1
|
Barthels DA, House RV, Gelhaus HC. The immune response to Francisella tularensis. Front Microbiol 2025; 16:1549343. [PMID: 40351308 PMCID: PMC12062900 DOI: 10.3389/fmicb.2025.1549343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/24/2025] [Indexed: 05/14/2025] Open
Abstract
Francisella tularensis (Ft) is a Gram negative intracellular bacterial pathogen, commonly transmitted via arthropod bites, but is most lethal when contracted via inhalation. The nature of a Gram-negative intracellular pathogen presents unique challenges to the mammalian immune response, unlike more common viral pathogens and extracellular bacterial pathogens. The current literature on Ft involves numerous variables, including the use of differing research strains and variation in animal models. This review aims to consolidate much of the recent literature on Ft to suggest promising research to better understand the complex immune response to this bacterium.
Collapse
Affiliation(s)
- Derek A. Barthels
- Department of Biology, Life Sciences Research Center, United States Air Force Academy, Colorado Springs, CO, United States
- National Research Council Research Associateships Program, Washington, DC, United States
| | - Robert V. House
- Dr. RV House LLC, Harpers Ferry, WV, United States
- Appili Therapeutics, Halifax, NS, Canada
| | | |
Collapse
|
2
|
Whelan AO, Flick-Smith HC, Walker NJ, Abraham A, Levitz SM, Ostroff GR, Oyston PCF. A glucan-particle based tularemia subunit vaccine induces T-cell immunity and affords partial protection in an inhalation rat infection model. PLoS One 2024; 19:e0294998. [PMID: 38713688 PMCID: PMC11075878 DOI: 10.1371/journal.pone.0294998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/13/2023] [Indexed: 05/09/2024] Open
Abstract
Tularemia is a zoonotic disease caused by the facultative intracellular gram-negative bacterium Francisella tularensis. F. tularensis has a very low infection dose by the aerosol route which can result in an acute, and potentially lethal, infection in humans. Consequently, it is classified as a Category A bioterrorism agent by the US Centers for Disease Control (CDC) and is a pathogen of concern for the International Biodefence community. There are currently no licenced tularemia vaccines. In this study we report on the continued assessment of a tularemia subunit vaccine utilising β-glucan particles (GPs) as a vaccine delivery platform for immunogenic F. tularensis antigens. Using a Fischer 344 rat infection model, we demonstrate that a GP based vaccine comprising the F. tularensis lipopolysaccharide antigen together with the protein antigen FTT0814 provided partial protection of F344 rats against an aerosol challenge with a high virulence strain of F. tularensis, SCHU S4. Inclusion of imiquimod as an adjuvant failed to enhance protective efficacy. Moreover, the level of protection afforded was dependant on the challenge dose. Immunological characterisation of this vaccine demonstrated that it induced strong antibody immunoglobulin responses to both polysaccharide and protein antigens. Furthermore, we demonstrate that the FTT0814 component of the GP vaccine primed CD4+ and CD8+ T-cells from immunised F344 rats to express interferon-γ, and CD4+ cells to express interleukin-17, in an antigen specific manner. These data demonstrate the development potential of this tularemia subunit vaccine and builds on a body of work highlighting GPs as a promising vaccine platform for difficult to treat pathogens including those of concern to the bio-defence community.
Collapse
Affiliation(s)
- Adam O. Whelan
- CBR Division, Dstl Porton Down, Salisbury, United Kingdom
| | | | | | - Ambily Abraham
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Stuart M. Levitz
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Gary R. Ostroff
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | | |
Collapse
|
3
|
Harrell JE, Roy CJ, Gunn JS, McLachlan JB. Current vaccine strategies and novel approaches to combatting Francisella infection. Vaccine 2024; 42:2171-2180. [PMID: 38461051 DOI: 10.1016/j.vaccine.2024.02.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/23/2024] [Accepted: 02/27/2024] [Indexed: 03/11/2024]
Abstract
Tularemia is caused by subspecies of Francisella tularensis and can manifest in a variety of disease states, with the pneumonic presentation resulting in the greatest mortality. Despite decades of research, there are no approved vaccines against F. tularensis in the United States. Traditional vaccination strategies, such as live-attenuated or subunit vaccines, are not favorable due to inadequate protection or safety concerns. Because of this, novel vaccination strategies are needed to combat tularemia. Here we discuss the current state of and challenges to the tularemia vaccine field and suggest novel vaccine approaches going forward that might be better suited for protecting against F. tularensis infection.
