance dissemination of wheat blast across continents through MoT-contaminated seeds. This underlines the importance of mandatory use of healthy seeds in strategies to control any further spread of wheat blast.
Collapse
Affiliation(s)
- Musrat Zahan Surovy
- Division of Plant Pathology and Crop Protection, Department of Crop Sciences, Georg-August-Universität Göttingen, Göttingen, Germany
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Andreas von Tiedemann
- Division of Plant Pathology and Crop Protection, Department of Crop Sciences, Georg-August-Universität Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Montes C, Hussain SG, Krupnik TJ. Variable climate suitability for wheat blast (Magnaporthe oryzae pathotype Triticum) in Asia: results from a continental-scale modeling approach. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:2237-2249. [PMID: 35994122 PMCID: PMC9640415 DOI: 10.1007/s00484-022-02352-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Crop fungal diseases constitute a major cause of yield loss. The development of crop disease monitoring and forecasting tools is an important effort to aid farmers in adapting to climate variability and change. Recognizing weather as a main driver of fungal disease outbreaks, this work assesses the climate suitability for wheat blast (Magnaporthe oryzae pathotype Triticum, MoT) development in Asian wheat-producing countries. MOT was reported for the first time in Bangladesh in 2016 and could spread to other countries, provided that environmental conditions are suitable to spore development, distribution, and infection. With results from a generic infection model driven by air temperature and humidity, and motivated by the necessity to assess the potential distribution of MoT based on the response to weather drivers only, we quantify potential MOT infection events across Asia for the period 1980-2019. The results show a potential higher incidence of MOT in Bangladesh, Myanmar, and some areas of India, where the number of potential infection (NPI) events averaged up to 15 during wheat heading. Interannual trends show an increase in NPI over those three countries, which in turns show their higher interannual variability. Cold/dry conditions in countries such as Afghanistan and Pakistan appear to render them unlikely candidates for MOT establishment. The relationship between seasonal climate anomalies and NPI suggests a greater association with relative humidity than with temperature. These results could help to focus future efforts to develop management strategies where weather conditions are conducive for the establishment of MOT.
Collapse
Affiliation(s)
- Carlo Montes
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico.
| | - Sk Ghulam Hussain
- International Maize and Wheat Improvement Center (CIMMYT), Dhaka, Bangladesh
| | - Timothy J Krupnik
- International Maize and Wheat Improvement Center (CIMMYT), Dhaka, Bangladesh
| |
Collapse
|
6
|
Hossain MM. Wheat blast: A review from a genetic and genomic perspective. Front Microbiol 2022; 13:983243. [PMID: 36160203 PMCID: PMC9493272 DOI: 10.3389/fmicb.2022.983243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/12/2022] [Indexed: 12/11/2022] Open
Abstract
The newly emerged wheat blast fungus Magnaporthe oryzae Triticum (MoT) is a severe threat to global wheat production. The fungus is a distinct, exceptionally diverse lineage of the M. oryzae, causing rice blast disease. Genome-based approaches employing MoT-specific markers are used to detect MoT field isolates. Sequencing the whole genome indicates the presence of core chromosome and mini-chromosome sequences that harbor effector genes and undergo divergent evolutionary routes. Significant genetic and pathotype diversity within the fungus population gives ample potential for evolutionary change. Identifying and refining genetic markers allows for tracking genomic regions with stable blast resistance. Introgression of quantitative and R gene resistance into popular cultivars is crucial to controlling disease in areas where the pathogen population is diverse and well established. Novel approaches such as CRISPR/Cas-9 genome editing could generate resistant varieties in wheat within a short time. This chapter provides an extensive summary of the genetic and genomic aspects of the wheat blast fungus MoT and offers an essential resource for wheat blast research in the affected areas.
Collapse
|
7
|
Navia-Urrutia M, Mosquera G, Ellsworth R, Farman M, Trick HN, Valent B. Effector Genes in Magnaporthe oryzae Triticum as Potential Targets for Incorporating Blast Resistance in Wheat. PLANT DISEASE 2022; 106:1700-1712. [PMID: 34931892 DOI: 10.1094/pdis-10-21-2209-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Wheat blast (WB), caused by Magnaporthe oryzae Triticum pathotype, recently emerged as a destructive disease that threatens global wheat production. Because few sources of genetic resistance have been identified in wheat, genetic transformation of wheat with rice blast resistance genes could expand resistance to WB. We evaluated the presence/absence of homologs of rice blast effector genes in Triticum isolates with the aim of identifying avirulence genes in field populations whose cognate rice resistance genes could potentially confer resistance to WB. We also assessed presence of the wheat pathogen AVR-Rmg8 gene and identified new alleles. A total of 102 isolates collected in Brazil, Bolivia, and Paraguay from 1986 to 2018 were evaluated by PCR using 21 pairs of gene-specific primers. Effector gene composition was highly variable, with homologs to AvrPiz-t, AVR-Pi9, AVR-Pi54, and ACE1 showing the highest amplification frequencies (>94%). We identified Triticum isolates with a functional AvrPiz-t homolog that triggers Piz-t-mediated resistance in the rice pathosystem and produced transgenic wheat plants expressing the rice Piz-t gene. Seedlings and heads of the transgenic lines were challenged with isolate T25 carrying functional AvrPiz-t. Although slight decreases in the percentage of diseased spikelets and leaf area infected were observed in two transgenic lines, our results indicated that Piz-t did not confer useful WB resistance. Monitoring of avirulence genes in populations is fundamental to identifying effective resistance genes for incorporation into wheat by conventional breeding or transgenesis. Based on avirulence gene distributions, rice resistance genes Pi9 and Pi54 might be candidates for future studies.
Collapse
Affiliation(s)
- Monica Navia-Urrutia
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - Gloria Mosquera
- Rice Pathology, International Center for Tropical Agriculture, Palmira, 763537, Colombia
| | - Rebekah Ellsworth
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, U.S.A
| | - Mark Farman
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, U.S.A
| | - Harold N Trick
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - Barbara Valent
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| |
Collapse
|
8
|
Mahmud NU, Gupta DR, Paul SK, Chakraborty M, Mehebub MS, Surovy MZ, Rabby SF, Rahat AAM, Roy PC, Sohrawardy H, Amin MA, Masud MK, Ide Y, Yamauchi Y, Hossain MS, Islam T. Daylight-Driven Rechargeable TiO 2 Nanocatalysts Suppress Wheat Blast Caused by Magnaporthe oryzae Triticum. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Nur Uddin Mahmud
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur-1706, Bangladesh
| | - Dipali Rani Gupta
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur-1706, Bangladesh
| | - Sanjoy Kumar Paul
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur-1706, Bangladesh
| | - Moutoshi Chakraborty
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur-1706, Bangladesh
| | - Md Shabab Mehebub
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur-1706, Bangladesh
| | - Musrat Zahan Surovy
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur-1706, Bangladesh
| | - S.M. Fajle Rabby
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur-1706, Bangladesh
| | - Abdullah Al Mahbub Rahat
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur-1706, Bangladesh
| | - Paritosh Chandra Roy
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur-1706, Bangladesh
| | - Hossain Sohrawardy
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur-1706, Bangladesh
| | - Mohammed A. Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mostafa Kamal Masud
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, QLD 4072 Australia
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Yusuke Ide
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, QLD 4072 Australia
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
- School of Chemical Engineering, Faculty of Engineering, Architecture and Information Technology (EAIT), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Md. Shahriar Hossain
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, QLD 4072 Australia
- School of Mechanical and Mining Engineering, Faculty of Engineering, Architecture and Information Technology (EAIT), The University of Queensland, Brisbane, QLD
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur-1706, Bangladesh
| |
Collapse
|
9
|
Khan H, Wani SH, Bhardwaj SC, Rani K, Bishnoi SK, Singh GP. Wheat spike blast: genetic interventions for effective management. Mol Biol Rep 2022; 49:5483-5494. [PMID: 35478296 DOI: 10.1007/s11033-022-07356-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/05/2022] [Accepted: 03/10/2022] [Indexed: 10/18/2022]
Abstract
The fundamental concepts of the genetics, race classification and epidemiology of the Wheat spike blast causing fungus Magnaporthe oryzae pathotype Triticum (MoT) are still evolving despite of its discovery in 1985 in Brazil for the first time. The fungus seems to defy the research progress that is being made globally by continuously evolving into pathotypes which have already overcome the much celebrated 2NS resistance in wheat lines as well as few of the initially effective fungicides. The compartmentalized i.e. two speed genome of the MoT, conferring the fungus an evolutionary advantage, has emerged as a challenge for the wheat spike blast researchers complicating its already difficult management. The airborne fungus with a range of alternative hosts is finding new geographical niches situated on different continents and is a matter of great apprehension among the nations whose food security is primarily dependent on wheat. The wheat blast outbreak in Bangladesh during 2016 was attributed to an isolate from Latin America escaping through a seed import consignment while the latest Zambian outbreak is still to be studied in detail regarding its origin and entry. The challenges in dealing wheat spike blast are not only on the level of genetics and epidemiology alone but also on the levels of policy making regarding international seed movement and research collaborations. The present review deals with these issues mainly concerning the effective management and controlling the international spread of this deadly disease of wheat, with a particular reference to India. We describe the origin, taxonomy, epidemiology and symptomology of MoT and briefly highlight its impact and management practices from different countries. We also discuss the advances in genomics and genome editing technologies that can be used to develop elite wheat genotypes resistant against different stains of wheat spike blast.
