1
|
Li X, Guo Y, Ling Q, Guo Z, Lei Y, Feng X, Wu J, Zhang N. Advances in the Structure, Function, and Regulatory Mechanism of Plant Plasma Membrane Intrinsic Proteins. Genes (Basel) 2024; 16:10. [PMID: 39858557 PMCID: PMC11765485 DOI: 10.3390/genes16010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Plasma membrane intrinsic proteins (PIPs), as members of the aquaporin (AQPs) family, can transport not only water but also urea, CO2, H2O2, metal ions, and trace elements. They are crucial for maintaining water balance, substance transport, and responding to various stresses. This article delves into the structure, function, response mechanism, molecular mechanism, and regulatory mechanism of PIPs as a result of biological and abiotic stresses. It also summarizes current research trends surrounding PIPs and highlights potential research directions for further exploration. The aim is to assist researchers in related fields in gaining a more comprehensive understanding and precise insight into the advancements in PIP research.
Collapse
Affiliation(s)
- Xueting Li
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China; (X.L.); (J.W.)
| | - Yirong Guo
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China; (X.L.); (J.W.)
| | - Qiuping Ling
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China; (X.L.); (J.W.)
- Zhanjiang Research Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Zhanjiang 524300, China
| | - Zhejun Guo
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yawen Lei
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China; (X.L.); (J.W.)
| | - Xiaomin Feng
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jiayun Wu
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China; (X.L.); (J.W.)
| | - Nannan Zhang
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China; (X.L.); (J.W.)
- Zhanjiang Research Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Zhanjiang 524300, China
| |
Collapse
|
2
|
Peng X, Ruan J, Jiang F, Zhou R, Wu Z. Identification of the BZR Family in Garlic ( Allium sativum L.) and Verification of the AsBZR11 under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2749. [PMID: 39409617 PMCID: PMC11478727 DOI: 10.3390/plants13192749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024]
Abstract
Brassinazole-Resistant (BZR) is an important transcription factor (TF) in the brassinosteroid (BR) signaling pathway, which plays a crucial role in plant growth, development and stress resistance. In this study, we performed a genome-wide analysis of BZRs in garlic (Allium sativum L.) and identified a total of 11 members of the AsBZR gene family. By comparing the expression patterns of AsBZR genes under salt stress, the candidate gene AsBZR11 with salt tolerance function was identified. Subcellular localization results showed that AsBZR11 was localized in the nucleus. The salt tolerance of overexpression lines improved, and the germination rate and root length of overexpression lines increased as compared with wild type. The content of reactive oxygen species (ROS) decreased, and the activity of antioxidant enzymes increased in AsBZR11-OE, suggesting that AsBZR11 has the function of improving plant salt tolerance. Our results enriched the knowledge of plant BZR family and laid a foundation for the molecular mechanism of salt tolerance of garlic, which will provide a theoretical basis for the subsequent creation of salt-tolerant germplasm resources.
Collapse
Affiliation(s)
- Xianghan Peng
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (X.P.); (J.R.); (F.J.); (R.Z.)
| | - Jiaojiao Ruan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (X.P.); (J.R.); (F.J.); (R.Z.)
| | - Fangling Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (X.P.); (J.R.); (F.J.); (R.Z.)
| | - Rong Zhou
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (X.P.); (J.R.); (F.J.); (R.Z.)
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark
| | - Zhen Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (X.P.); (J.R.); (F.J.); (R.Z.)