Collapse
Affiliation(s)
- Jaikin E Harrell
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Chad J Roy
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - John S Gunn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - James B McLachlan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
4
|
Mlynek KD, Cline CR, Biryukov SS, Toothman RG, Bachert BA, Klimko CP, Shoe JL, Hunter M, Hedrick ZM, Dankmeyer JL, Mou S, Fetterer DP, Qiu J, Lee ED, Cote CK, Jia Q, Horwitz MA, Bozue JA. The rLVS Δ capB/ iglABC vaccine provides potent protection in Fischer rats against inhalational tularemia caused by various virulent Francisella tularensis strains. Hum Vaccin Immunother 2023; 19:2277083. [PMID: 37975637 PMCID: PMC10760400 DOI: 10.1080/21645515.2023.2277083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023] Open
Abstract
Francisella tularensis is one of the several biothreat agents for which a licensed vaccine is needed. To ensure vaccine protection is achieved across a range of virulent F. tularensis strains, we assembled and characterized a panel of F. tularensis isolates to be utilized as challenge strains. A promising tularemia vaccine candidate is rLVS ΔcapB/iglABC (rLVS), in which the vector is the LVS strain with a deletion in the capB gene and which additionally expresses a fusion protein comprising immunodominant epitopes of proteins IglA, IglB, and IglC. Fischer rats were immunized subcutaneously 1-3 times at 3-week intervals with rLVS at various doses. The rats were exposed to a high dose of aerosolized Type A strain Schu S4 (FRAN244), a Type B strain (FRAN255), or a tick derived Type A strain (FRAN254) and monitored for survival. All rLVS vaccination regimens including a single dose of 107 CFU rLVS provided 100% protection against both Type A strains. Against the Type B strain, two doses of 107 CFU rLVS provided 100% protection, and a single dose of 107 CFU provided 87.5% protection. In contrast, all unvaccinated rats succumbed to aerosol challenge with all of the F. tularensis strains. A robust Th1-biased antibody response was induced in all vaccinated rats against all F. tularensis strains. These results demonstrate that rLVS ΔcapB/iglABC provides potent protection against inhalational challenge with either Type A or Type B F. tularensis strains and should be considered for further analysis as a future tularemia vaccine.
Collapse
Affiliation(s)
- Kevin D. Mlynek
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Curtis R. Cline
- Pathology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Sergei S. Biryukov
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Ronald G. Toothman
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Beth A. Bachert
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Christopher P. Klimko
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Jennifer L. Shoe
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Melissa Hunter
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Zander M. Hedrick
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Jennifer L. Dankmeyer
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Sherry Mou
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - David P. Fetterer
- Regulated Research Administration Division, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - Ju Qiu
- Regulated Research Administration Division, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - Eric D. Lee
- Pathology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Christopher K. Cote
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Qingmei Jia
- Division of Infectious Diseases, Department of Medicine, University of California, Los Angeles, CA, USA
| | - Marcus A. Horwitz
- Division of Infectious Diseases, Department of Medicine, University of California, Los Angeles, CA, USA
| | - Joel A. Bozue
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| |
Collapse
|
5
|
De Pascalis R, Bhargava V, Espich S, Wu TH, Gelhaus HC, Elkins KL. In vivo and in vitro immune responses against Francisella tularensis vaccines are comparable among Fischer 344 rat substrains. Front Microbiol 2023; 14:1224480. [PMID: 37547680 PMCID: PMC10400713 DOI: 10.3389/fmicb.2023.1224480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/15/2023] [Indexed: 08/08/2023] Open
Abstract
Identifying suitable animal models and standardizing preclinical methods are important for the generation, characterization, and development of new vaccines, including those against Francisella tularensis. Non-human primates represent an important animal model to evaluate tularemia vaccine efficacy, and the use of correlates of vaccine-induced protection may facilitate bridging immune responses from non-human primates to people. However, among small animals, Fischer 344 rats represent a valuable resource for initial studies to evaluate immune responses, to identify correlates of protection, and to screen novel vaccines. In this study, we performed a comparative analysis of three Fischer rat substrains to determine potential differences in immune responses, to evaluate methods used to quantify potential correlates of protection, and to evaluate protection after vaccination. To this end, we took advantage of data previously generated using one of the rat substrains by evaluating two live vaccines, LVS and F. tularensis SchuS4-ΔclpB (ΔclpB). We compared immune responses after primary vaccination, adaptive immune responses upon re-stimulation of leukocytes in vitro, and sensitivity to aerosol challenge. Despite some detectable differences, the results highlight the similarity of immune responses to tularemia vaccines and challenge outcomes between the three substrains, indicating that all offer acceptable and comparable approaches as animal models to study Francisella infection and immunity.