Collapse
Affiliation(s)
- Hanif Khan
- ICAR-Indian Institute of Wheat and Barley Research, 132001, Karnal, Haryana, India.
| | - Shabir Hussain Wani
- Mountain Research Center for Field Crops, Khudwani, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, 192101, Khudwani, J & K, India
| | - Subhash Chander Bhardwaj
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Flowerdale, 171 002, Shimla, Himachal Pradesh, India
| | - Kirti Rani
- ICAR-Directorate of Groundnut Research (DGR), 362001, Junagadh, Gujarat, India
| | - Santosh Kumar Bishnoi
- ICAR- Indian Institute of Wheat and Barley Research, Seed & Research Farm, 125001, Hisar, Haryana, India
| | | |
Collapse
|
10
|
Phuke RM, He X, Juliana P, Kabir MR, Roy KK, Marza F, Roy C, Singh GP, Chawade A, Joshi AK, Singh PK. Identification of Genomic Regions and Sources for Wheat Blast Resistance through GWAS in Indian Wheat Genotypes. Genes (Basel) 2022; 13:596. [PMID: 35456402 PMCID: PMC9025667 DOI: 10.3390/genes13040596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 11/20/2022] Open
Abstract
Wheat blast (WB) is a devastating fungal disease that has recently spread to Bangladesh and poses a threat to the wheat production in India, which is the second-largest wheat producing country in the world. In this study, 350 Indian wheat genotypes were evaluated for WB resistance in 12 field experiments in three different locations, namely Jashore in Bangladesh and Quirusillas and Okinawa in Bolivia. Single nucleotide polymorphisms (SNPs) across the genome were obtained using DArTseq® technology, and 7554 filtered SNP markers were selected for a genome-wide association study (GWAS). All the three GWAS approaches used identified the 2NS translocation as the only major source of resistance, explaining up to 32% of the phenotypic variation. Additional marker-trait associations were located on chromosomes 2B, 3B, 4D, 5A and 7A, and the combined effect of three SNPs (2B_180938790, 7A_752501634 and 5A_618682953) showed better resistance, indicating their additive effects on WB resistance. Among the 298 bread wheat genotypes, 89 (29.9%) carried the 2NS translocation, the majority of which (60 genotypes) were CIMMYT introductions, and 29 were from India. The 2NS carriers with a grand mean WB index of 6.6 showed higher blast resistance compared to the non-2NS genotypes with a mean index of 46.5. Of the 52 durum wheats, only one genotype, HI 8819, had the 2NS translocation and was the most resistant, with a grand mean WB index of 0.93. Our study suggests that the 2NS translocation is the only major resistance source in the Indian wheat panel analysed and emphasizes the urgent need to identify novel non-2NS resistance sources and genomic regions.
Collapse
Affiliation(s)
- Rahul M. Phuke
- ICAR-Indian Agriculture Research Institute, Regional Station, Indore 452001, India;
- ICAR-Central Institute for Cotton Research, Nagpur 440010, India
| | - Xinyao He
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico City 06600, Mexico;
| | - Philomin Juliana
- Borlaug Institute for South Asia (BISA)/CIMMYT-India, NASC Complex, DPS Marg, New Delhi 110012, India; (P.J.); (A.K.J.)
| | - Muhammad R. Kabir
- Bangladesh Wheat and Maize Research Institute (BWMRI), Nashipur, Dinajpur 5200, Bangladesh; (M.R.K.); (K.K.R.)
| | - Krishna K. Roy
- Bangladesh Wheat and Maize Research Institute (BWMRI), Nashipur, Dinajpur 5200, Bangladesh; (M.R.K.); (K.K.R.)
| | - Felix Marza
- Instituto Nacional de Innovación Agropecuaria y Forestal (INIAF), La Paz 3798, Bolivia;
| | - Chandan Roy
- Department of Plant Breeding and Genetics, Bihar Agricultural University, Sabour 813210, India;
| | - Gyanendra P. Singh
- ICAR-Indian Institute of Wheat and Barley Research, Maharaja Agarsain Marg, P.O. Box 158, Karnal 132001, India;
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23053 Alnarp, Sweden;
| | - Arun K. Joshi
- Borlaug Institute for South Asia (BISA)/CIMMYT-India, NASC Complex, DPS Marg, New Delhi 110012, India; (P.J.); (A.K.J.)
| | - Pawan K. Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico City 06600, Mexico;
| |
Collapse
|
11
|
Elucidating genetic diversity and population structure of Pyricularia oryzae isolates causing wheat blast in Bangladesh. Arch Microbiol 2022; 204:134. [PMID: 35020048 DOI: 10.1007/s00203-021-02752-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 11/02/2022]
Abstract
Wheat blast, caused by Pyricularia oryzae pathotype Triticum, is one of the most notorious diseases of wheat. In this study, a total of twenty-four monoconidial isolates representing four major wheat blast affected districts, namely Chuadanga, Meherpur, Kustia and Jhenaidah of Bangladesh were analyzed. Eight RAPD and four ISSR primers being used for genetic diversity assay produced a total of 94 bands of which 85% were polymorphic. UPGMA dendrogram based on combined dataset (RAPD and ISSR) separated all the isolates into two main clusters having similarity ranged from 64 to 93%. Principal coordinate analysis showed congruent result with cluster analysis. However, clustering of the isolates according to their origin and plant part sampled was not apparent in the dendrogram. The genetic diversity indices unveiled that genetic diversity in P. oryzae populations is low. Average Nei's gene diversity (h) and Shannon's Information Index (I) calculated for isolates from each district were found 0.16 and 0.24, respectively. The population structure analysis of the isolates revealed the presence of two sub-populations with admixture of alleles. Analysis of molecular variance indicated that significantly higher level of variation (96%) in the population was present within districts while a relatively low proportion (4%) of the variation was detected among districts. Knowledge generated in this study will give a pace in the development of appropriate wheat blast management strategies to control this disease in Bangladesh.