| |
Collapse
|
3
|
Luo B, Sahito JH, Zhang H, Zhao J, Yang G, Wang W, Guo J, Zhang S, Ma P, Nie Z, Zhang X, Liu D, Wu L, Gao D, Gao S, Su S, Gishkori ZGN, Gao S. SPX family response to low phosphorus stress and the involvement of ZmSPX1 in phosphorus homeostasis in maize. FRONTIERS IN PLANT SCIENCE 2024; 15:1385977. [PMID: 39040504 PMCID: PMC11260721 DOI: 10.3389/fpls.2024.1385977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024]
Abstract
Phosphorus (P) is a crucial macronutrient for plant growth and development, and low-Pi stress poses a significant limitation to maize production. While the role of the SPX domain in encoding proteins involved in phosphate (Pi) homeostasis and signaling transduction has been extensively studied in other model plants, the molecular and functional characteristics of the SPX gene family members in maize remain largely unexplored. In this study, we identified six SPX members, and the phylogenetic analysis of ZmSPXs revealed a close relationship with SPX genes in rice. The promoter regions of ZmSPXs were abundant in biotic and abiotic stress-related elements, particularly associated with various hormone signaling pathways, indicating potential intersections between Pi signaling and hormone signaling pathways. Additionally, ZmSPXs displayed tissue-specific expression patterns, with significant and differential induction in anthers and roots, and were localized to the nucleus and cytoplasm. The interaction between ZmSPXs and ZmPHRs was established via yeast two-hybrid assays. Furthermore, overexpression of ZmSPX1 enhanced root sensitivity to Pi deficiency and high-Pi conditions in Arabidopsis thaliana. Phenotypic identification of the maize transgenic lines demonstrated the negative regulatory effect on the P concentration of stems and leaves as well as yield. Notably, polymorphic sites including 34 single-nucleotide polymorphisms (SNPs) and seven insertions/deletions (InDels) in ZmSPX1 were significantly associated with 16 traits of low-Pi tolerance index. Furthermore, significant sites were classified into five haplotypes, and haplotype5 can enhance biomass production by promoting root development. Taken together, our results suggested that ZmSPX family members possibly play a pivotal role in Pi stress signaling in plants by interacting with ZmPHRs. Significantly, ZmSPX1 was involved in the Pi-deficiency response verified in transgenic Arabidopsis and can affect the Pi concentration of maize tissues and yield. This work lays the groundwork for deeper exploration of the maize SPX family and could inform the development of maize varieties with improved Pi efficiency.
Collapse
Affiliation(s)
- Bowen Luo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Javed Hussain Sahito
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henen Agricultural University, Zhengzhou, China
| | - Haiying Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Jin Zhao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Guohui Yang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Wei Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Jianyong Guo
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Shuhao Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Peng Ma
- Maize Research Institute, Mianyang Academy of Agricultural Sciences, Mianyang, Sichuan, China
| | - Zhi Nie
- Sichuan Academy of Agricultural Sciences, Biotechnology and Nuclear Technology Research Institute, Chengdu, Sichuan, China
| | - Xiao Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Dan Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Ling Wu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Duojiang Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Shiqiang Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Shunzong Su
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | | | - Shibin Gao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Chen C, Zhao Y, Tabor G, Nian H, Phillips J, Wolters P, Yang Q, Balint-Kurti P. A leucine-rich repeat receptor kinase gene confers quantitative susceptibility to maize southern leaf blight. THE NEW PHYTOLOGIST 2023; 238:1182-1197. [PMID: 36721267 DOI: 10.1111/nph.18781] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Southern leaf blight (SLB), caused by the necrotrophic fungal pathogen Cochliobolus heterostrophus (anamorph Bipolaris maydis), is a major foliar disease which causes significant yield losses in maize worldwide. A major quantitative trait locus, qSLB3.04 , conferring recessive resistance to SLB was previously mapped on maize chromosome 3. Using a combination of map-based cloning, association analysis, ethyl methanesulfonate and transposon mutagenesis, and CRISPR-Cas9 editing, we demonstrate that a leucine-rich repeat receptor-like kinase gene which we have called ChSK1 (Cochliobolus heterostrophus Susceptibility Kinase 1) at qSLB3.04 causes increased susceptibility to SLB. Genes of this type have generally been associated with the defense response. We present evidence that ChSK1 may be associated with suppression of the basal immune response. These findings contribute to our understanding of plant disease susceptibility genes and the potential to use them for engineering durable disease resistance.