Collapse
Affiliation(s)
- Roberto De Pascalis
- Laboratory of Mucosal Pathogens and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Varunika Bhargava
- Laboratory of Mucosal Pathogens and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Scott Espich
- Laboratory of Mucosal Pathogens and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Terry H. Wu
- Center for Infectious Disease and Immunity and Department of Internal Medicine, University of New Mexico, Albuquerque, NM, United States
| | | | - Karen L. Elkins
- Laboratory of Mucosal Pathogens and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
6
|
Mittereder LR, Swoboda J, De Pascalis R, Elkins KL. IL-12p40 is essential but not sufficient for Francisella tularensis LVS clearance in chronically infected mice. PLoS One 2023; 18:e0283161. [PMID: 36972230 PMCID: PMC10042368 DOI: 10.1371/journal.pone.0283161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 03/02/2023] [Indexed: 03/29/2023] Open
Abstract
IL-12p40 plays an important role in F. tularensis Live Vaccine Strain (LVS) clearance that is independent of its functions as a part of the heterodimeric cytokines IL-12p70 or IL-23. In contrast to WT, p35, or p19 knockout (KO) mice, p40 KO mice infected with LVS develop a chronic infection that does not resolve. Here, we further evaluated the role of IL-12p40 in F. tularensis clearance. Despite reduced IFN-γ production, primed splenocytes from p40 KO and p35 KO mice appeared functionally similar to those from WT mice during in vitro co-culture assays of intramacrophage bacterial growth control. Gene expression analysis revealed a subset of genes that were upregulated in re-stimulated WT and p35 KO splenocytes, but not p40 KO splenocytes, and thus are candidates for involvement in F. tularensis clearance. To directly evaluate a potential mechanism for p40 in F. tularensis clearance, we reconstituted protein levels in LVS-infected p40 KO mice using either intermittent injections of p40 homodimer (p80) or treatment with a p40-producing lentivirus construct. Although both delivery strategies yielded readily detectable levels of p40 in sera and spleens, neither treatment had a measurable impact on LVS clearance by p40 KO mice. Taken together, these studies demonstrate that clearance of F. tularensis infection depends on p40, but p40 monomers and/or dimers alone are not sufficient.
Collapse
Affiliation(s)
- Lara R Mittereder
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Jonathan Swoboda
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Roberto De Pascalis
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Karen L Elkins
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| |
Collapse
|
7
|
Working correlates of protection predict SchuS4-derived-vaccine candidates with improved efficacy against an intracellular bacterium, Francisella tularensis. NPJ Vaccines 2022; 7:95. [PMID: 35977964 PMCID: PMC9385090 DOI: 10.1038/s41541-022-00506-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 07/01/2022] [Indexed: 11/09/2022] Open
Abstract
Francisella tularensis, the causative agent of tularemia, is classified as Tier 1 Select Agent with bioterrorism potential. The efficacy of the only available vaccine, LVS, is uncertain and it is not licensed in the U.S. Previously, by using an approach generally applicable to intracellular pathogens, we identified working correlates that predict successful vaccination in rodents. Here, we applied these correlates to evaluate a panel of SchuS4-derived live attenuated vaccines, namely SchuS4-ΔclpB, ΔclpB-ΔfupA, ΔclpB-ΔcapB, and ΔclpB-ΔwbtC. We combined in vitro co-cultures to quantify rodent T-cell functions and multivariate regression analyses to predict relative vaccine strength. The predictions were tested by rat vaccination and challenge studies, which demonstrated a clear relationship between the hierarchy of in vitro measurements and in vivo vaccine protection. Thus, these studies demonstrated the potential power a panel of correlates to screen and predict the efficacy of Francisella vaccine candidates, and in vivo studies in Fischer 344 rats confirmed that SchuS4-ΔclpB and ΔclpB-ΔcapB may be better vaccine candidates than LVS.
Collapse
|
8
|
Novel Transcriptional and Translational Biomarkers of Tularemia Vaccine Efficacy in a Mouse Inhalation Model: Proof of Concept. Microorganisms 2021; 10:microorganisms10010036. [PMID: 35056485 PMCID: PMC8778127 DOI: 10.3390/microorganisms10010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022] Open
Abstract
Francisella tularensis subspecies tularensis (Ftt) is extremely virulent for humans when inhaled as a small particle aerosol (<5 µm). Inhalation of ≥20 viable bacteria is sufficient to initiate infection with a mortality rate ≥30%. Consequently, in the past, Ftt became a primary candidate for biological weapons development. To counter this threat, the USA developed a live vaccine strain (LVS), that showed efficacy in humans against inhalation of virulent Ftt. However, the breakthrough dose was fairly low, and protection waned with time. These weaknesses triggered extensive research for better vaccine candidates. Previously, we showed that deleting the clpB gene from virulent Ftt strain, SCHU S4, resulted in a mutant that was significantly less virulent than LVS for mice, yet better protected them from aerosol challenge with wild-type SCHU S4. To date, comprehensive searches for correlates of protection for SCHU S4 ΔclpB among molecules that are critical signatures of cell-mediated immunity, have yielded little reward. In this study we used transcriptomics analysis to expand the potential range of molecular correlates of protection induced by vaccination with SCHU S4 ΔclpB beyond the usual candidates. The results provide proof-of-concept that unusual host responses to vaccination can potentially serve as novel efficacy biomarkers for new tularemia vaccines.