Collapse
|
12
|
Juliana P, He X, Marza F, Islam R, Anwar B, Poland J, Shrestha S, Singh GP, Chawade A, Joshi AK, Singh RP, Singh PK. Genomic Selection for Wheat Blast in a Diversity Panel, Breeding Panel and Full-Sibs Panel. FRONTIERS IN PLANT SCIENCE 2022; 12:745379. [PMID: 35069614 PMCID: PMC8782147 DOI: 10.3389/fpls.2021.745379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/09/2021] [Indexed: 06/14/2023]
Abstract
Wheat blast is an emerging threat to wheat production, due to its recent migration to South Asia and Sub-Saharan Africa. Because genomic selection (GS) has emerged as a promising breeding strategy, the key objective of this study was to evaluate it for wheat blast phenotyped at precision phenotyping platforms in Quirusillas (Bolivia), Okinawa (Bolivia) and Jashore (Bangladesh) using three panels: (i) a diversity panel comprising 172 diverse spring wheat genotypes, (ii) a breeding panel comprising 248 elite breeding lines, and (iii) a full-sibs panel comprising 298 full-sibs. We evaluated two genomic prediction models (the genomic best linear unbiased prediction or GBLUP model and the Bayes B model) and compared the genomic prediction accuracies with accuracies from a fixed effects model (with selected blast-associated markers as fixed effects), a GBLUP + fixed effects model and a pedigree relationships-based model (ABLUP). On average, across all the panels and environments analyzed, the GBLUP + fixed effects model (0.63 ± 0.13) and the fixed effects model (0.62 ± 0.13) gave the highest prediction accuracies, followed by the Bayes B (0.59 ± 0.11), GBLUP (0.55 ± 0.1), and ABLUP (0.48 ± 0.06) models. The high prediction accuracies from the fixed effects model resulted from the markers tagging the 2NS translocation that had a large effect on blast in all the panels. This implies that in environments where the 2NS translocation-based blast resistance is effective, genotyping one to few markers tagging the translocation is sufficient to predict the blast response and genome-wide markers may not be needed. We also observed that marker-assisted selection (MAS) based on a few blast-associated markers outperformed GS as it selected the highest mean percentage (88.5%) of lines also selected by phenotypic selection and discarded the highest mean percentage of lines (91.8%) also discarded by phenotypic selection, across all panels. In conclusion, while this study demonstrates that MAS might be a powerful strategy to select for the 2NS translocation-based blast resistance, we emphasize that further efforts to use genomic tools to identify non-2NS translocation-based blast resistance are critical.
Collapse
Affiliation(s)
| | - Xinyao He
- International Maize and Wheat Improvement Center (CIMMYT), Mexico, Mexico
| | - Felix Marza
- Instituto Nacional de Innovación Agropecuaria y Forestal (INIAF), La Paz, Bolivia
| | - Rabiul Islam
- Bangladesh Wheat and Maize Research Institute (BWMRI), Dinajpur, Bangladesh
| | - Babul Anwar
- Bangladesh Wheat and Maize Research Institute (BWMRI), Dinajpur, Bangladesh
| | - Jesse Poland
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, United States
| | - Sandesh Shrestha
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, United States
| | - Gyanendra P. Singh
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Arun K. Joshi
- Borlaug Institute for South Asia (BISA), Ludhiana, India
- CIMMYT-India, New Delhi, India
| | - Ravi P. Singh
- International Maize and Wheat Improvement Center (CIMMYT), Mexico, Mexico
| | - Pawan K. Singh
- International Maize and Wheat Improvement Center (CIMMYT), Mexico, Mexico
| |
Collapse
|
13
|
Anand G, Rajeshkumar KC. Challenges and Threats Posed by Plant Pathogenic Fungi on Agricultural Productivity and Economy. Fungal Biol 2022. [DOI: 10.1007/978-981-16-8877-5_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Genetic dissection for head blast resistance in wheat using two mapping populations. Heredity (Edinb) 2021; 128:402-410. [PMID: 34880420 PMCID: PMC9177698 DOI: 10.1038/s41437-021-00480-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/11/2022] Open
Abstract
Wheat head blast is a dangerous fungal disease in South America and has recently spread to Bangladesh and Zambia, threatening wheat production in those regions. Host resistance as an economical and environment-friendly management strategy has been heavily relied on, and understanding the resistance loci in the wheat genome is very helpful to resistance breeding. In the current study, two recombinant inbred line (RIL) populations, Alondra/Milan (with 296 RILs) and Caninde#2/Milan-S (with 254 RILs and Milan-S being a susceptible variant of Milan), were used for mapping QTL associated with head blast resistance in field experiments. Phenotyping was conducted in Quirusillas and Okinawa, Bolivia, and in Jashore, Bangladesh, during the 2017–18 and 2018–19 cropping cycles. The DArTseq® technology was employed to genotype the lines, along with four STS markers in the 2NS region. A QTL with consistent major effects was mapped on the 2NS/2AS translocation region in both populations, explaining phenotypic variation from 16.7 to 79.4% across experiments. Additional QTL were detected on chromosomes 2DL, 7AL, and 7DS in the Alondra/Milan population, and 2BS, 4AL, 5AS, 5DL, 7AS, and 7AL in the Caninde#2/Milan-S population, all showing phenotypic effects <10%. The results corroborated the important role of the 2NS/2AS translocation on WB resistance and identified a few novel QTL for possible deployment in wheat breeding. The low phenotypic effects of the non-2NS QTL warrantee further investigation for novel QTL with higher and more stable effects against WB, to alleviate the heavy reliance on 2NS-based resistance.
Collapse
|
15
|
Roy C, Juliana P, Kabir MR, Roy KK, Gahtyari NC, Marza F, He X, Singh GP, Chawade A, Joshi AK, Singh PK. New Genotypes and Genomic Regions for Resistance to Wheat Blast in South Asian Germplasm. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122693. [PMID: 34961165 PMCID: PMC8708018 DOI: 10.3390/plants10122693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 05/12/2023]
Abstract
Wheat blast (WB) disease, since its first identification in Bangladesh in 2016, is now an established serious threat to wheat production in South Asia. There is a need for sound knowledge about resistance sources and associated genomic regions to assist breeding programs. Hence, a panel of genotypes from India and Bangladesh was evaluated for wheat blast resistance and a genome-wide association study (GWAS) was performed. Disease evaluation was done during five crop seasons-at precision phenotyping platform (PPPs) for wheat blast disease at Jashore (2018-19), Quirusillas (2018-19 and 2019-20) and Okinawa (2019 and 2020). Single nucleotide polymorphisms (SNP) across the genome were obtained using DArTseq genotyping-by-sequencing platform, and in total 5713 filtered markers were used. GWAS revealed 40 significant markers associated with WB resistance, of which 33 (82.5%) were in the 2NS/2AS chromosome segment and one each on seven chromosomes (3B, 3D, 4A, 5A, 5D, 6A and 6B). The 2NS markers contributed significantly in most of the environments, explaining an average of 33.4% of the phenotypic variation. Overall, 22.4% of the germplasm carried 2NS/2AS segment. So far, 2NS translocation is the only effective WB resistance source being used in the breeding programs of South Asia. Nevertheless, the identification of non-2NS/2AS genomic regions for WB resistance provides a hope to broaden and diversify resistance for this disease in years to come.
