1
|
Deschamps C, Humbert D, Chalancon S, Achard C, Apper E, Denis S, Blanquet-Diot S. Large intestinal nutritional and physicochemical parameters from different dog sizes reshape canine microbiota structure and functions in vitro. Bioengineered 2024; 15:2325713. [PMID: 38471972 PMCID: PMC10936688 DOI: 10.1080/21655979.2024.2325713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Different dog sizes are associated with variations in large intestinal physiology including gut microbiota, which plays a key role in animal health. This study aims to evaluate, using the CANIM-ARCOL (Canine Mucosal Artificial Colon), the relative importance of gut microbes versus physicochemical and nutritional parameters of the canine colonic environment in shaping microbiota structure and functions. CANIM-ARCOL was set up to reproduce nutrient availability, bile acid profiles, colonic pH, and transit time from small, medium, or large dogs according to in vivo data, while bioreactors were all inoculated with a fecal sample collected from medium size dogs (n = 2). Applying different dog size parameters resulted in a positive association between size and gas or SCFA production, as well as distinct microbiota profiles as revealed by 16S Metabarcoding. Comparisons with in vivo data from canine stools and previous in vitro results obtained when CANIM-ARCOL was inoculated with fecal samples from three dog sizes revealed that environmental colonic parameters were sufficient to drive microbiota functions. However, size-related fecal microbes were necessary to accurately reproduce in vitro the colonic ecosystem of small, medium, and large dogs. For the first time, this study provides mechanistic insights on which parameters from colonic ecosystem mainly drive canine microbiota in relation to dog size. The CANIM-ARCOL can be used as a relevant in vitro platform to unravel interactions between food or pharma compounds and canine colonic microbiota, under different dog size conditions. The potential of the model will be extended soon to diseased situations (e.g. chronic enteropathies or obesity).
Collapse
Affiliation(s)
- Charlotte Deschamps
- Université Clermont Auvergne, UMR 454 MEDIS UCA-INRAE, Clermont-Ferrand, Puy-de-Dôme, France
- Lallemand Animal Nutrition, Blagnac Cedex, Haute-Garonne, France
| | | | - Sandrine Chalancon
- Université Clermont Auvergne, UMR 454 MEDIS UCA-INRAE, Clermont-Ferrand, Puy-de-Dôme, France
| | - Caroline Achard
- Lallemand Animal Nutrition, Blagnac Cedex, Haute-Garonne, France
| | - Emmanuelle Apper
- Lallemand Animal Nutrition, Blagnac Cedex, Haute-Garonne, France
| | - Sylvain Denis
- Université Clermont Auvergne, UMR 454 MEDIS UCA-INRAE, Clermont-Ferrand, Puy-de-Dôme, France
| | - Stéphanie Blanquet-Diot
- Université Clermont Auvergne, UMR 454 MEDIS UCA-INRAE, Clermont-Ferrand, Puy-de-Dôme, France
| |
Collapse
|
2
|
Skedsmo FS, Løkka G, Chikwati E, Jacobsen JV, Espenes A, Kortner TM. Intestinal strangulation in farmed Atlantic cod (Gadus morhua): Pathological changes and possible predisposing anatomical features. JOURNAL OF FISH DISEASES 2024; 47:e13955. [PMID: 38587083 DOI: 10.1111/jfd.13955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
During recent years, there has been a renewed interest in establishing farming of Atlantic cod (Gadus morhua) in Norway. However, a fatal abdominal disorder compromises animal welfare and causes economic losses. A similar problem was present during a previous attempt to establish Atlantic cod farming more than a decade ago. In this paper, we provide the first in-depth description of this intestinal disorder, which is correctly denoted 'strangulating obstruction'. In affected fish, part of the intestine is permanently entrapped (incarcerated) under fibrous strands in the mesentery. The entrapment interferes with blood flow and physically blocks the intestine, causing a strangulating obstruction with severe venous congestion and ischemia of the intestinal wall. Furthermore, comparison of macroscopical and histological anatomy of farmed and wild Atlantic cod is presented and risk factors associated with the anatomical differences are discussed.