Collapse
|
9
|
Shoudy LE, Namjoshi P, Giordano G, Kumar S, Bowling JD, Gelhaus C, Barry EM, Hazlett AJ, Hazlett BA, Cooper KL, Pittman PR, Reed DS, Hazlett KRO. The O-Ag Antibody Response to Francisella Is Distinct in Rodents and Higher Animals and Can Serve as a Correlate of Protection. Pathogens 2021; 10:1646. [PMID: 34959601 PMCID: PMC8704338 DOI: 10.3390/pathogens10121646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
Identifying correlates of protection (COPs) for vaccines against lethal human (Hu) pathogens, such as Francisella tularensis (Ft), is problematic, as clinical trials are currently untenable and the relevance of various animal models can be controversial. Previously, Hu trials with the live vaccine strain (LVS) demonstrated ~80% vaccine efficacy against low dose (~50 CFU) challenge; however, protection deteriorated with higher challenge doses (~2000 CFU of SchuS4) and no COPs were established. Here, we describe our efforts to develop clinically relevant, humoral COPs applicable to high-dose, aerosol challenge with S4. First, our serosurvey of LVS-vaccinated Hu and animals revealed that rabbits (Rbs), but not rodents, recapitulate the Hu O-Ag dependent Ab response to Ft. Next, we assayed Rbs immunized with distinct S4-based vaccine candidates (S4ΔclpB, S4ΔguaBA, and S4ΔaroD) and found that, across multiple vaccines, the %O-Ag dep Ab trended with vaccine efficacy. Among S4ΔguaBA-vaccinated Rbs, the %O-Ag dep Ab in pre-challenge plasma was significantly higher in survivors than in non-survivors; a cut-off of >70% O-Ag dep Ab predicted survival with high sensitivity and specificity. Finally, we found this COP in 80% of LVS-vaccinated Hu plasma samples as expected for a vaccine with 80% Hu efficacy. Collectively, the %O-Ag dep Ab response is a bona fide COP for S4ΔguaBA-vaccinated Rb and holds significant promise for guiding vaccine trials with higher animals.
Collapse
Affiliation(s)
- Lauren E. Shoudy
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA; (L.E.S.); (G.G.)
| | - Prachi Namjoshi
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA; (P.N.); (S.K.)
| | - Gabriela Giordano
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA; (L.E.S.); (G.G.)
| | - Sudeep Kumar
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA; (P.N.); (S.K.)
| | - Jennifer D. Bowling
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.D.B.); (D.S.R.)
| | | | - Eileen M. Barry
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Allan J. Hazlett
- Department of Philosophy, Washington University, St Louis, MO 63130, USA;
| | - Brian A. Hazlett
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Kristine L. Cooper
- Hillman Cancer Center, Biostatistics Facility, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Phillip R. Pittman
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Fredrick, MD 21702, USA;
| | - Douglas S. Reed
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.D.B.); (D.S.R.)
| | - Karsten R. O. Hazlett
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA; (L.E.S.); (G.G.)
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA; (P.N.); (S.K.)