Collapse
Affiliation(s)
- Chandan Roy
- Department of Plant Breeding and Genetics, Bihar Agricultural University, Sabour 813210, India;
| | - Philomin Juliana
- BISA/CIMMYT-India, NASC Complex, DPS Marg, New Delhi 110012, India; (P.J.); (A.K.J.)
| | - Muhammad R. Kabir
- Bangladesh Wheat and Maize Research Institute (BWMRI), Nashipur, Dinajpur 5200, Bangladesh; (M.R.K.); (K.K.R.)
| | - Krishna K. Roy
- Bangladesh Wheat and Maize Research Institute (BWMRI), Nashipur, Dinajpur 5200, Bangladesh; (M.R.K.); (K.K.R.)
| | - Navin C. Gahtyari
- ICAR–Vivekanand Parvatiya Krishi Anushandhan Sansthan, Almora 263601, India;
| | - Felix Marza
- Instituto Nacional de Innovación Agropecuaria y Forestal (INIAF), La Paz, Bolivia;
| | - Xinyao He
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico DF 06600, Mexico;
| | - Gyanendra P. Singh
- ICAR—Indian Institute of Wheat and Barley Research, Karnal, Maharaja Agarsain Marg, P.O. Box 158, Karnal 132001, India;
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23053 Alnarp, Sweden;
| | - Arun K. Joshi
- BISA/CIMMYT-India, NASC Complex, DPS Marg, New Delhi 110012, India; (P.J.); (A.K.J.)
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico DF 06600, Mexico;
| | - Pawan K. Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico DF 06600, Mexico;
- Correspondence:
| |
Collapse
|
16
|
Shizhen W, Jiaoyu W, Zhen Z, Zhongna H, Xueming Z, Rongyao C, Haiping Q, Yanli W, Fucheng L, Guochang S. The Risk of Wheat Blast in Rice-Wheat Co-Planting Regions in China: MoO Strains of Pyricularia oryzae Cause Typical Symptom and Host Reaction on Both Wheat Leaves and Spikes. PHYTOPATHOLOGY 2021; 111:1393-1400. [PMID: 33471560 DOI: 10.1094/phyto-10-20-0470-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The Triticum pathotype of Magnaporthe oryzae (syn. Pyricularia oryzae) causes wheat blast, which has recently spread to Asia. To assess the potential risk of wheat blast in rice-wheat growing regions, we investigated the pathogenicity of 14 isolates of P. oryzae on 32 wheat cultivars, among which Oryzae pathotype of P. oryzae (MoO) isolates were completely avirulent on the wheat cultivars at 22°C but caused various degrees of infection 25°C. These reactions at 25°C were isolate and cultivar dependent, like race-cultivar specificity, which was also recognized at the heading stage and caused typical blast symptoms on spikes. Microscopic analyses indicated that a compatible MoO isolate produced appressoria and infection hyphae on wheat as on rice. When we compared transcriptomes in wheat-MoO interactions, the bulk of pathogen-related genes were upregulated or downregulated in compatible and incompatible patterns, but changes in gene transcription were more significant in a compatible pattern. These results indicate that temperature could influence the infection ratio of wheat with MoO, and some MoO strains could be potential pathogens that increase the risk of wheat blast outbreaks in wheat-rice growing regions with global warming. In addition, certain wheat cultivars exhibited resistance and are assumed to carry resistance-promoting genes to the MoO strains.
Collapse
Affiliation(s)
- Wang Shizhen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wang Jiaoyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhang Zhen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hao Zhongna
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhu Xueming
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chai Rongyao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qiu Haiping
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wang Yanli
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lin Fucheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Sun Guochang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
17
|
Singh PK, Gahtyari NC, Roy C, Roy KK, He X, Tembo B, Xu K, Juliana P, Sonder K, Kabir MR, Chawade A. Wheat Blast: A Disease Spreading by Intercontinental Jumps and Its Management Strategies. FRONTIERS IN PLANT SCIENCE 2021; 12:710707. [PMID: 34367228 PMCID: PMC8343232 DOI: 10.3389/fpls.2021.710707] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/24/2021] [Indexed: 05/26/2023]
Abstract
Wheat blast (WB) caused by Magnaporthe oryzae pathotype Triticum (MoT) is an important fungal disease in tropical and subtropical wheat production regions. The disease was initially identified in Brazil in 1985, and it subsequently spread to some major wheat-producing areas of the country as well as several South American countries such as Bolivia, Paraguay, and Argentina. In recent years, WB has been introduced to Bangladesh and Zambia via international wheat trade, threatening wheat production in South Asia and Southern Africa with the possible further spreading in these two continents. Resistance source is mostly limited to 2NS carriers, which are being eroded by newly emerged MoT isolates, demonstrating an urgent need for identification and utilization of non-2NS resistance sources. Fungicides are also being heavily relied on to manage WB that resulted in increasing fungal resistance, which should be addressed by utilization of new fungicides or rotating different fungicides. Additionally, quarantine measures, cultural practices, non-fungicidal chemical treatment, disease forecasting, biocontrol etc., are also effective components of integrated WB management, which could be used in combination with varietal resistance and fungicides to obtain reasonable management of this disease.
Collapse
Affiliation(s)
- Pawan K. Singh
- International Maize and Wheat Improvement Center (CIMMYT), Mexico City, Mexico
| | - Navin C. Gahtyari
- ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan (VPKAS), Almora, India
| | - Chandan Roy
- Department of Plant Breeding and Genetics, BAC, Bihar Agricultural University, Sabour, India
| | - Krishna K. Roy
- Bangladesh Wheat and Maize Research Institute (BWMRI), Dinajpur, Bangladesh
| | - Xinyao He
- International Maize and Wheat Improvement Center (CIMMYT), Mexico City, Mexico
| | - B. Tembo
- Zambia Agricultural Research Institute (ZARI), Chilanga, Zambia
| | - Kaijie Xu
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Philomin Juliana
- International Maize and Wheat Improvement Center (CIMMYT), Mexico City, Mexico
| | - Kai Sonder
- International Maize and Wheat Improvement Center (CIMMYT), Mexico City, Mexico
| | - Muhammad R. Kabir
- Bangladesh Wheat and Maize Research Institute (BWMRI), Dinajpur, Bangladesh
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
18
|
Fernández-Campos M, Huang YT, Jahanshahi MR, Wang T, Jin J, Telenko DEP, Góngora-Canul C, Cruz CD. Wheat Spike Blast Image Classification Using Deep Convolutional Neural Networks. FRONTIERS IN PLANT SCIENCE 2021; 12:673505. [PMID: 34220894 PMCID: PMC8248543 DOI: 10.3389/fpls.2021.673505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/10/2021] [Indexed: 05/21/2023]
Abstract
Wheat blast is a threat to global wheat production, and limited blast-resistant cultivars are available. The current estimations of wheat spike blast severity rely on human assessments, but this technique could have limitations. Reliable visual disease estimations paired with Red Green Blue (RGB) images of wheat spike blast can be used to train deep convolutional neural networks (CNN) for disease severity (DS) classification. Inter-rater agreement analysis was used to measure the reliability of who collected and classified data obtained under controlled conditions. We then trained CNN models to classify wheat spike blast severity. Inter-rater agreement analysis showed high accuracy and low bias before model training. Results showed that the CNN models trained provide a promising approach to classify images in the three wheat blast severity categories. However, the models trained on non-matured and matured spikes images showing the highest precision, recall, and F1 score when classifying the images. The high classification accuracy could serve as a basis to facilitate wheat spike blast phenotyping in the future.
