1
|
Radiotherapy Advances in Renal Disease-Focus on Renal Ischemic Preconditioning. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010068. [PMID: 36671640 PMCID: PMC9855155 DOI: 10.3390/bioengineering10010068] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
Ionizing irradiation is widely applied as a fundamental therapeutic treatment in several diseases. Acute kidney injury (AKI) represents a global public health problem with major morbidity and mortality. Renal ischemia/reperfusion (I/R) is the main cause of AKI. I/R injury occurs when blood flow to the kidney is transiently interrupted and then restored. Such an ischemic insult significantly impairs renal function in the short and long terms. Renal ischemic preconditioning (IPC) corresponds to the maneuvers intended to prevent or attenuate the ischemic damage. In murine models, irradiation-induced preconditioning (IP) renders the renal parenchyma resistant to subsequent damage by activating defense pathways involved in oxidative stress, angiogenesis, and inflammation. Before envisioning translational applications in patients, safe irradiation modalities, including timing, dosage, and fractionation, need to be defined.
Collapse
|
2
|
Rezaeifar B, Wolfs CJA, Lieuwes NG, Biemans R, Reniers B, Dubois LJ, Verhaegen F. A deep learning and Monte Carlo based framework for bioluminescence imaging center of mass-guided glioblastoma targeting. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac79f8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 06/17/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Objective. Bioluminescence imaging (BLI) is a valuable tool for non-invasive monitoring of glioblastoma multiforme (GBM) tumor-bearing small animals without incurring x-ray radiation burden. However, the use of this imaging modality is limited due to photon scattering and lack of spatial information. Attempts at reconstructing bioluminescence tomography (BLT) using mathematical models of light propagation show limited progress. Approach. This paper employed a different approach by using a deep convolutional neural network (CNN) to predict the tumor’s center of mass (CoM). Transfer-learning with a sizeable artificial database is employed to facilitate the training process for, the much smaller, target database including Monte Carlo (MC) simulations of real orthotopic glioblastoma models. Predicted CoM was then used to estimate a BLI-based planning target volume (bPTV), by using the CoM as the center of a sphere, encompassing the tumor. The volume of the encompassing target sphere was estimated based on the total number of photons reaching the skin surface. Main results. Results show sub-millimeter accuracy for CoM prediction with a median error of 0.59 mm. The proposed method also provides promising performance for BLI-based tumor targeting with on average 94% of the tumor inside the bPTV while keeping the average healthy tissue coverage below 10%. Significance. This work introduced a framework for developing and using a CNN for targeted radiation studies for GBM based on BLI. The framework will enable biologists to use BLI as their main image-guidance tool to target GBM tumors in rat models, avoiding delivery of high x-ray imaging dose to the animals.
Collapse
|
3
|
Oxygen-Sensitive MRI: A Predictive Imaging Biomarker for Tumor Radiation Response? Int J Radiat Oncol Biol Phys 2021; 110:1519-1529. [PMID: 33775857 DOI: 10.1016/j.ijrobp.2021.03.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/15/2021] [Accepted: 03/21/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE To develop a noninvasive prognostic imaging biomarker related to hypoxia to predict SABR tumor control. METHODS AND MATERIALS A total of 145 subcutaneous syngeneic Dunning prostate R3327-AT1 rat tumors were focally irradiated once using cone beam computed tomography guidance on a small animal irradiator at 225 kV. Various doses in the range of 0 to 100 Gy were administered, while rats breathed air or oxygen, and tumor control was assessed up to 200 days. Oxygen-sensitive magnetic resonance imaging (MRI) (T1-weighted, ΔR1, ΔR2*) was applied to 79 of these tumors at 4.7 T to assess response to an oxygen gas breathing challenge on the day before irradiation as a probe of tumor hypoxia. RESULTS Increasing radiation dose in the range of 0 to 90 Gy enhanced tumor control of air-breathing rats with a TCD50 estimated at 59.6 ± 1.5 Gy. Control was significantly improved at some doses when rats breathed oxygen during irradiation (eg, 40 Gy; P < .05), and overall there was a modest left shift in the control curve: TCD50(oxygen) = 53.1 ± 3.1 Gy (P < .05 vs air). Oxygen-sensitive MRI showed variable response to oxygen gas breathing challenge; the magnitude of T1-weighted signal response (%ΔSI) allowed stratification of tumors in terms of local control at 40 Gy. Tumors showing %ΔSI >0.922 with O2-gas breathing challenge showed significantly better control at 40 Gy during irradiation while breathing oxygen (75% vs 0%, P < .01). In addition, increased radiation dose (50 Gy) substantially overcame resistance, with 50% control for poorly oxygenated tumors. Stratification of dose-response curves based on %ΔSI >0.922 revealed different survival curves, with TCD50 = 36.2 ± 3.2 Gy for tumors responsive to oxygen gas breathing challenge; this was significantly less than the 54.7 ± 2.4 Gy for unresponsive tumors (P < .005), irrespective of the gas inhaled during tumor irradiation. CONCLUSIONS Oxygen-sensitive MRI allowed stratification of tumors in terms of local control at 40 Gy, indicating its use as a potential predictive imaging biomarker. Increasing dose to 50 Gy overcame radiation resistance attributable to hypoxia in 50% of tumors.