| |
Collapse
|
10
|
Modern Development and Production of a New Live Attenuated Bacterial Vaccine, SCHU S4 ΔclpB, to Prevent Tularemia. Pathogens 2021; 10:pathogens10070795. [PMID: 34201577 PMCID: PMC8308573 DOI: 10.3390/pathogens10070795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 12/04/2022] Open
Abstract
Inhalation of small numbers of Francisella tularensis subspecies tularensis (Ftt) in the form of small particle aerosols causes severe morbidity and mortality in people and many animal species. For this reason, Ftt was developed into a bona fide biological weapon by the USA, by the former USSR, and their respective allies during the previous century. Although such weapons were never deployed, the 9/11 attack quickly followed by the Amerithrax attack led the U.S. government to seek novel countermeasures against a select group of pathogens, including Ftt. Between 2005–2009, we pursued a novel live vaccine against Ftt by deleting putative virulence genes from a fully virulent strain of the pathogen, SCHU S4. These mutants were screened in a mouse model, in which the vaccine candidates were first administered intradermally (ID) to determine their degree of attenuation. Subsequently, mice that survived a high dose ID inoculation were challenged by aerosol or intranasally (IN) with virulent strains of Ftt. We used the current unlicensed live vaccine strain (LVS), first discovered over 70 years ago, as a comparator in the same model. After screening 60 mutants, we found only one, SCHU S4 ΔclpB, that outperformed LVS in the mouse ID vaccination-respiratory-challenge model. Currently, SCHU S4 ΔclpB has been manufactured under current good manufacturing practice conditions, and tested for safety and efficacy in mice, rats, and macaques. The steps necessary for advancing SCHU S4 ΔclpB to this late stage of development are detailed herein. These include developing a body of data supporting the attenuation of SCHU S4 ΔclpB to a degree sufficient for removal from the U.S. Select Agent list and for human use; optimizing SCHU S4 ΔclpB vaccine production, scale up, and long-term storage; and developing appropriate quality control testing approaches.
Collapse
|
11
|
Aim2 and Nlrp3 Are Dispensable for Vaccine-Induced Immunity against Francisella tularensis Live Vaccine Strain. Infect Immun 2021; 89:e0013421. [PMID: 33875472 DOI: 10.1128/iai.00134-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Francisella tularensis is a facultative, intracellular, Gram-negative bacterium that causes a fatal disease known as tularemia. Due to its extremely high virulence, ease of spread by aerosolization, and potential to be used as a bioterror agent, F. tularensis is classified by the CDC as a tier 1 category A select agent. Previous studies have demonstrated the roles of the inflammasome sensors absent in melanoma 2 (AIM2) and NLRP3 in the generation of innate immune responses to F. tularensis infection. However, contributions of both the AIM2 and NLRP3 to the development of vaccine-induced adaptive immune responses against F. tularensis are not known. This study determined the contributions of Aim2 and Nlrp3 inflammasome sensors to vaccine-induced immune responses in a mouse model of respiratory tularemia. We developed a model to vaccinate Aim2- and Nlrp3-deficient (Aim2-/- and Nlrp3-/-) mice using the emrA1 mutant of the F. tularensis live vaccine strain (LVS). The results demonstrate that the innate immune responses in Aim2-/- and Nlrp3-/- mice vaccinated with the emrA1 mutant differ from those of their wild-type counterparts. However, despite these differences in the innate immune responses, both Aim2-/- and Nlrp3-/- mice are fully protected against an intranasal lethal challenge dose of F. tularensis LVS. Moreover, the lack of both Aim2 and Nlrp3 inflammasome sensors does not affect the production of vaccination-induced antibody and cell-mediated responses. Overall, this study reports a novel finding that both Aim2 and Nlrp3 are dispensable for vaccination-induced immunity against respiratory tularemia caused by F. tularensis.
Collapse
|
12
|
Cunningham AL, Mann BJ, Qin A, Santiago AE, Grassel C, Lipsky M, Vogel SN, Barry EM. Characterization of Schu S4 aro mutants as live attenuated tularemia vaccine candidates. Virulence 2021; 11:283-294. [PMID: 32241221 PMCID: PMC7161688 DOI: 10.1080/21505594.2020.1746557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
There is a need for development of an effective vaccine against Francisella tularensis, as this potential bioweapon has a high mortality rate and low infectious dose when delivered via the aerosol route. Moreover, this Tier 1 agent has a history of weaponization. We engineered targeted mutations in the Type A strain F. tularensis subspecies tularensis Schu S4 in aro genes encoding critical enzymes in aromatic amino acid biosynthesis. F. tularensis Schu S4ΔaroC, Schu S4ΔaroD, and Schu S4ΔaroCΔaroD mutant strains were attenuated for intracellular growth in vitro and for virulence in vivo and, conferred protection against pulmonary wild-type (WT) F. tularensis Schu S4 challenge in the C57BL/6 mouse model. F. tularensis Schu S4ΔaroD was identified as the most promising vaccine candidate, demonstrating protection against high-dose intranasal challenge; it protected against 1,000 CFU Schu S4, the highest level of protection tested to date. It also provided complete protection against challenge with 92 CFU of a F. tularensis subspecies holarctica strain (Type B). Mice responded to vaccination with Schu S4ΔaroD with systemic IgM and IgG2c, as well as the production of a functional T cell response as measured in the splenocyte-macrophage co-culture assay. This vaccine was further characterized for dissemination, histopathology, and cytokine/chemokine gene induction at defined time points following intranasal vaccination which confirmed its attenuation compared to WT Schu S4. Cytokine, chemokine, and antibody induction patterns compared to wild-type Schu S4 distinguish protective vs. pathogenic responses to F. tularensis and elucidate correlates of protection associated with vaccination against this agent.