Collapse
Affiliation(s)
- Chuan Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region of the Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yaqi Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region of the Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Girma Tabor
- Corteva Agriscience™, Johnston, IA, 50131, USA
| | - Huiqin Nian
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region of the Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | | | | | - Qin Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region of the Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Peter Balint-Kurti
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
- Plant Science Research Unit, USDA-ARS, Raleigh, NC, 27695, USA
| |
Collapse
|
5
|
Jiang Y, Su S, Chen H, Li S, Shan X, Li H, Liu H, Dong H, Yuan Y. Transcriptome analysis of drought-responsive and drought-tolerant mechanisms in maize leaves under drought stress. PHYSIOLOGIA PLANTARUM 2023; 175:e13875. [PMID: 36775906 DOI: 10.1111/ppl.13875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 01/18/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Maize is a major crop essential for food and feed, but its production is threatened by various biotic and abiotic stresses. Drought is one of the most common abiotic stresses, causing severe crop yield reduction. Although several studies have been devoted to selecting drought-tolerant maize lines and detecting the drought-responsive mechanism of maize, the transcriptomic differences between drought-tolerant and drought-susceptible maize lines are still largely unknown. In our study, RNA-seq was performed on leaves of the drought-tolerant line W9706 and the drought-susceptible line B73 after drought treatment. We identified 3147 differentially expressed genes (DEGs) between these two lines. The upregulated DEGs in W9706 were enriched in specific processes, including ABA signaling, wax biosynthesis, CHO metabolism, signal transduction and brassinosteroid biosynthesis-related processes, while the downregulated DEGs were enriched in specific processes, such as stomatal movement. Altogether, transcriptomic analysis suggests that the different drought resistances were correlated with the differential expression of genes, while the drought tolerance of W9706 is due to the more rapid response to stimulus, higher water retention capacity and stable cellular environment under water deficit conditions.
Collapse
Affiliation(s)
- Yuan Jiang
- Jilin Engineering Research Center for Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, China
| | - Shengzhong Su
- Jilin Engineering Research Center for Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, China
| | - Hao Chen
- Jilin Engineering Research Center for Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, China
| | - Shipeng Li
- Jilin Engineering Research Center for Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, China
| | - Xiaohui Shan
- Jilin Engineering Research Center for Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, China
| | - He Li
- Jilin Engineering Research Center for Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, China
| | - Hongkui Liu
- Jilin Engineering Research Center for Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, China
| | - Haixiao Dong
- Jilin Engineering Research Center for Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, China
| | - Yaping Yuan
- Jilin Engineering Research Center for Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
6
|
Thanabut S, Sornplerng P, Buaboocha T. Ectopic expression of rice malate synthase in Arabidopsis revealed its roles in salt stress responses. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153863. [PMID: 36423447 DOI: 10.1016/j.jplph.2022.153863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Expression of rice malate synthase (OsMS), one of the two key genes in the glyoxylate cycle, is highly upregulated under salt stress. In this study, we aimed to investigate the role of OsMS in salt stress responses using the Arabidopsis T-DNA insertional mutant line of malate synthase (AtMS), an OsMS orthologous gene, for ectopic expression. Germination of the Atms mutant under salt stress was lower than that of Arabidopsis Col-0 wildtype (WT); furthermore, the two Atms mutant lines ectopically expressing OsMS reversed the salt-sensitive phenotype. Atms mutants salt-treated for 3 days exhibited higher electrolyte leakage, higher Na+/K+ ratio, lower expression of stress-responsive genes, and lower soluble sugar content than WT and the two OsMS-expressing Atms mutant lines. Consistently, Atms mutants salt-treated for 3 days followed by a 5-day recovery period displayed greater fresh-weight reduction. Notably, leaf greenness and chlorophyll and total carotenoid contents were higher in the Atms mutant lines than in the WT under stress. OsMS-expressing Atms mutants exhibited a change in pigment content closer to that of WT. During dark-induced senescence, an Atms mutant, Aticl, mutant (the other key gene in the glyoxylate cycle), and three double mutant lines of Atms and Aticl exhibited lower decreases in leaf greenness than the WT and OsMS-expressing Atms mutant lines. Furthermore, SAG12 expression levels in the Atms mutant, Aticl mutant, and three double mutant lines were lower than those in OsMS-expressing Atms mutant lines. Altogether, our data indicate that OsMS likely plays a key role in salt stress responses, possibly through the induction of leaf senescence.