Collapse
Affiliation(s)
- Fredrik Strebel Skedsmo
- Pathology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), As, Norway
| | - Guro Løkka
- Nutrition and Health Unit, Faculty of Veterinary Medicine, NMBU, As, Norway
| | - Elvis Chikwati
- Nutrition and Health Unit, Faculty of Veterinary Medicine, NMBU, As, Norway
| | | | - Arild Espenes
- Pathology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), As, Norway
| | - Trond M Kortner
- Nutrition and Health Unit, Faculty of Veterinary Medicine, NMBU, As, Norway
| |
Collapse
|
3
|
Deschamps C, Denis S, Humbert D, Priymenko N, Chalancon S, De Bodt J, Van de Wiele T, Ipharraguerre I, Alvarez-Acero I, Achard C, Apper E, Blanquet-Diot S. Canine Mucosal Artificial Colon: development of a new colonic in vitro model adapted to dog sizes. Appl Microbiol Biotechnol 2024; 108:166. [PMID: 38261090 PMCID: PMC10806056 DOI: 10.1007/s00253-023-12987-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/18/2023] [Accepted: 12/24/2023] [Indexed: 01/24/2024]
Abstract
Differences in dog breed sizes are an important determinant of variations in digestive physiology, mainly related to the large intestine. In vitro gut models are increasingly used as alternatives to animal experiments for technical, cost, societal, and regulatory reasons. Up to now, only one in vitro model of the canine colon incorporates the dynamics of different canine gut regions, yet no adaptations exist to reproduce size-related digestive parameters. To address this limitation, we developed a new model of the canine colon, the CANIne Mucosal ARtificial COLon (CANIM-ARCOL), simulating main physiochemical (pH, transit time, anaerobiosis), nutritional (ileal effluent composition), and microbial (lumen and mucus-associated microbiota) parameters of this ecosystem and adapted to three dog sizes (i.e., small under 10 kg, medium 10-30 kg, and large over 30 kg). To validate the new model regarding microbiota composition and activities, in vitro fermentations were performed in bioreactors inoculated with stools from 13 dogs (4 small, 5 medium, and 4 large). After a stabilization period, microbiota profiles clearly clustered depending on dog size. Bacteroidota and Firmicutes abundances were positively correlated with dog size both in vitro and in vivo, while opposite trends were observed for Actinobacteria and Proteobacteria. As observed in vivo, microbial activity also increased with dog size in vitro, as evidenced from gas production, short-chain fatty acids, ammonia, and bile acid dehydroxylation. In line with the 3R regulation, CANIM-ARCOL could be a relevant platform to assess bilateral interactions between food and pharma compounds and gut microbiota, capturing inter-individual or breed variabilities. KEY POINTS: • CANIM-ARCOL integrates main canine physicochemical and microbial colonic parameters • Gut microbiota associated to different dog sizes is accurately maintained in vitro • The model can help to move toward personalized approach considering dog body weight.
Collapse
Affiliation(s)
- Charlotte Deschamps
- UMR 454 MEDIS, Université Clermont Auvergne, INRAE, Clermont-Ferrand, France
- Lallemand Animal Nutrition, Blagnac, France
| | - Sylvain Denis
- UMR 454 MEDIS, Université Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | | | - Nathalie Priymenko
- Toxalim (Research Center in Food Toxicology), University of Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31000, Toulouse, France
| | - Sandrine Chalancon
- UMR 454 MEDIS, Université Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Jana De Bodt
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | | - Inma Alvarez-Acero
- Institute of Food Science, Technology and Nutrition, Spanish National Research Council, ICTAN-CSIC), Madrid, Spain
| | | | | | | |
Collapse
|
4
|
Kilburn-Kappeler LR, Doerksen T, Lu A, Palinski RM, Lu N, Aldrich CG. Comparison of the Effect of Corn-fermented Protein and Traditional Ingredients on the Fecal Microbiota of Dogs. Vet Sci 2023; 10:553. [PMID: 37756074 PMCID: PMC10536651 DOI: 10.3390/vetsci10090553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
Corn-fermented protein (CFP), a co-product from the ethanol industry, is produced using post-fermentation technology to split the protein and yeast from fiber prior to drying. The objective of this study was to determine the effect of CFP compared to traditional ingredients on the fecal microbiota of dogs. The four experimental diets included a control with no yeast and diets containing either 3.5% brewer's dried yeast, 2.5% brewer's dried yeast plus 17.5% distiller's dried grains with solubles, or 17.5% CFP. The experimental diets were fed to adult dogs (n = 12) in a 4 × 4 replicated Latin square design. Fresh fecal samples (n = 48) were analyzed by 16S metagenomic sequencing. Raw sequences were processed through mothur. Community diversity was evaluated in R. Relative abundance data were analyzed within the 50 most abundant operational taxonomic units using a mixed model of SAS. Alpha and beta diversity were similar for all treatments. Predominant phyla among all samples were Firmicutes (73%), Bacteroidetes (15%), Fusobacteria (8%), and Actinobacteria (4%). There were no quantifiable (p > 0.05) shifts in the predominant phyla among the treatments. However, nine genera resulted in differences in relative abundance among the treatments. These data indicate that compared to traditional ingredients, CFP did not alter the overall diversity of the fecal microbiota of healthy adult dogs over 14 days.