Collapse
Affiliation(s)
| | - Barbara J Mann
- Department of Medicine, Division of Infectious Diseases and International Heath, University of Virginia, Charlottesville, VA, USA
| | - Aiping Qin
- Department of Medicine, Division of Infectious Diseases and International Heath, University of Virginia, Charlottesville, VA, USA
| | - Araceli E Santiago
- Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| | - Christen Grassel
- Center for Vaccine Development, University of Maryland Baltimore, Baltimore, MD, USA
| | - Michael Lipsky
- Department of Pathology, University of Maryland Baltimore, Baltimore, MD, USA
| | - Stefanie N Vogel
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, USA
| | - Eileen M Barry
- Center for Vaccine Development, University of Maryland Baltimore, Baltimore, MD, USA
| |
Collapse
|
13
|
Zellner B, Mengin-Lecreulx D, Tully B, Gunning WT, Booth R, Huntley JF. A Francisella tularensis L,D-carboxypeptidase plays important roles in cell morphology, envelope integrity, and virulence. Mol Microbiol 2021; 115:1357-1378. [PMID: 33469978 DOI: 10.1111/mmi.14685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/15/2022]
Abstract
Francisella tularensis is a Gram-negative, intracellular bacterium that causes the zoonotic disease tularemia. Intracellular pathogens, including F. tularensis, have evolved mechanisms to survive in the harsh environment of macrophages and neutrophils, where they are exposed to cell envelope-damaging molecules. The bacterial cell wall, primarily composed of peptidoglycan (PG), maintains cell morphology, structure, and membrane integrity. Intracellular Gram-negative bacteria protect themselves from macrophage and neutrophil killing by recycling and repairing damaged PG--a process that involves over 50 different PG synthesis and recycling enzymes. Here, we identified a PG recycling enzyme, L,D-carboxypeptidase A (LdcA), of F. tularensis that is responsible for converting PG tetrapeptide stems to tripeptide stems. Unlike E. coli LdcA and most other orthologs, F. tularensis LdcA does not localize to the cytoplasm and also exhibits L,D-endopeptidase activity, converting PG pentapeptide stems to tripeptide stems. Loss of F. tularensis LdcA led to altered cell morphology and membrane integrity, as well as attenuation in a mouse pulmonary infection model and in primary and immortalized macrophages. Finally, an F. tularensis ldcA mutant protected mice against virulent Type A F. tularensis SchuS4 pulmonary challenge.
Collapse
Affiliation(s)
- Briana Zellner
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, OH, USA
| | - Dominique Mengin-Lecreulx
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Brenden Tully
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, OH, USA
| | | | - Robert Booth
- Department of Pathology, University of Toledo, Toledo, OH, USA
| | - Jason F Huntley
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, OH, USA
| |
Collapse
|
14
|
Mohammadi N, Lindgren H, Golovliov I, Eneslätt K, Yamamoto M, Martin A, Henry T, Sjöstedt A. Guanylate-Binding Proteins Are Critical for Effective Control of Francisella tularensis Strains in a Mouse Co-Culture System of Adaptive Immunity. Front Cell Infect Microbiol 2020; 10:594063. [PMID: 33363054 PMCID: PMC7758253 DOI: 10.3389/fcimb.2020.594063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/06/2020] [Indexed: 11/14/2022] Open
Abstract
Francisella tularensis is a Select Agent that causes the severe disease tularemia in humans and many animal species. The bacterium demonstrates rapid intracellular replication, however, macrophages can control its replication if primed and activation with IFN-γ is known to be essential, although alone not sufficient, to mediate such control. To further investigate the mechanisms that control intracellular F. tularensis replication, an in vitro co-culture system was utilized containing splenocytes obtained from naïve or immunized C57BL/6 mice as effectors and infected bone marrow-derived wild-type or chromosome-3-deficient guanylate-binding protein (GBP)-deficient macrophages. Cells were infected either with the F. tularensis live vaccine strain (LVS), the highly virulent SCHU S4 strain, or the surrogate for F. tularensis, F. novicida. Regardless of strain, significant control of the bacterial replication was observed in co-cultures with wild-type macrophages and immune splenocytes, but not in cultures with immune splenocytes and GBPchr3-deficient macrophages. Supernatants demonstrated very distinct, infectious agent-dependent patterns of 23 cytokines, whereas the cytokine patterns were only marginally affected by the presence or absence of GBPs. Levels of a majority of cytokines were inversely correlated to the degree of control of the SCHU S4 and LVS infections, but this was not the case for the F. novicida infection. Collectively, the co-culture assay based on immune mouse-derived splenocytes identified a dominant role of GBPs for the control of intracellular replication of various F. tularensis strains, regardless of their virulence, whereas the cytokine patterns markedly were dependent on the infectious agents, but less so on GBPs.