Collapse
Affiliation(s)
| | - Yu-Ting Huang
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, United States
| | - Mohammad R. Jahanshahi
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, United States
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, United States
| | - Tao Wang
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, United States
| | - Jian Jin
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, United States
| | - Darcy E. P. Telenko
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - Carlos Góngora-Canul
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Tecnológico Nacional de México/IT Conkal, Conkal, Yucatán, Mexico
| | - C. D. Cruz
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
19
|
Adonina IG, Timonova EM, Salina EA. Introgressive Hybridization of Common Wheat: Results and Prospects. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421030029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Grote U, Fasse A, Nguyen TT, Erenstein O. Food Security and the Dynamics of Wheat and Maize Value Chains in Africa and Asia. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2020.617009] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
There is an ongoing debate about how best to feed the growing world population in the long run and associated implications for research and development. Some call for a new Green Revolution to secure the supply of staple foods, whereas others emphasize the importance of diversifying and improving people's diets. We aim to contribute to this debate by reviewing the case of wheat and maize value chains and their contribution to food security in Africa and Asia. We first identify drivers transforming food systems. We then apply these to the cereal value chains and disentangle their effects on food security. We thereby add to the three strands in the literature around production, consumption, and food system transformation and point to different research needs and recommendations for the future. The review highlights: (1) Wheat and maize production will be increasingly impaired by ecological drivers such as land degradation, water scarcity and climate change. (2) There are promising innovations to increase and maintain productivity, but constraints in adopting these innovations have to be overcome (i.e., access to seeds, finance, and education/training). (3) The drivers affect all four dimensions of food security, but first and foremost they determine the availability and stability of maize and wheat. This indirectly also influences the economic and physical access of people to maize and wheat. (4) Research tends to focus on improving the productivity and sustainability of wheat and maize farming which is largely interlinked with the availability dimension of food security. (5) The stability and utilization dimension of food security merits continued yet increased support. First, to address climate change and implications for biotic and abiotic stresses. Second, to promote healthier diets and enable the equitable transformation of food systems.
Collapse
|
21
|
Inoue Y, Vy TTP, Tani D, Tosa Y. Suppression of wheat blast resistance by an effector of Pyricularia oryzae is counteracted by a host specificity resistance gene in wheat. THE NEW PHYTOLOGIST 2021; 229:488-500. [PMID: 32852846 DOI: 10.1111/nph.16894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
Wheat blast caused by the Triticum pathotype of Pyricularia oryzae poses a serious threat to wheat production in South America and Asia and is now becoming a pandemic disease. Here, we show that Rmg8, a promising wheat gene for resistance breeding, is suppressed by PWT4, an effector gene of P. oryzae, and in turn that the suppression is counteracted by Rwt4, a wheat gene recognizing PWT4. When PWT4 was introduced into a wheat blast isolate carrying AVR-Rmg8 (an avirulence gene corresponding to Rmg8), PWT4 suppressed wheat resistance conferred by Rmg8. PWT4 did not alter the expression of AVR-Rmg8, but higher expression of PWT4 led to more efficient suppression. This suppression was observed in rwt4 carriers, but not in Rwt4 carriers, indicating that it is counteracted by Rwt4. PWT4 was assumed to have been horizontally transferred from a weed-associated cryptic species, P. pennisetigena, to an Avena isolate of P. oryzae in Brazil. This implies a potential risk of the acquisition of PWT4 by the wheat blast fungus and the 'breakdown' of Rmg8. We suggest that Rmg8 should be introduced together with Rwt4 into a wheat cultivar when it is used for resistance breeding.
Collapse
Affiliation(s)
- Yoshihiro Inoue
- Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Trinh Thi Phuoug Vy
- Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| | - Daichi Tani
- Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| | - Yukio Tosa
- Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| |
Collapse
|
22
|
Kim KH, Choi ED. Retrospective Study on the Seasonal Forecast-Based Disease Intervention of the Wheat Blast Outbreaks in Bangladesh. FRONTIERS IN PLANT SCIENCE 2020; 11:570381. [PMID: 33329627 PMCID: PMC7719836 DOI: 10.3389/fpls.2020.570381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/16/2020] [Indexed: 06/12/2023]
Abstract
Seasonal disease risk prediction using disease epidemiological models and seasonal forecasts has been actively sought over the last decades, as it has been believed to be a key component in the disease early warning system for the pre-season planning of local or national level disease control. We conducted a retrospective study using the wheat blast outbreaks in Bangladesh, which occurred for the first time in Asia in 2016, to study a what-if scenario that if there was seasonal disease risk prediction at that time, the epidemics could be prevented or reduced through prediction-based interventions. Two factors govern the answer: the seasonal disease risk prediction is accurate enough to use, and there are effective and realistic control measures to be used upon the prediction. In this study, we focused on the former. To simulate the wheat blast risk and wheat yield in the target region, a high-resolution climate reanalysis product and spatiotemporally downscaled seasonal climate forecasts from eight global climate models were used as inputs for both models. The calibrated wheat blast model successfully simulated the spatial pattern of disease epidemics during the 2014-2018 seasons and was subsequently used to generate seasonal wheat blast risk prediction before each winter season starts. The predictability of the resulting predictions was evaluated against observation-based model simulations. The potential value of utilizing the seasonal wheat blast risk prediction was examined by comparing actual yields resulting from the risk-averse (proactive) and risk-disregarding (conservative) decisions. Overall, our results from this retrospective study showed the feasibility of seasonal forecast-based early warning system for the pre-season strategic interventions of forecasted wheat blast in Bangladesh.
Collapse
Affiliation(s)
- Kwang-Hyung Kim
- Climate Prediction Department, APEC Climate Center, Busan, South Korea
| | - Eu Ddeum Choi
- Pear Research Institute, National Institute of Horticultural & Herbal Science, Naju, South Korea
| |
Collapse
|
23
|
Juliana P, He X, Kabir MR, Roy KK, Anwar MB, Marza F, Poland J, Shrestha S, Singh RP, Singh PK. Genome-wide association mapping for wheat blast resistance in CIMMYT's international screening nurseries evaluated in Bolivia and Bangladesh. Sci Rep 2020; 10:15972. [PMID: 33009436 PMCID: PMC7532450 DOI: 10.1038/s41598-020-72735-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/04/2020] [Indexed: 12/22/2022] Open
Abstract
Wheat blast caused by the fungus Magnaporthe oryzae pathotype Triticum (MoT) is an emerging threat to wheat production. To identify genomic regions associated with blast resistance against MoT isolates in Bolivia and Bangladesh, we performed a large genome-wide association mapping study using 8607 observations on 1106 lines from the International Maize and Wheat Improvement Centre’s International Bread Wheat Screening Nurseries (IBWSNs) and Semi-Arid Wheat Screening Nurseries (SAWSNs). We identified 36 significant markers on chromosomes 2AS, 3BL, 4AL and 7BL with consistent effects across panels or site-years, including 20 markers that were significant in all the 49 datasets and tagged the 2NS translocation from Aegilops ventricosa. The mean blast index of lines with and without the 2NS translocation was 2.7 ± 4.5 and 53.3 ± 15.9, respectively, that substantiates its strong effect on blast resistance. Furthermore, we fingerprinted a large panel of 4143 lines for the 2NS translocation that provided excellent insights into its frequency over years and indicated its presence in 94.1 and 93.7% of lines in the 2019 IBWSN and SAWSN, respectively. Overall, this study reinforces the effectiveness of the 2NS translocation for blast resistance and emphasizes the urgent need to identify novel non-2NS sources of blast resistance.