Collapse
|
4
|
Serkova NJ, Glunde K, Haney CR, Farhoud M, De Lille A, Redente EF, Simberg D, Westerly DC, Griffin L, Mason RP. Preclinical Applications of Multi-Platform Imaging in Animal Models of Cancer. Cancer Res 2021; 81:1189-1200. [PMID: 33262127 PMCID: PMC8026542 DOI: 10.1158/0008-5472.can-20-0373] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/10/2020] [Accepted: 11/25/2020] [Indexed: 11/16/2022]
Abstract
In animal models of cancer, oncologic imaging has evolved from a simple assessment of tumor location and size to sophisticated multimodality exploration of molecular, physiologic, genetic, immunologic, and biochemical events at microscopic to macroscopic levels, performed noninvasively and sometimes in real time. Here, we briefly review animal imaging technology and molecular imaging probes together with selected applications from recent literature. Fast and sensitive optical imaging is primarily used to track luciferase-expressing tumor cells, image molecular targets with fluorescence probes, and to report on metabolic and physiologic phenotypes using smart switchable luminescent probes. MicroPET/single-photon emission CT have proven to be two of the most translational modalities for molecular and metabolic imaging of cancers: immuno-PET is a promising and rapidly evolving area of imaging research. Sophisticated MRI techniques provide high-resolution images of small metastases, tumor inflammation, perfusion, oxygenation, and acidity. Disseminated tumors to the bone and lung are easily detected by microCT, while ultrasound provides real-time visualization of tumor vasculature and perfusion. Recently available photoacoustic imaging provides real-time evaluation of vascular patency, oxygenation, and nanoparticle distributions. New hybrid instruments, such as PET-MRI, promise more convenient combination of the capabilities of each modality, enabling enhanced research efficacy and throughput.
Collapse
Affiliation(s)
- Natalie J Serkova
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
- Animal Imaging Shared Resource, University of Colorado Cancer Center, Aurora, Colorado
| | - Kristine Glunde
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology, and the Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Chad R Haney
- Center for Advanced Molecular Imaging, Northwestern University, Evanston, Illinois
| | | | | | | | - Dmitri Simberg
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - David C Westerly
- Animal Imaging Shared Resource, University of Colorado Cancer Center, Aurora, Colorado
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lynn Griffin
- Department of Radiology, Veterinary Teaching Hospital, Colorado State University, Fort Collins, Colorado
| | - Ralph P Mason
- Department of Radiology, University of Texas Southwestern, Dallas, Texas
| |
Collapse
|
5
|
Rooney MK, Rosenberg DM, Braunstein S, Cunha A, Damato AL, Ehler E, Pawlicki T, Robar J, Tatebe K, Golden DW. Three-dimensional printing in radiation oncology: A systematic review of the literature. J Appl Clin Med Phys 2020; 21:15-26. [PMID: 32459059 PMCID: PMC7484837 DOI: 10.1002/acm2.12907] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/16/2020] [Accepted: 04/23/2020] [Indexed: 12/21/2022] Open
Abstract
Purpose/objectives Three‐dimensional (3D) printing is recognized as an effective clinical and educational tool in procedurally intensive specialties. However, it has a nascent role in radiation oncology. The goal of this investigation is to clarify the extent to which 3D printing applications are currently being used in radiation oncology through a systematic review of the literature. Materials/methods A search protocol was defined according to preferred reporting items for systematic reviews and meta‐analyses (PRISMA) guidelines. Included articles were evaluated using parameters of interest including: year and country of publication, experimental design, sample size for clinical studies, radiation oncology topic, reported outcomes, and implementation barriers or safety concerns. Results One hundred and three publications from 2012 to 2019 met inclusion criteria. The most commonly described 3D printing applications included quality assurance phantoms (26%), brachytherapy applicators (20%), bolus (17%), preclinical animal irradiation (10%), compensators (7%), and immobilization devices (5%). Most studies were preclinical feasibility studies (63%), with few clinical investigations such as case reports or series (13%) or cohort studies (11%). The most common applications evaluated within clinical settings included brachytherapy applicators (44%) and bolus (28%). Sample sizes for clinical investigations were small (median 10, range 1–42). A minority of articles described basic or translational research (11%) and workflow or cost evaluation studies (3%). The number of articles increased over time (P < 0.0001). While outcomes were heterogeneous, most studies reported successful implementation of accurate and cost‐effective 3D printing methods. Conclusions Three‐dimensional printing is rapidly growing in radiation oncology and has been implemented effectively in a diverse array of applications. Although the number of 3D printing publications has steadily risen, the majority of current reports are preclinical in nature and the few clinical studies that do exist report on small sample sizes. Further dissemination of ongoing investigations describing the clinical application of developed 3D printing technologies in larger cohorts is warranted.