Collapse
Affiliation(s)
- Nasibeh Mohammadi
- Department of Clinical Microbiology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Helena Lindgren
- Department of Clinical Microbiology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Igor Golovliov
- Department of Clinical Microbiology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Kjell Eneslätt
- Department of Clinical Microbiology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka, Japan
| | - Amandine Martin
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, Lyon, France
| | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, Lyon, France
| | - Anders Sjöstedt
- Department of Clinical Microbiology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| |
Collapse
|
15
|
Bradford MK, Elkins KL. Immune lymphocytes halt replication of Francisella tularensis LVS within the cytoplasm of infected macrophages. Sci Rep 2020; 10:12023. [PMID: 32694562 PMCID: PMC7374111 DOI: 10.1038/s41598-020-68798-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 06/26/2020] [Indexed: 12/18/2022] Open
Abstract
Francisella tularensis is a highly infectious intracellular bacterium that causes tularemia by invading and replicating in mammalian myeloid cells. Francisella primarily invades host macrophages, where it escapes phagosomes within a few hours and replicates in the cytoplasm. Less is known about how Francisella traffics within macrophages or exits into the extracellular environment for further infection. Immune T lymphocytes control the replication of Francisella within macrophages in vitro by a variety of mechanisms, but nothing is known about intracellular bacterial trafficking in the face of such immune pressure. Here we used a murine model of infection with a Francisella attenuated live vaccine strain (LVS), which is under study as a human vaccine, to evaluate the hypothesis that immune T cells control intramacrophage bacterial growth by re-directing bacteria into toxic intracellular compartments of infected macrophages. We visualized the interactions of lymphocytes and LVS-infected macrophages using confocal microscopy and characterized LVS intramacrophage trafficking when co-cultured with immune lymphocytes. We focused on the late stages of infection after bacteria escape from phagosomes, through bacterial replication and the death of macrophages. We found that the majority of LVS remained cytosolic in the absence of immune pressure, eventually resulting in macrophage death. In contrast, co-culture of LVS-infected macrophages with LVS-immune lymphocytes halted LVS replication and inhibited the spread of LVS infection between macrophages, but bacteria did not return to vacuoles such as lysosomes or autophagosomes and macrophages did not die. Therefore, immune lymphocytes directly limit intracellular bacterial replication within the cytoplasm of infected macrophages.
Collapse
Affiliation(s)
- Mary Katherine Bradford
- Laboratory of Mucosal Pathogens and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA.,Johns Hopkins University Professional Development and Career Office, 1830 E. Monument, 2-107, Baltimore, MD, 21287, USA
| | - Karen L Elkins
- Laboratory of Mucosal Pathogens and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA.
| |
Collapse
|
16
|
Vaccine-Mediated Mechanisms Controlling Francisella tularensis SCHU S4 Growth in a Rat Co-Culture System. Pathogens 2020; 9:pathogens9050338. [PMID: 32365846 PMCID: PMC7280961 DOI: 10.3390/pathogens9050338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022] Open
Abstract
Francisella tularensis causes the severe disease tularemia. In the present study, the aim was to identify correlates of protection in the rat co-culture model by investigating the immune responses using two vaccine candidates conferring distinct degrees of protection in rat and mouse models. The immune responses were characterized by use of splenocytes from naïve or Live vaccine strain- (LVS) or ∆clpB/∆wbtC-immunized Fischer 344 rats as effectors and bone marrow-derived macrophages infected with the highly virulent strain SCHU S4. A complex immune response was elicited, resulting in cytokine secretion, nitric oxide production, and efficient control of the intracellular bacterial growth. Addition of LVS-immune splenocytes elicited a significantly better control of bacterial growth than ∆clpB/∆wbtC splenocytes. This mirrored the efficacy of the vaccine candidates in the rat model. Lower levels of IFN-γ, TNF, fractalkine, IL-2, and nitrite were present in the co-cultures with ∆clpB/∆wbtC splenocytes than in those with splenocytes from LVS-immunized rats. Nitric oxide was found to be a correlate of protection, since the levels inversely correlated to the degree of protection and inhibition of nitric oxide production completely reversed the growth inhibition of SCHU S4. Overall, the results demonstrate that the co-culture assay with rat-derived cells is a suitable model to identify correlates of protection against highly virulent strains of F. tularensis
Collapse
|
17
|