Collapse
Affiliation(s)
- Philomin Juliana
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, DF, Mexico
| | - Xinyao He
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, DF, Mexico
| | - Muhammad R Kabir
- Bangladesh Wheat and Maize Research Institute (BWMRI), Nashipur, Dinajpur, Bangladesh
| | - Krishna K Roy
- Bangladesh Wheat and Maize Research Institute (BWMRI), Nashipur, Dinajpur, Bangladesh
| | - Md Babul Anwar
- Bangladesh Wheat and Maize Research Institute (BWMRI), Nashipur, Dinajpur, Bangladesh
| | - Felix Marza
- Instituto Nacional de Innovación Agropecuaria y Forestal (INIAF), La Paz, Bolivia
| | - Jesse Poland
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, USA
| | - Sandesh Shrestha
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, USA
| | - Ravi P Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, DF, Mexico.
| | - Pawan K Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, DF, Mexico.
| |
Collapse
|
24
|
Tembo B, Mulenga RM, Sichilima S, M’siska KK, Mwale M, Chikoti PC, Singh PK, He X, Pedley KF, Peterson GL, Singh RP, Braun HJ. Detection and characterization of fungus (Magnaporthe oryzae pathotype Triticum) causing wheat blast disease on rain-fed grown wheat (Triticum aestivum L.) in Zambia. PLoS One 2020; 15:e0238724. [PMID: 32956369 PMCID: PMC7505438 DOI: 10.1371/journal.pone.0238724] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 08/21/2020] [Indexed: 12/03/2022] Open
Abstract
Wheat blast caused by Magnaporthe oryzae pathotype Triticum (MoT) is a threat to wheat production especially in the warmer-humid environments. In Zambia, wheat blast symptoms were observed for the first time on wheat (Triticum aestivum L.) grown in experimental plots and five farmers’ fields in Mpika district of Muchinga Province during the 2017–18 rainy season. Infected plants showed the typical wheat blast symptoms with the spike becoming partially or completely bleached with the blackening of the rachis in a short span of time. Incidence of blast symptoms on nearly all wheat heads was high and ranged from 50 to 100%. Examination of diseased plant leaves showed the presence of elliptical, grayish to tan necrotic lesions with dark borders on the leaf often mixed with other foliar diseases. A study was conducted to isolate and identify the causal pathogen(s) using classical and molecular methods and determine the pathogenicity of the detected disease causal agent. Morphobiometrical determination of causal pathogen revealed conidia with characteristic pear shaped 2-septate hyaline spores associated with M. oryzae species. Preliminary polymerase chain reaction screening of six isolates obtained from wheat blast infected samples with diagnostic primers (MoT3F/R) was conducted at ZARI, Zambia, and subsequent analysis of two isolates with MoT3F/R and C17F/R was performed at USDA-ARS, USA. Both experiments confirmed that MoT is the causal agent of wheat blast in Zambia. Further, pathogenicity tests performed with pure culture isolates from samples WS4 and WS5 produced typical blast symptoms on all the six inoculated wheat genotypes. Results of this study indicate that MoT is causing wheat blast in rain-fed wheat grown in Zambia, thus making it the first report of MoT in Zambia and Africa. This inter-continental movement of the pathogen (disease) has serious implication for wheat production and trade that needs to be urgently addressed.
Collapse
Affiliation(s)
- Batiseba Tembo
- Zambia Agricultural Research Institute, Mt. Makulu Central Research Station, Chilanga, Lusaka, Zambia
| | - Rabson M. Mulenga
- Zambia Agricultural Research Institute, Mt. Makulu Central Research Station, Chilanga, Lusaka, Zambia
- * E-mail: (RMM); (PKS)
| | - Suwilanji Sichilima
- Zambia Agricultural Research Institute, Mt. Makulu Central Research Station, Chilanga, Lusaka, Zambia
| | - Kenneth K. M’siska
- Zambia Agricultural Research Institute, Mt. Makulu Central Research Station, Chilanga, Lusaka, Zambia
| | - Moses Mwale
- Zambia Agricultural Research Institute, Mt. Makulu Central Research Station, Chilanga, Lusaka, Zambia
| | - Patrick C. Chikoti
- Zambia Agricultural Research Institute, Mt. Makulu Central Research Station, Chilanga, Lusaka, Zambia
| | - Pawan K. Singh
- International Maize and Wheat Improvement Center, Global Wheat Program, CIMMYT, El Batán, Texcoco, México
- * E-mail: (RMM); (PKS)
| | - Xinyao He
- International Maize and Wheat Improvement Center, Global Wheat Program, CIMMYT, El Batán, Texcoco, México
| | - Kerry F. Pedley
- Foreign Disease-Weed Science Research Unit, United States Department of Agriculture–Agricultural Research Service (USDA-ARS), Ft. Detrick, Maryland, United States of America
| | - Gary L. Peterson
- Foreign Disease-Weed Science Research Unit, United States Department of Agriculture–Agricultural Research Service (USDA-ARS), Ft. Detrick, Maryland, United States of America
| | - Ravi P. Singh
- International Maize and Wheat Improvement Center, Global Wheat Program, CIMMYT, El Batán, Texcoco, México
| | - Hans J. Braun
- International Maize and Wheat Improvement Center, Global Wheat Program, CIMMYT, El Batán, Texcoco, México
| |
Collapse
|
25
|
He X, Kabir MR, Roy KK, Anwar MB, Xu K, Marza F, Odilbekov F, Chawade A, Duveiller E, Huttner E, Singh PK. QTL mapping for field resistance to wheat blast in the Caninde#1/Alondra population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2673-2683. [PMID: 32488302 PMCID: PMC7419448 DOI: 10.1007/s00122-020-03624-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/23/2020] [Indexed: 05/26/2023]
Abstract
Wheat blast resistance in Caninde#1 is controlled by a major QTL on 2NS/2AS translocation and multiple minor QTL in an additive mode. Wheat blast (WB) is a devastating disease in South America, and it recently also emerged in Bangladesh. Host resistance to WB has relied heavily on the 2NS/2AS translocation, but the responsible QTL has not been mapped and its phenotypic effects in different environments have not been reported. In the current study, a recombinant inbred line population with 298 progenies was generated, with the female and male parents being Caninde#1 (with 2NS) and Alondra (without 2NS), respectively. Phenotyping was carried out in two locations in Bolivia, namely Quirusillas and Okinawa, and one location in Bangladesh, Jashore, with two sowing dates in each of the two cropping seasons in each location, during the years 2017-2019. Genotyping was performed with the DArTseq® technology along with five previously reported STS markers in the 2NS region. QTL mapping identified a major and consistent QTL on 2NS/2AS region, explaining between 22.4 and 50.1% of the phenotypic variation in different environments. Additional QTL were detected on chromosomes 1AS, 2BL, 3AL, 4BS, 4DL and 7BS, all additive to the 2NS QTL and showing phenotypic effects less than 10%. Two codominant STS markers, WGGB156 and WGGB159, were linked proximally to the 2NS/2AS QTL with a genetic distance of 0.9 cM, being potentially useful in marker-assisted selection.