Collapse
Affiliation(s)
- Michael K Rooney
- College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - David M Rosenberg
- College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Steve Braunstein
- Department of Radiation Oncology, University of California, San Francisco, CA, USA
| | - Adam Cunha
- Department of Radiation Oncology, University of California, San Francisco, CA, USA
| | - Antonio L Damato
- Department Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eric Ehler
- Department of Radiation Oncology, University of Minnesota, Minneapolis, MN, USA
| | - Todd Pawlicki
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, CA, USA
| | - James Robar
- Department of Radiation Oncology, Dalhousie University, Halifax, Canada.,Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Canada.,Radiation Medicine Program, Princess Margaret Cancer Center, Toronto, ON, Canada
| | - Ken Tatebe
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
| | - Daniel W Golden
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
6
|
Rajab Bolookat E, Malhotra H, Rich LJ, Sexton S, Curtin L, Spernyak JA, Singh AK, Seshadri M. Development and Validation of a Clinically Relevant Workflow for MR-Guided Volumetric Arc Therapy in a Rabbit Model of Head and Neck Cancer. Cancers (Basel) 2020; 12:572. [PMID: 32121562 PMCID: PMC7139631 DOI: 10.3390/cancers12030572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 01/09/2023] Open
Abstract
There is increased interest in the use of magnetic resonance imaging (MRI) for guiding radiation therapy (RT) in the clinical setting. In this regard, preclinical studies can play an important role in understanding the added value of MRI in RT planning. In the present study, we developed and validated a clinically relevant integrated workflow for MRI-guided volumetric arc therapy (VMAT) in a VX2 rabbit neck tumor model of HNSCC. In addition to demonstrating safety and feasibility, we examined the therapeutic impact of MR-guided VMAT using a single high dose to obtain proof-of-concept and compared the response to conventional 2D-RT. Contrast-enhanced MRI (CE-MRI) provided excellent soft tissue contrast for accurate tumor segmentation for VMAT. Notably, MRI-guided RT enabled improved tumor targeting ability and minimal dose to organs at risk (OAR) compared to 2D-RT, which resulted in notable morbidity within a few weeks of RT. Our results highlight the value of integrating MRI into the workflow for VMAT for improved delineation of tumor anatomy and optimal treatment planning. The model combined with the multimodal imaging approach can serve as a valuable platform for the conduct of preclinical RT trials.
Collapse
Affiliation(s)
- Eftekhar Rajab Bolookat
- Laboratory for Translational Imaging, Center for Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (E.R.B.); (L.J.R.)
- Department of Radiology—Medical Physics Program, University at Buffalo—Jacobs School of Medicine and Biomedical Sciences, 955 Main Street, Buffalo, NY 14203, USA; (H.M.); (J.A.S.)
| | - Harish Malhotra
- Department of Radiology—Medical Physics Program, University at Buffalo—Jacobs School of Medicine and Biomedical Sciences, 955 Main Street, Buffalo, NY 14203, USA; (H.M.); (J.A.S.)
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Laurie J. Rich
- Laboratory for Translational Imaging, Center for Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (E.R.B.); (L.J.R.)
| | - Sandra Sexton
- Laboratory Animal Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (S.S.); (L.C.)
| | - Leslie Curtin
- Laboratory Animal Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (S.S.); (L.C.)
| | - Joseph A. Spernyak
- Department of Radiology—Medical Physics Program, University at Buffalo—Jacobs School of Medicine and Biomedical Sciences, 955 Main Street, Buffalo, NY 14203, USA; (H.M.); (J.A.S.)