Larsen MH, Lacourciere K, Parker TM, Kraigsley A, Achkar JM, Adams LB, Dupnik KM, Hall-Stoodley L, Hartman T, Kanipe C, Kurtz SL, Miller MA, Salvador LCM, Spencer JS, Robinson RT. The Many Hosts of Mycobacteria 8 (MHM8): A conference report. Tuberculosis (Edinb) 2020; 121:101914. [PMID: 32279870 PMCID: PMC7428850 DOI: 10.1016/j.tube.2020.101914] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/07/2020] [Accepted: 02/09/2020] [Indexed: 12/18/2022]
Abstract
Mycobacteria are important causes of disease in human and animal hosts. Diseases caused by mycobacteria include leprosy, tuberculosis (TB), nontuberculous mycobacteria (NTM) infections and Buruli Ulcer. To better understand and treat mycobacterial disease, clinicians, veterinarians and scientists use a range of discipline-specific approaches to conduct basic and applied research, including conducting epidemiological surveys, patient studies, wildlife sampling, animal models, genetic studies and computational simulations. To foster the exchange of knowledge and collaboration across disciplines, the Many Hosts of Mycobacteria (MHM) conference series brings together clinical, veterinary and basic scientists who are dedicated to advancing mycobacterial disease research. Started in 2007, the MHM series recently held its 8th conference at the Albert Einstein College of Medicine (Bronx, NY). Here, we review the diseases discussed at MHM8 and summarize the presentations on research advances in leprosy, NTM and Buruli Ulcer, human and animal TB, mycobacterial disease comorbidities, mycobacterial genetics and 'omics, and animal models. A mouse models workshop, which was held immediately after MHM8, is also summarized. In addition to being a resource for those who were unable to attend MHM8, we anticipate this review will provide a benchmark to gauge the progress of future research concerning mycobacteria and their many hosts.
Collapse
Affiliation(s)
- Michelle H Larsen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Karen Lacourciere
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20892, USA
| | - Tina M Parker
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20892, USA
| | - Alison Kraigsley
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Jacqueline M Achkar
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Linda B Adams
- Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, National Hansen's Disease Programs, Baton Rouge, LA, USA
| | - Kathryn M Dupnik
- Center for Global Health, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Luanne Hall-Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
| | - Travis Hartman
- Center for Global Health, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Carly Kanipe
- Department of Immunobiology, Iowa State University, Ames, IA, USA; Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA; Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Sherry L Kurtz
- Laboratory of Mucosal Pathogens and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Washington, DC, USA
| | - Michele A Miller
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Liliana C M Salvador
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA; Institute of Bioinformatics, University of Georgia, Athens, GA, USA; Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - John S Spencer
- Department of Microbiology, Immunology, and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, CO, USA
| | - Richard T Robinson
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
18
|
rM-CSF efficiently replaces L929 in generating mouse and rat bone marrow-derived macrophages for in vitro functional studies of immunity to intracellular bacteria. J Immunol Methods 2020; 477:112693. [DOI: 10.1016/j.jim.2019.112693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 01/08/2023]
|
19
|
Bidmos FA, Siris S, Gladstone CA, Langford PR. Bacterial Vaccine Antigen Discovery in the Reverse Vaccinology 2.0 Era: Progress and Challenges. Front Immunol 2018; 9:2315. [PMID: 30349542 PMCID: PMC6187972 DOI: 10.3389/fimmu.2018.02315] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/17/2018] [Indexed: 11/13/2022] Open
Abstract
The ongoing, and very serious, threat from antimicrobial resistance necessitates the development and use of preventative measures, predominantly vaccination. Polysaccharide-based vaccines have provided a degree of success in limiting morbidity from disseminated bacterial infections, including those caused by the major human obligate pathogens, Neisseria meningitidis, and Streptococcus pneumoniae. Limitations of these polysaccharide vaccines, such as partial coverage and induced escape leading to persistence of disease, provide a compelling argument for the development of protein vaccines. In this review, we briefly chronicle approaches that have yielded licensed vaccines before highlighting reverse vaccinology 2.0 and its potential application in the discovery of novel bacterial protein vaccine candidates. Technical challenges and research gaps are also discussed.
Collapse
Affiliation(s)
- Fadil A Bidmos
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Sara Siris
- Department of Medicine, Imperial College London, London, United Kingdom
| | | | - Paul R Langford
- Department of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|