Collapse
Affiliation(s)
- Xinyao He
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, DF, Mexico
| | - Muhammad Rezaul Kabir
- Bangladesh Wheat and Maize Research Institute (BWMRI), Nashipur, Dinajpur, Bangladesh
| | - Krishna K Roy
- Bangladesh Wheat and Maize Research Institute (BWMRI), Nashipur, Dinajpur, Bangladesh
| | - Md Babul Anwar
- Bangladesh Wheat and Maize Research Institute (BWMRI), Nashipur, Dinajpur, Bangladesh
| | - Kaijie Xu
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Felix Marza
- Instituto Nacional de Innovación Agropecuaria y Forestal (INIAF), La Paz, Bolivia
| | - Firuz Odilbekov
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23053, Alnarp, Sweden
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23053, Alnarp, Sweden
| | - Etienne Duveiller
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, DF, Mexico
| | - Eric Huttner
- Australian Centre for International Agricultural Research, 38 Thynne St, Bruce, ACT, 2617, Australia
| | - Pawan K Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, DF, Mexico.
| |
Collapse
|
26
|
Fones HN, Bebber DP, Chaloner TM, Kay WT, Steinberg G, Gurr SJ. Threats to global food security from emerging fungal and oomycete crop pathogens. ACTA ACUST UNITED AC 2020; 1:332-342. [PMID: 37128085 DOI: 10.1038/s43016-020-0075-0] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 04/09/2020] [Indexed: 11/09/2022]
Abstract
Emerging fungal and oomycete pathogens infect staple calorie crops and economically important commodity crops, thereby posing a significant risk to global food security. Our current agricultural systems - with emphasis on intensive monoculture practices - and globalized markets drive the emergence and spread of new pathogens and problematic traits, such as fungicide resistance. Climate change further promotes the emergence of pathogens on new crops and in new places. Here we review the factors affecting the introduction and spread of pathogens and current disease control strategies, illustrating these with the historic example of the Irish potato famine and contemporary examples of soybean rust, wheat blast and blotch, banana wilt and cassava root rot. Our Review looks to the future, summarizing what we see as the main challenges and knowledge gaps, and highlighting the direction that research must take to face the challenge of emerging crop pathogens.
Collapse
|
27
|
Bosch J, Czedik-Eysenberg A, Hastreiter M, Khan M, Güldener U, Djamei A. Two Is Better Than One: Studying Ustilago bromivora- Brachypodium Compatibility by Using a Hybrid Pathogen. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1623-1634. [PMID: 31657673 DOI: 10.1094/mpmi-05-19-0148-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pathogenic fungi can have devastating effects on agriculture and health. One potential challenge in dealing with pathogens is the possibility of a host jump (i.e., when a pathogen infects a new host species). This can lead to the emergence of new diseases or complicate the management of existing threats. We studied host specificity by using a hybrid fungus formed by mating two closely related fungi: Ustilago bromivora, which normally infects Brachypodium spp., and U. hordei, which normally infects barley. Although U. hordei was unable to infect Brachypodium spp., the hybrid could. These hybrids also displayed the same mating-type bias that had been observed in U. bromivora and provide evidence of a dominant spore-killer-like system on the sex chromosome of U. bromivora. By analyzing the genomic composition of 109 hybrid strains, backcrossed with U. hordei over four generations, we identified three regions associated with infection on Brachypodium spp. and 75 potential virulence candidates. The most strongly associated region was located on chromosome 8, where seven genes encoding predicted secreted proteins were identified. The fact that we identified several regions relevant for pathogenicity on Brachypodium spp. but that none were essential suggests that host specificity, in the case of U. bromivora, is a multifactorial trait which can be achieved through different subsets of virulence factors.
Collapse
Affiliation(s)
- Jason Bosch
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Angelika Czedik-Eysenberg
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Maximilian Hastreiter
- TUM School of Life Sciences, Technical University of Munich, Department of Bioinformatics, Maximus-von-Imhof-Forum 3, 85354 Freising, Germany
| | - Mamoona Khan
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, D-06466 Stadt Seeland, Germany
| | - Ulrich Güldener
- TUM School of Life Sciences, Technical University of Munich, Department of Bioinformatics, Maximus-von-Imhof-Forum 3, 85354 Freising, Germany
| | - Armin Djamei
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, D-06466 Stadt Seeland, Germany
| |
Collapse
|
28
|
Peng Z, Oliveira-Garcia E, Lin G, Hu Y, Dalby M, Migeon P, Tang H, Farman M, Cook D, White FF, Valent B, Liu S. Effector gene reshuffling involves dispensable mini-chromosomes in the wheat blast fungus. PLoS Genet 2019; 15:e1008272. [PMID: 31513573 PMCID: PMC6741851 DOI: 10.1371/journal.pgen.1008272] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/24/2019] [Indexed: 11/28/2022] Open
Abstract
Newly emerged wheat blast disease is a serious threat to global wheat production. Wheat blast is caused by a distinct, exceptionally diverse lineage of the fungus causing rice blast disease. Through sequencing a recent field isolate, we report a reference genome that includes seven core chromosomes and mini-chromosome sequences that harbor effector genes normally found on ends of core chromosomes in other strains. No mini-chromosomes were observed in an early field strain, and at least two from another isolate each contain different effector genes and core chromosome end sequences. The mini-chromosome is enriched in transposons occurring most frequently at core chromosome ends. Additionally, transposons in mini-chromosomes lack the characteristic signature for inactivation by repeat-induced point (RIP) mutation genome defenses. Our results, collectively, indicate that dispensable mini-chromosomes and core chromosomes undergo divergent evolutionary trajectories, and mini-chromosomes and core chromosome ends are coupled as a mobile, fast-evolving effector compartment in the wheat pathogen genome.
Collapse
Affiliation(s)
- Zhao Peng
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States of America
| | - Ely Oliveira-Garcia
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
| | - Guifang Lin
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
| | - Ying Hu
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
| | - Melinda Dalby
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
| | - Pierre Migeon
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
| | - Haibao Tang
- Center for Genomics and Biotechnology and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fujian, China
| | - Mark Farman
- Department of Plant Pathology, University of Kentucky, Lexington, KY, United States of America
| | - David Cook
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
| | - Frank F. White
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States of America
| | - Barbara Valent
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
| |
Collapse
|
29
|
Mottaleb KA, Govindan V, Singh PK, Sonder K, He X, Singh RP, Joshi AK, Barma NC, Kruseman G, Erenstein O. Economic benefits of blast-resistant biofortified wheat in Bangladesh: The case of BARI Gom 33. CROP PROTECTION (GUILDFORD, SURREY) 2019; 123:45-58. [PMID: 31481821 PMCID: PMC6686726 DOI: 10.1016/j.cropro.2019.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 05/29/2023]
Abstract
The first occurrence of wheat blast in 2016 threatened Bangladesh's already precarious food security situation. The Bangladesh Agricultural Research Institute (BARI), together with the International Maize and Wheat Improvement Center (CIMMYT) developed and released the wheat variety BARI Gom 33 that is resistant to wheat blast and other common diseases. The new variety provides a 5-8% yield gain over the available popular varieties, as well as being zinc enriched. This study examines the potential economic benefits of BARI Gom 33 in Bangladesh. First, applying a climate analogue model, this study identified that more than 55% of the total wheat-growing area in Bangladesh (across 45 districts) is vulnerable to wheat blast. Second, applying an ex-ante impact assessment framework, this study shows that with an assumed cumulative adoption starting from 2019-20 and increasing to 30% by 2027-28, the potential economic benefits of the newly developed wheat variety far exceeds its dissemination cost by 2029-30. Even if dissemination of the new wheat variety is limited to only the ten currently blast-affected districts, the yearly average net benefits could amount to USD 0.23-1.6 million. Based on the findings, international funder agencies are urged to support the national system in scaling out the new wheat variety and wheat research in general to ensure overall food security in Bangladesh and South Asia.