Collapse
Affiliation(s)
- Supisara Thanabut
- Center of Excellence for Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| | - Pinmanee Sornplerng
- Center of Excellence for Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| | - Teerapong Buaboocha
- Center of Excellence for Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
7
|
Li C, Yan C, Sun Q, Wang J, Yuan C, Mou Y, Shan S, Zhao X. Proteomic profiling of Arachis hypogaea in response to drought stress and overexpression of AhLEA2 improves drought tolerance. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:75-84. [PMID: 34694687 DOI: 10.1111/plb.13351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Drought is the main factor restricting peanut growth, but the molecular mechanism underlying peanut drought tolerance remains unclear. Herein, the seedling stage of drought-resistant peanut cultivar J11 was subjected to drought stress, and its proteomic profile was systematically analysed by isobaric tags for relative and absolute quantification (iTRAQ), the results of which were further complemented with our previous transcriptome results. A total of 4,018 proteins were identified by proteomic analysis, which revealed that the expression levels of 69 proteins were altered under drought stress. Among the differentially expressed proteins (DEPs), 50 were upregulated, and 19 were downregulated. The most enriched metabolic pathways for these DEPs were those involving phenylpropanoid biosynthesis, flavonoid biosynthesis, and plant hormone signal transduction. The proteomic data and previous transcriptome results revealed 44 groups of genes/proteins with the same expression trend, including a LEA (Late embryogenesis abundant) gene, AhLEA2. Our present study showed that overexpression of the AhLEA2 gene enhanced the drought resistance of transgenic Arabidopsis plants, and the activities of related antioxidant enzymes in the transgenic plants significantly changed. The AhLEA2 gene was found to be located in the cytoplasm and cell membrane by subcellular localization experiments. This work systematically analysed the differentially expressed proteins in peanut in response to drought stress, providing important candidates for further functional analysis of the stress response of peanut. Our results also indicated that AhLEA2 plays an important role in the peanut response to drought stress.
Collapse
Affiliation(s)
- C Li
- Department of Breeding, Shandong Peanut Research Institute, Qingdao, China
| | - C Yan
- Department of Breeding, Shandong Peanut Research Institute, Qingdao, China
| | - Q Sun
- Department of Breeding, Shandong Peanut Research Institute, Qingdao, China
| | - J Wang
- Department of Breeding, Shandong Peanut Research Institute, Qingdao, China
| | - C Yuan
- Department of Breeding, Shandong Peanut Research Institute, Qingdao, China
| | - Y Mou
- Department of Breeding, Shandong Peanut Research Institute, Qingdao, China
| | - S Shan
- Department of Breeding, Shandong Peanut Research Institute, Qingdao, China
| | - X Zhao
- Department of Breeding, Shandong Peanut Research Institute, Qingdao, China
| |
Collapse
|
8
|
Tang H, Yu Q, Li Z, Liu F, Su W, Zhang C, Ling H, Luo J, Su Y, Que Y. A PIP-mediated osmotic stress signaling cascade plays a positive role in the salt tolerance of sugarcane. BMC PLANT BIOLOGY 2021; 21:589. [PMID: 34903178 PMCID: PMC8667355 DOI: 10.1186/s12870-021-03369-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 11/25/2021] [Indexed: 05/31/2023]
Abstract
BACKGROUND Plasma membrane intrinsic proteins (PIPs) are plant channel proteins involved in water deficit and salinity tolerance. PIPs play a major role in plant cell water balance and responses to salt stress. Although sugarcane is prone to high salt stress, there is no report on PIPs in sugarcane. RESULTS In the present study, eight PIP family genes, termed ScPIP1-1, ScPIP1-2, ScPIP1-3, ScPIP1-4, ScPIP2-1, ScPIP2-2, ScPIP2-4 and ScPIP2-5, were obtained based on the sugarcane transcriptome database. Then, ScPIP2-1 in sugarcane was cloned and characterized. Confocal microscopy observation indicated that ScPIP2-1 was located in the plasma membrane and cytoplasm. A yeast two-hybridization experiment revealed that ScPIP2-1 does not have transcriptional activity. Real time quantitative PCR (RT-qPCR) analysis showed that ScPIP2-1 was mainly expressed in the leaf, root and bud, and its expression levels in both below- and aboveground tissues of ROC22 were up-regulated by abscisic acid (ABA), polyethylene glycol (PEG) 6000 and sodium chloride (NaCl) stresses. The chlorophyll content and ion leakage measurement suggested that ScPIP2-1 played a significant role in salt stress resistance in Nicotiana benthamiana through the transient expression test. Overexpression of ScPIP2-1 in Arabidopsis thaliana proved that this gene enhanced the salt tolerance of transgenic plants at the phenotypic (healthier state, more stable relative water content and longer root length), physiologic (more stable ion leakage, lower malondialdehyde content, higher proline content and superoxide dismutase activity) and molecular levels (higher expression levels of AtKIN2, AtP5CS1, AtP5CS2, AtDREB2, AtRD29A, AtNHX1, AtSOS1 and AtHKT1 genes and a lower expression level of the AtTRX5 gene). CONCLUSIONS This study revealed that the ScPIP2-1-mediated osmotic stress signaling cascade played a positive role in plant response to salt stress.