Collapse
Affiliation(s)
| | - Tyler Doerksen
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (T.D.); (A.L.); (R.M.P.)
| | - Andrea Lu
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (T.D.); (A.L.); (R.M.P.)
| | - Rachel M. Palinski
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (T.D.); (A.L.); (R.M.P.)
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Nanyan Lu
- Bioinformatics Center, Kansas State University, Manhattan, KS 66506, USA;
| | - Charles G. Aldrich
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA;
| |
Collapse
|
5
|
DiGeronimo PM, Enright C, Ziemssen E, Keller D. FATAL GASTRIC DILATATION AND VOLVULUS IN THREE CAPTIVE JUVENILE LINNAEUS'S TWO-TOED SLOTHS ( CHOLOEPUS DIDACTYLUS). J Zoo Wildl Med 2023; 54:211-218. [PMID: 36971647 DOI: 10.1638/2022-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 03/29/2023] Open
Abstract
Linnaeus's two-toed sloth (Choloepus didactylus) is one of two extant neotropical species of the family Megalonychidae. Despite their being commonly kept under managed care, the digestive physiology of sloths remains poorly understood. Gastrointestinal disease has been reported as a primary or contributing cause of morbidity and mortality in captive two-toed and three-toed (Bradypus spp.) sloths. Gastric dilatation due to gas accumulation ("bloat") has been reported in sloths; however, a literature search failed to yield any published mention of gastric volvulus in any sloth species. Following an inquiry sent to the electronic mailing lists of the American Association of Zoo Veterinarians, the European Association of Zoo and Wildlife Veterinarians, and the LatinVets community, three cases of fatal gastric dilatation and volvulus (GDV) were identified in one male and two female Linnaeus's two-toed sloths from institutions in the United States, Canada, and Germany. All cases occurred in juvenile sloths <1 yr of age. Two animals were primarily hand reared, whereas one was reared primarily by its dam. Two animals were found dead with no overt premonitory signs, whereas one animal died following a 3-wk course of waxing and waning clinical signs consistent with gastric gas accumulation. In all cases, GDV was diagnosed on postmortem examination. Similar to other species, the condition is likely subsequent to a combination of host- and husbandry-related contributing factors. Further research into sloth husbandry is required in order to take an evidence-based approach to their management.