Collapse
Affiliation(s)
- Khondoker A. Mottaleb
- Socioeconomics Program, CIMMYT (International Maize and Wheat Improvement Center), Carretera México-Veracruz Km. 45, El Batán, Texcoco, Mexico, C.P. 56237
| | | | | | - Kai Sonder
- Geographical Information System Unit, CIMMYT Mexico
| | - Xinyao He
- Geographical Information System Unit, CIMMYT Mexico
| | - Ravi P. Singh
- Bread Wheat Improvement, Global Wheat Program, CIMMYT, Mexico
| | - Arun K. Joshi
- CIMMYT- Borlaug Institute for South Asia (BISA), NASC Complex, New Delhi, India
| | | | - Gideon Kruseman
- Ex ante and Foresight Specialist, Socioeconomics Program, CIMMYT, Mexico
| | | |
Collapse
|
30
|
Peng Z, Oliveira-Garcia E, Lin G, Hu Y, Dalby M, Migeon P, Tang H, Farman M, Cook D, White FF, Valent B, Liu S. Effector gene reshuffling involves dispensable mini-chromosomes in the wheat blast fungus. PLoS Genet 2019; 15:e1008272. [PMID: 31513573 DOI: 10.1101/359455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/24/2019] [Indexed: 05/26/2023] Open
Abstract
Newly emerged wheat blast disease is a serious threat to global wheat production. Wheat blast is caused by a distinct, exceptionally diverse lineage of the fungus causing rice blast disease. Through sequencing a recent field isolate, we report a reference genome that includes seven core chromosomes and mini-chromosome sequences that harbor effector genes normally found on ends of core chromosomes in other strains. No mini-chromosomes were observed in an early field strain, and at least two from another isolate each contain different effector genes and core chromosome end sequences. The mini-chromosome is enriched in transposons occurring most frequently at core chromosome ends. Additionally, transposons in mini-chromosomes lack the characteristic signature for inactivation by repeat-induced point (RIP) mutation genome defenses. Our results, collectively, indicate that dispensable mini-chromosomes and core chromosomes undergo divergent evolutionary trajectories, and mini-chromosomes and core chromosome ends are coupled as a mobile, fast-evolving effector compartment in the wheat pathogen genome.
Collapse
Affiliation(s)
- Zhao Peng
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States of America
| | - Ely Oliveira-Garcia
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
| | - Guifang Lin
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
| | - Ying Hu
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
| | - Melinda Dalby
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
| | - Pierre Migeon
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
| | - Haibao Tang
- Center for Genomics and Biotechnology and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fujian, China
| | - Mark Farman
- Department of Plant Pathology, University of Kentucky, Lexington, KY, United States of America
| | - David Cook
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
| | - Frank F White
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States of America
| | - Barbara Valent
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
| |
Collapse
|
31
|
Kishii M. An Update of Recent Use of Aegilops Species in Wheat Breeding. FRONTIERS IN PLANT SCIENCE 2019; 10:585. [PMID: 31143197 PMCID: PMC6521781 DOI: 10.3389/fpls.2019.00585] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/18/2019] [Indexed: 05/16/2023]
Abstract
Aegilops species have significantly contributed to wheat breeding despite the difficulties involved in the handling of wild species, such as crossability and incompatibility. A number of biotic resistance genes have been identified and incorporated into wheat varieties from Aegilops species, and this genus is also contributing toward improvement of complex traits such as yield and abiotic tolerance for drought and heat. The D genome diploid species of Aegilops tauschii has been utilized most often in wheat breeding programs. Other Aegilops species are more difficult to utilize in the breeding because of lower meiotic recombination frequencies; generally they can be utilized only after extensive and time-consuming procedures in the form of translocation/introgression lines. After the emergence of Ug99 stem rust and wheat blast threats, Aegilops species gathered more attention as a form of new resistance sources. This article aims to update recent progress on Aegilops species, as well as to cover new topics around their use in wheat breeding.
Collapse
Affiliation(s)
- Masahiro Kishii
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| |
Collapse
|
32
|
Mottaleb KA, Singh PK, Sonder K, Kruseman G, Erenstein O. Averting wheat blast by implementing a 'wheat holiday': In search of alternative crops in West Bengal, India. PLoS One 2019; 14:e0211410. [PMID: 30785905 PMCID: PMC6382110 DOI: 10.1371/journal.pone.0211410] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 01/14/2019] [Indexed: 11/19/2022] Open
Abstract
The emergence of wheat-blast in Bangladesh in the 2015-16 wheat (Triticum aestivum L.) crop threatens the food security of South Asia. A potential spread of the disease from Bangladesh to India could have devastating impacts on India's overall food security as wheat is its second most important staple food crop. West Bengal state in eastern India shares a 2,217 km-long border with Bangladesh and has a similar agro-ecology, enhancing the prospects of the disease entering India via West Bengal. The present study explores the possibility of a 'wheat holiday' policy in the nine border districts of West Bengal. Under the policy, farmers in these districts would stop wheat cultivation for at least two years. The present scoping study assesses the potential economic feasibility of alternative crops to wheat. Of the ten crops considered, maize, gram (chickpea), urad (black gram), rapeseed and mustard, and potatoes are found to be potentially feasible alternative crops. Any crop substitution would need support to ease the transition including addressing the challenges related to the management of alternative crops, ensuring adequate crop combinations and value chain development. Still, as wheat is a major staple, there is some urgency to support further research on disease epidemiology and forecasting, as well as the development and dissemination of blast-resistant wheat varieties across South Asia.
Collapse
Affiliation(s)
- Khondoker A. Mottaleb
- Socioeconomics Program, CIMMYT (International Maize and Wheat Improvement Center), Texcoco, México
- * E-mail:
| | | | - Kai Sonder
- Geographical Information System Unit, Socioeconomics Program, CIMMYT, Texcoco, Mexico
| | - Gideon Kruseman
- Socioeconomics Program, CIMMYT (International Maize and Wheat Improvement Center), Texcoco, México
| | - Olaf Erenstein
- Socioeconomics Program, CIMMYT (International Maize and Wheat Improvement Center), Texcoco, México
| |
Collapse
|
33
|
Islam MT, Kim KH, Choi J. Wheat Blast in Bangladesh: The Current Situation and Future Impacts. THE PLANT PATHOLOGY JOURNAL 2019; 35:1-10. [PMID: 30828274 PMCID: PMC6385656 DOI: 10.5423/ppj.rw.08.2018.0168] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/14/2018] [Indexed: 05/20/2023]
Abstract
Wheat blast occurred in Bangladesh for the first time in Asia in 2016. It is caused by a fungal pathogen, Magnaporthe oryzae Triticum (MoT) pathotype. In this review, we focused on the current status of the wheat blast in regard to host, pathogen, and environment. Despite the many efforts to control the disease, it expanded to neighboring regions including India, the world's second largest wheat producer. However, the disease occurrence has definitely decreased in quantity, because of many farmers chose to grow alternate crops according to the government's directions. Bangladesh government planned to introduce blast resistant cultivars but knowledges about genetics of resistance is limited. The genome analyses of the pathogen population revealed that the isolates caused wheat blast in Bangladesh are genetically close to a South American lineage of Magnaporthe oryzae. Understanding the genomes of virulent strains would be important to find target resistance genes for wheat breeding. Although the drier winter weather in Bangladesh was not favorable for development of wheat blast before, recent global warming and climate change are posing an increasing risk of disease development. Bangladesh outbreak in 2016 was likely to be facilitated by an extraordinary warm and humid weather in the affected districts before the harvest season. Coordinated international collaboration and steady financial supports are needed to mitigate the fearsome wheat blast in South Asia before it becomes a catastrophe.
Collapse
Affiliation(s)
- M. Tofazzal Islam
- Department of Biotechnology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur-1706,
Bangladesh
| | - Kwang-Hyung Kim
- Department of Climate Service and Research, APEC Climate Center, Busan 48058,
Korea
| | - Jaehyuk Choi
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012,
Korea
| |
Collapse
|