Collapse
Affiliation(s)
- Hanchen Tang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province (Fujian Agriculture and Forestry University), Fuzhou, 350002 Fujian China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Qing Yu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Zhu Li
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Feng Liu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Weihua Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Chang Zhang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Hui Ling
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
- College of Agriculture, Yulin Normal University, Yulin, 537000 Guangxi China
| | - Jun Luo
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province (Fujian Agriculture and Forestry University), Fuzhou, 350002 Fujian China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| |
Collapse
|
9
|
Saddhe AA, Mishra AK, Kumar K. Molecular insights into the role of plant transporters in salt stress response. PHYSIOLOGIA PLANTARUM 2021; 173:1481-1494. [PMID: 33963568 DOI: 10.1111/ppl.13453] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/29/2021] [Accepted: 05/06/2021] [Indexed: 05/23/2023]
Abstract
Salt stress disturbs the cellular osmotic and ionic balance, which then creates a negative impact on plant growth and development. The Na+ and Cl- ions can enter into plant cells through various membrane transporters, including specific and non-specific Na+ , K+ , and Ca2+ transporters. Therefore, it is important to understand Na+ and K+ transport mechanisms in plants along with the isolation of genes, their characterization, the structural features, and their post-translation regulation under salt stress. This review summarizes the molecular insights of plant ion transporters, including non-selective cation transporters, cyclic nucleotide-gated cation transporters, glutamate-like receptors, membrane intrinsic proteins, cation proton antiporters, and sodium proton antiporter families. Further, we discussed the K+ transporter families such as high-affinity K+ transporters, HAK/KUP/KT transporters, shaker type K+ transporters, and K+ efflux antiporters. Besides the ion transport process, we have shed light on available literature on epigenetic regulation of transport processes under salt stress. Recent advancements of salt stress sensing mechanisms and various salt sensors within signaling transduction pathways are discussed. Further, we have compiled salt-stress signaling pathways, and their crosstalk with phytohormones.
Collapse
Affiliation(s)
- Ankush Ashok Saddhe
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K. K. Birla Goa Campus, Goa, 403726, India
| | - Ajay Kumar Mishra
- Biology Centre, Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Kundan Kumar
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K. K. Birla Goa Campus, Goa, 403726, India
| |
Collapse
|
10
|
Overexpression of the Zygophyllum xanthoxylum Aquaporin, ZxPIP1;3, Promotes Plant Growth and Stress Tolerance. Int J Mol Sci 2021; 22:ijms22042112. [PMID: 33672712 PMCID: PMC7924366 DOI: 10.3390/ijms22042112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/26/2022] Open
Abstract
Drought and salinity can result in cell dehydration and water unbalance in plants, which seriously diminish plant growth and development. Cellular water homeostasis maintained by aquaporin is one of the important strategies for plants to cope with these two stresses. In this study, a stress-induced aquaporin, ZxPIP1;3, belonging to the PIP1 subgroup, was identified from the succulent xerophyte Zygophyllum xanthoxylum. The subcellular localization showed that ZxPIP1;3-GFP was located in the plasma membrane. The overexpression of ZxPIP1;3 in Arabidopsis prompted plant growth under favorable condition. In addition, it also conferred salt and drought tolerance with better water status as well as less ion toxicity and membrane injury, which led to more efficient photosynthesis and improved growth vigor via inducing stress-related responsive genes. This study reveals the molecular mechanisms of xerophytes’ stress tolerance and provides a valuable candidate that could be used in genetic engineering to improve crop growth and stress tolerance.