Collapse
Affiliation(s)
| | | | - Eva Ziemssen
- Zoo Dresden, Tiergartenstrasse 1 D-01219 Dresden, Germany
| | - Dominique Keller
- Los Angeles Zoo and Botanical Gardens, Los Angeles, CA 90027, USA
| |
Collapse
|
6
|
Yu C, Guo Z, Lei Z, Mao X, Chen S, Wang K. Comparison of fecal microbiota of SPF and non-SPF Beagle dogs. Front Vet Sci 2023; 10:1021371. [PMID: 36825235 PMCID: PMC9941619 DOI: 10.3389/fvets.2023.1021371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Abstract
Microbial colonization of animal intestine impacts host metabolism and immunity. The study was aimed to investigate the diversity of the intestinal microflora in specific pathogen free (SPF) and non-SPF Beagle dogs of different ages by direct sequencing analysis of the 16S rRNA gene. Stool samples were collected from four non-SPF and four SPF healthy Beagle dogs. From a total of 792 analyzed Operation taxonomic units, four predominant bacterial phyla were identified: Firmicutes (75.23%), Actinobacteria (10.98%), Bacteroidetes (9.33%), and Proteobacteria (4.13%). At the genus level, Streptococcus, Lactobacillus, and Bifidobacterium were dominated. Among which, Alloprevotella, Prevotella_9, and Faecalibacterium were presented exclusively in non-SPF beagles, with potentially anti-inflammatory capability, which could protect non-SPF beagles from complex microbial environment. The number and diversity of intestinal flora for non-SPF Beagle dogs were the highest at birth and gradually decreased with growth, whereas the results for the SPF beagle samples were the opposite, with the number and diversity of intestinal microbiota gradually increases as beagles grow. In a nutshell, the microbial complexity of the rearing environment can enrich the gut microbiota of beagles, many of which are anti-inflammatory microbiota with the potential to increase the adaptability of the animal to the environment. However, the gut microbiota of SPF beagles was more sensitive to environmental changes than that of non-SPF beagles. This study is of great significance for understanding the bionomics of intestinal microflora in non-SPF and SPF beagles, improving the experimental accuracy in scientific research.
Collapse
Affiliation(s)
- Cuilian Yu
- School of Laboratory Animal and Shandong Laboratory Animal Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhongkun Guo
- School of Laboratory Animal and Shandong Laboratory Animal Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhan Lei
- School of Laboratory Animal and Shandong Laboratory Animal Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaolong Mao
- School of Laboratory Animal and Shandong Laboratory Animal Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shumin Chen
- Shandong Provincial Center for Animal Disease Control and Prevention (Zoonoses Surveillance Center of Shandong Province), Jinan, China
| | - Kezhou Wang
- School of Laboratory Animal and Shandong Laboratory Animal Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China,*Correspondence: Kezhou Wang ✉
| |
Collapse
|
7
|
Garrigues Q, Apper E, Chastant S, Mila H. Gut microbiota development in the growing dog: A dynamic process influenced by maternal, environmental and host factors. Front Vet Sci 2022; 9:964649. [PMID: 36118341 PMCID: PMC9478664 DOI: 10.3389/fvets.2022.964649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Microorganisms of the gastrointestinal tract play a crucial role in the health, metabolism and development of their host by modulating vital functions such as digestion, production of key metabolites or stimulation of the immune system. This review aims to provide an overview on the current knowledge of factors shaping the gut microbiota of young dogs. The composition of the gut microbiota is modulated by many intrinsic (i.e., age, physiology, pathology) and extrinsic factors (i.e., nutrition, environment, medication) which can cause both beneficial and harmful effects depending on the nature of the changes. The composition of the gut microbiota is quickly evolving during the early development of the dog, and some crucial bacteria, mostly anaerobic, progressively colonize the gut before the puppy reaches adulthood. Those bacterial communities are of paramount importance for the host health, with disturbance in their composition potentially leading to altered metabolic states such as acute diarrhea or inflammatory bowel disease. While many studies focused on the microbiota of young children, there is still a lack of knowledge concerning the development of gut microbiota in puppies. Understanding this early evolution is becoming a key aspect to improve dogs' short and long-term health and wellbeing.