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Anurag K. Singh
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Mukund Seshadri
- Laboratory for Translational Imaging, Center for Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (E.R.B.); (L.J.R.)
- Department of Radiology—Medical Physics Program, University at Buffalo—Jacobs School of Medicine and Biomedical Sciences, 955 Main Street, Buffalo, NY 14203, USA; (H.M.); (J.A.S.)
- Department of Dentistry and Maxillofacial Prosthetics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
7
|
Esplen N, Therriault-Proulx F, Beaulieu L, Bazalova-Carter M. Preclinical dose verification using a 3D printed mouse phantom for radiobiology experiments. Med Phys 2019; 46:5294-5303. [PMID: 31461781 DOI: 10.1002/mp.13790] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 01/14/2023] Open
Abstract
PURPOSE Dose verification in preclinical radiotherapy is often challenged by a lack of standardization in the techniques and technologies commonly employed along with the inherent difficulty of dosimetry associated with small-field kilovoltage sources. As a consequence, the accuracy of dosimetry in radiobiological research has been called into question. Fortunately, the development and characterization of realistic small-animal phantoms has emerged as an effective and accessible means of improving dosimetric accuracy and precision in this context. The application of three-dimensional (3D) printing, in particular, has enabled substantial improvements in the conformity of representative phantoms with respect to the small animals they are modeled after. In this study, our goal was to evaluate a fully 3D printed mouse phantom for use in preclinical treatment verification of sophisticated therapies for various anatomical targets of therapeutic interest. METHODS An anatomically realistic mouse phantom was 3D printed based on segmented microCT data of a tumor-bearing mouse. The phantom was modified to accommodate both laser-cut EBT3 radiochromic film within the mouse thorax and a plastic scintillator dosimeter (PSD), which may be placed within the brain, abdomen, or 1-cm flank subcutaneous tumor. Various treatments were delivered on an image-guided small-animal irradiator in order to determine the doses to isocenter using a PSD and validate lateral- and depth-dose distributions using film dosimeters. On-board cone-beam CT imaging was used to localize isocenter to the film plane or PSD active element prior to irradiation. The PSD irradiations comprised a 3 × 3 mm2 brain arc, 5 × 5 mm2 parallel-opposed pair (POP), and 5-beam 10 × 10 mm2 abdominal coplanar arrangement while two-dimensional (2D) film dose distributions were acquired using a 3 × 3 mm2 arc and both 5 × 5 and 10 × 10 mm2 3-beam coplanar plans. A validated Monte Carlo (MC) model of the source was used as to verify the accuracy of the film and PSD dose measurements. computer-aided design (CAD) geometries for the mouse phantom and dosimeters were imported directly into the MC code to allow for highly accurate reproduction of the physical experiment conditions. Experimental and MC-derived film data were co-registered and film dose profiles were compared for points above 90% of the dose maximum. Point dose measurements obtained with the PSD were similarly compared for each of the candidate (brain, abdomen, and tumor) treatment sites. RESULTS For each treatment configuration and anatomical target, the MC-calculated and measured doses met the proposed 5% agreement goal for dose accuracy in radiobiology experiments. The 2D film and MC dose distributions were successfully registered and mean doses for lateral profiles were found to agree to within 2.3% in all cases. Isocentric point-dose measurements taken with the PSD were similarly consistent, with a maximum percentage deviation of 3.2%. CONCLUSIONS Our study confirms the utility of 3D printed phantom design in providing accurate dose estimates for a variety of preclinical treatment paradigms. As a tool for pretreatment dose verification, the phantom may be of particular interest to researchers for its ability to facilitate precise dosimetry while fostering a reduction in cost for radiobiology experiments.
Collapse
Affiliation(s)
- Nolan Esplen
- Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - François Therriault-Proulx
- Departement de Radio-Oncologie and Centre de recherche du CHU de Quebec, CHU de Quebec, Quebec, QC, G1R 3S1, Canada
| | - Luc Beaulieu
- Departement de Radio-Oncologie and Centre de recherche du CHU de Quebec, CHU de Quebec, Quebec, QC, G1R 3S1, Canada.,Departement de physique and Centre de recherche sur le Cancer, Université Laval, Quebec, QC, G1V 0A6, Canada
| | | |
Collapse
|