Collapse
|
11
|
Melatonin-Induced Water Stress Tolerance in Plants: Recent Advances. Antioxidants (Basel) 2020; 9:antiox9090809. [PMID: 32882822 PMCID: PMC7554692 DOI: 10.3390/antiox9090809] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 11/16/2022] Open
Abstract
Water stress (drought and waterlogging) is severe abiotic stress to plant growth and development. Melatonin, a bioactive plant hormone, has been widely tested in drought situations in diverse plant species, while few studies on the role of melatonin in waterlogging stress conditions have been published. In the current review, we analyze the biostimulatory functions of melatonin on plants under both drought and waterlogging stresses. Melatonin controls the levels of reactive oxygen and nitrogen species and positively changes the molecular defense to improve plant tolerance against water stress. Moreover, the crosstalk of melatonin and other phytohormones is a key element of plant survival under drought stress, while this relationship needs further investigation under waterlogging stress. In this review, we draw the complete story of water stress on both sides-drought and waterlogging-through discussing the previous critical studies under both conditions. Moreover, we suggest several research directions, especially for waterlogging, which remains a big and vague piece of the melatonin and water stress puzzle.
Collapse
|
12
|
Moustafa-Farag M, Mahmoud A, Arnao MB, Sheteiwy MS, Dafea M, Soltan M, Elkelish A, Hasanuzzaman M, Ai S. Melatonin-Induced Water Stress Tolerance in Plants: Recent Advances. Antioxidants (Basel) 2020. [PMID: 32882822 DOI: 10.20944/preprints202008.0359.v1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
Water stress (drought and waterlogging) is severe abiotic stress to plant growth and development. Melatonin, a bioactive plant hormone, has been widely tested in drought situations in diverse plant species, while few studies on the role of melatonin in waterlogging stress conditions have been published. In the current review, we analyze the biostimulatory functions of melatonin on plants under both drought and waterlogging stresses. Melatonin controls the levels of reactive oxygen and nitrogen species and positively changes the molecular defense to improve plant tolerance against water stress. Moreover, the crosstalk of melatonin and other phytohormones is a key element of plant survival under drought stress, while this relationship needs further investigation under waterlogging stress. In this review, we draw the complete story of water stress on both sides-drought and waterlogging-through discussing the previous critical studies under both conditions. Moreover, we suggest several research directions, especially for waterlogging, which remains a big and vague piece of the melatonin and water stress puzzle.
Collapse
Affiliation(s)
- Mohamed Moustafa-Farag
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Horticulture Research Institute, Agriculture Research Center, 9 Gmaa St, Giza 12619, Egypt
| | - Ahmed Mahmoud
- Horticulture Research Institute, Agriculture Research Center, 9 Gmaa St, Giza 12619, Egypt
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Marino B Arnao
- Department of Plant Physiology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| | - Mohamed S Sheteiwy
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed Dafea
- Horticulture Research Institute, Agriculture Research Center, 9 Gmaa St, Giza 12619, Egypt
| | - Mahmoud Soltan
- Horticulture and Crop Science Department, Ohio Agricultural Research and Development Center, Columbus, The Ohio State University, Columbus, OH 43210, USA
- Vegetable Production under Modified Environment Department, Horticulture Research Institute, Agriculture Research Center, Cairo 11865, Egypt
| | - Amr Elkelish
- Botany Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Shaoying Ai
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
13
|
Zhou L, Zhou J, Xiong Y, Liu C, Wang J, Wang G, Cai Y. Correction: Overexpression of a maize plasma membrane intrinsic protein ZmPIP1;1 confers drought and salt tolerance in Arabidopsis. PLoS One 2019; 14:e0218234. [PMID: 31170270 PMCID: PMC6553777 DOI: 10.1371/journal.pone.0218234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
14
|
Molecular insights into the plasma membrane intrinsic proteins roles for abiotic stress and metalloids tolerance and transport in plants. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s40502-018-0425-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|