Collapse
Affiliation(s)
- Quentin Garrigues
- NeoCare, ENVT, Université de Toulouse, Toulouse, France
- *Correspondence: Quentin Garrigues
| | | | | | - Hanna Mila
- NeoCare, ENVT, Université de Toulouse, Toulouse, France
| |
Collapse
|
8
|
Phenotypic correlates of the working dog microbiome. NPJ Biofilms Microbiomes 2022; 8:66. [PMID: 35995802 PMCID: PMC9395329 DOI: 10.1038/s41522-022-00329-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Dogs have a key role in law enforcement and military work, and research with the goal of improving working dog performance is ongoing. While there have been intriguing studies from lab animal models showing a potential connection between the gut microbiome and behavior or mental health there is a dearth of studies investigating the microbiome-behavior relationship in working dogs. The overall objective of this study was to characterize the microbiota of working dogs and to determine if the composition of the microbiota is associated with behavioral and performance outcomes. Freshly passed stools from each working canine (Total n = 134) were collected and subject to shotgun metagenomic sequencing using Illumina technology. Behavior, performance, and demographic metadata were collected. Descriptive statistics and prediction models of behavioral/phenotypic outcomes using gradient boosting classification based on Xgboost were used to study associations between the microbiome and outcomes. Regarding machine learning methodology, only microbiome features were used for training and predictors were estimated in cross-validation. Microbiome markers were statistically associated with motivation, aggression, cowardice/hesitation, sociability, obedience to one trainer vs many, and body condition score (BCS). When prediction models were developed based on machine learning, moderate predictive power was observed for motivation, sociability, and gastrointestinal issues. Findings from this study suggest potential gut microbiome markers of performance and could potentially advance care for working canines.
Collapse
|
9
|
Updated Information on Gastric Dilatation and Volvulus and Gastropexy in Dogs. Vet Clin North Am Small Anim Pract 2022; 52:317-337. [DOI: 10.1016/j.cvsm.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Piras IS, Perdigones N, Zismann V, Briones N, Facista S, Rivera JL, Rozanski E, London CA, Hendricks WPD. Identification of Genetic Susceptibility Factors Associated with Canine Gastric Dilatation-Volvulus. Genes (Basel) 2020; 11:genes11111313. [PMID: 33167491 PMCID: PMC7694454 DOI: 10.3390/genes11111313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 12/16/2022] Open
Abstract
Canine gastric dilatation-volvulus (GDV) is a common life-threatening condition occurring primarily in large and giant breeds with a 3.9% to 36.7% lifetime risk. The genetic correlates of GDV have not previously been systematically explored. We undertook an inter-breed genome-wide association analysis (GWAS) of 253 dogs from ten breeds including 106 healthy dogs and 147 dogs with at least one GDV episode. SNP array genotyping followed by imputation was conducted on 241 samples to identify GDV-associated single-nucleotide polymorphisms (SNPs) and copy number variations (CNVs). A subset of 33 dogs (15 healthy dogs and 18 GDV patients from the three most represented breeds) was characterized by whole genome sequencing (WGS). After genome-wide Bonferroni correction, we identified a significant putatively protective intergenic SNP (rs851737064) across all breeds. The signal was most significant in Collies, German Shorthaired Pointers, and Great Danes. Subsequent focused analysis across these three breeds identified 12 significant additional putatively protective or deleterious SNPs. Notable significant SNPs included those occurring in genes involved in gastric tone and motility including VHL, NALCN, and PRKCZ. These data provide important new clues to canine GDV risk factors and facilitate generation of hypotheses regarding the genetic and molecular underpinnings this syndrome.
Collapse
Affiliation(s)
- Ignazio S. Piras
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA;
| | - Nieves Perdigones
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA; (N.P.); (V.Z.); (N.B.); (S.F.); (J.L.R.)
| | - Victoria Zismann
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA; (N.P.); (V.Z.); (N.B.); (S.F.); (J.L.R.)
| | - Natalia Briones
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA; (N.P.); (V.Z.); (N.B.); (S.F.); (J.L.R.)
| | - Salvatore Facista
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA; (N.P.); (V.Z.); (N.B.); (S.F.); (J.L.R.)
| | - José Luis Rivera
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA; (N.P.); (V.Z.); (N.B.); (S.F.); (J.L.R.)
| | - Elizabeth Rozanski
- Cummings School of Veterinary Medicine, Tufts University, Grafton, MA 01536, USA; (E.R.); (C.A.L.)
| | - Cheryl A. London
- Cummings School of Veterinary Medicine, Tufts University, Grafton, MA 01536, USA; (E.R.); (C.A.L.)
| | - William P. D. Hendricks
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA; (N.P.); (V.Z.); (N.B.); (S.F.); (J.L.R.)
- Correspondence:
| |
Collapse
|
11
|
Chun JL, Ji SY, Lee SD, Lee YK, Kim B, Kim KH. Difference of gut microbiota composition based on the body condition scores in dogs. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2020; 62:239-246. [PMID: 32292931 PMCID: PMC7142278 DOI: 10.5187/jast.2020.62.2.239] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/11/2020] [Accepted: 02/20/2020] [Indexed: 01/16/2023]
Abstract
Microorganism residing in the gut has been known to have important roles in the animal body. Microbes and host microenvironment are highly related with host's health including energy metabolism and immune system. Moreover, it reported that gut microbiome is correlated with diseases like obesity in human and dogs. There have been many studies to identify and characterize microbes and their genes in human body. However, there was little information of microbiome in companion animals. Here, we investigated microbiota communities in feaces from twenty - four Beagles (aged 2 years old) and analyzed the taxonomy profile using metagenomics to study the difference among gut microbiome based on body condition score (BCS). gDNA was isolated from feaces, sequenced and clustered. Taxonomy profiling was performed based on the NCBI database. BCS was evaluated once a week according to the description provided by World Small Animal Veterinary Association. Firmicutes phylum was the most abundant followed by Bacteroidetes, Fusobacteria, Proteobacteria and Actinobacteria. That main microbiota in gut were differently distributed based on the BCS. Fusobacteria has been known to be associated with colon cancer in human. Interestingly, Fusobacteria was in the third level from the top in healthy dog's gut microbiome. In addition, Fusobacteria was especially higher in overweight dogs which had 6 scales of BCS. Species Fusobacterium perfoetens was also more abundant when dogs were in BCS 6. It implied that F. perfoetens would be positively related with overweight in dogs. These finding would contribute to further studies of gut microbiome and their functions to improve dog's diets and health condition.
Collapse
Affiliation(s)
- Ju Lan Chun
- National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Sang Yun Ji
- National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Sung Dae Lee
- National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Yoo Kyung Lee
- National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Byeonghyeon Kim
- National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Ki Hyun Kim
- National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| |
Collapse
|
12
|
Soontararak S, Chow L, Johnson V, Coy J, Webb C, Wennogle S, Dow S. Humoral immune responses against gut bacteria in dogs with inflammatory bowel disease. PLoS One 2019; 14:e0220522. [PMID: 31369623 PMCID: PMC6675102 DOI: 10.1371/journal.pone.0220522] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) in dogs is associated with clinical signs of intestinal dysfunction, as well as abnormal lymphocytic and myeloid cell infiltrates in the small and/or large intestine. Thus, in many respects IBD in dogs resembles IBD in humans. However, the factors that trigger intestinal inflammation in dogs with IBD are not well understood and have been variously attributed to immune responses against dietary antigens or intestinal antigens. Previous studies in humans with IBD have documented increased production of IgG and IgA antibodies specific to intestinal bacteria, and this abnormal immune response has been linked to disease pathogenesis. Therefore, we investigated the humoral immune response against gut bacteria in dogs with IBD, using flow cytometry to quantitate IgG and IgA binding. Studies were also done to investigate the source of these antibodies (locally produced versus systemic production) and whether greater antibody binding to bacteria is associated with increased inflammatory responses. We found that dogs with IBD had significantly higher percentages and overall amounts of IgG bound to their intestinal bacteria compared to healthy dogs. Similarly, significantly higher percentages of bacteria were IgA+ bacteria were also found in dogs with IBD. Serum antibody recognition of gut bacteria was not different between healthy dogs and dogs with IBD, suggesting that anti-bacterial antibodies were primarily produced locally in the gut rather than systemically. Importantly, bacteria in the Actinobacteria phylum and in particular the genus Collinsella had significantly greater levels of antibody binding in dogs with IBD. Based on these findings, we concluded that antibody binding to commensal gut bacteria was significantly increased in dogs with IBD, that particular phyla were preferential targets for gut antibodies, and that anti-bacterial antibody responses may play an important role in regulating gut inflammation.
Collapse
Affiliation(s)
- Sirikul Soontararak
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Lyndah Chow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Valerie Johnson
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jonathan Coy
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Craig Webb
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Sara Wennogle
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Steven Dow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|