1
|
Aflakian F, Hashemitabar G. Biosynthesized silver nanoparticles at subinhibitory concentrations as inhibitors of quorum sensing, pathogenicity, and biofilm formation in Pseudomonas aeruginosa PAO1. Heliyon 2025; 11:e42899. [PMID: 40070951 PMCID: PMC11894301 DOI: 10.1016/j.heliyon.2025.e42899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Pseudomonas aeruginosa infections associated with biofilm are a significant clinical challenge due to the limited efficacy of traditional antibiotics or combination therapies. Hence, exploring novel strategies and assessing different compounds for their anti-biofilm or anti-quorum sensing (QS) properties is imperative. One of the various applications of silver nanoparticles (AgNPs) is to use them as an antimicrobial agent to target bacteria resistant to common antibiotics. This study evaluates the anti-biofilm and anti-virulence effect of biosynthesized AgNPs against P. aeruginosa PAO1 at subinhibitory concentration levels. Minimum inhibitory concentrations (MICs) and biofilm formation capacity were evaluated by the microdilution method and crystal violet method, respectively. Motility assay and virulence factors were investigated in the presence of AgNPs. It was observed that green-synthesized AgNPs at sub-MIC (50 μg/mL) suppressed P. aeruginosa biofilm formation by 78 %. Increased dose-dependent inhibitory effects on virulence phenotypes (LasB elastase, LasA protease, pyocyanin, and motility) regulated by QS were observed. In addition, the relative expression levels of biofilm-related genes including algC, pslA, and pelA were analyzed using RT-qPCR. The expression level of QS-regulated biofilm genes after AgNPs treatment sub-MIC led to a decrease in the expression of algC, pslA, and pelA by 77 %, 83 %, and 68 %, respectively. The findings of this study demonstrated how green AgNPs can effectively inhibit QS at sub-MIC concentrations, indicating their potential as antivirulence agents to deal with challenges related to biofilm formation and antimicrobial resistance in P. aeruginosa. This presents a promising alternative to traditional antibiotics in antimicrobial therapy.
Collapse
|
2
|
Ripku T, Hayhurst L, Metcalfe CD, Rennie M. Isotopic-based evidence for reduced benthic contributions to fish after a whole-lake addition of nanosilver. JOURNAL OF FISH BIOLOGY 2024; 105:1432-1444. [PMID: 37596683 DOI: 10.1111/jfb.15526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Silver nanoparticles (AgNPs) are added as antibacterial and anti-odor agents to a wide range of textiles, with high potential for release into aquatic environments via domestic wastewater. Previous work demonstrating the negative impacts of AgNP exposure on periphyton production suggests benthic primary production could be reduced in aquatic ecosystems impacted by AgNP discharge. To evaluate the potential for AgNPs to alter benthic-pelagic coupling in aquatic ecosystems, tissue-stable isotope ratios of carbon and nitrogen from northern pike (Esox lucius) and yellow perch (Perca flavescens) were measured before, during, and after the addition of AgNPs to a whole-lake ecosystem, and compared to those collected from a nearby reference lake. A shift in carbon isotope ratios toward more negative values was observed in both P. flavescens and E. lucius collected from the lake where AgNPs were added, with no shift in similar magnitude observed in E. lucius from the reference lake. Consequently, Bayesian estimates of benthic energy consumed decreased by 32% for P. flavescens and by 40% for E. lucius collected after AgNP additions relative to pre-addition estimates, greater in magnitude or opposite in direction of trends observed in our reference lake. Analyses suggest no changes in fish nitrogen isotope ratios related to AgNP additions. We hypothesize that the observed reduction in littoral energy use of fish reported here is a response to AgNP settling in littoral benthic habitats-the main habitat in lakes supporting periphyton-as AgNP has been shown elsewhere to significantly reduce the rates of periphyton production. Further, our study highlights the need to broaden the scope of risk assessments for AgNPs and other emerging contaminants prone to settling to consider habitat-specific impacts on resource utilization by organisms after their release into aquatic ecosystems.
Collapse
Affiliation(s)
- Tyler Ripku
- Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| | - Lauren Hayhurst
- Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
- IISD Experimental Lakes Area Inc., Winnipeg, Manitoba, Canada
| | - Chris D Metcalfe
- The School of the Environment, Trent University, Peterborough, Ontario, Canada
| | - Michael Rennie
- Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
- IISD Experimental Lakes Area Inc., Winnipeg, Manitoba, Canada
| |
Collapse
|
3
|
Pandey P, Pradhan S, Meher K, Lopus M, Vavilala SL. Exploring the efficacy of tryptone-stabilized silver nanoparticles against respiratory tract infection-causing bacteria: a study on planktonic and biofilm forms. Biomed Mater 2024; 19:025047. [PMID: 38364289 DOI: 10.1088/1748-605x/ad2a40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/16/2024] [Indexed: 02/18/2024]
Abstract
Respiratory tract infections (RTIs) are a common cause of mortality and morbidity in the human population. The overuse of antibiotics to overcome such infections has led to antibiotic resistance. The emergence of multidrug resistant bacteria is necessitating the development of novel therapeutic techniques in order to avoid a major global clinical threat. Our study aims to investigate the potential of tryptone stabilised silver nanoparticles (Ts-AgNPs) on planktonic and biofilms produced byKlebsiella pneumoniae(K. pneumoniae)and Pseudomonas aeruginosa(P. aeruginosa). The MIC50of Ts-AgNPs was found to be as low as 1.7 μg ml-1and 2.7 μg ml-1forK. pneumoniae and P.aeruginosarespectively. Ts-AgNPs ability to alter redox environment by producing intracellular ROS, time-kill curves showing substantial decrease in the bacterial growth and significantly reduced colony forming units further validate its antimicrobial effect. The biofilm inhibition and eradication ability of Ts-AgNPs was found to be as high as 93% and 97% in both the tested organisms. A significant decrease in the eDNA and EPS quantity in Ts-AgNPs treated cells proved its ability to successfully distort the matrix and matured biofilms. Interestingly Ts-AgNPs also attenuated QS-induced virulence factors production. This study paves way to develop Ts-AgNPs as novel antibiotics against RTIs causing bacterial biofilms.
Collapse
Affiliation(s)
- Pooja Pandey
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Kalina Campus, Mumbai 400098, India
| | - Sristi Pradhan
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Kalina Campus, Mumbai 400098, India
| | - Kimaya Meher
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Kalina Campus, Mumbai 400098, India
| | - Manu Lopus
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Kalina Campus, Mumbai 400098, India
| | - Sirisha L Vavilala
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Kalina Campus, Mumbai 400098, India
| |
Collapse
|
4
|
Hadiuzzaman M, Mirza N, Brown SP, Ladner DA, Salehi M. Lead (Pb) deposition onto new and biofilm-laden potable water pipes. CHEMOSPHERE 2023; 342:140135. [PMID: 37690561 DOI: 10.1016/j.chemosphere.2023.140135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Heavy metals' interactions with plumbing materials are complicated due to the differential formation of biofilms within pipes that can modulate, transform, and/or sequester heavy metals. This research aims to elucidate the mechanistic role of biofilm presence on Lead (Pb) accumulation onto crosslinked polyethylene (PEX-A), high-density polyethylene (HDPE), and copper potable water pipes. For this purpose, biofilms were grown on new pipes for three months. Five-day Pb exposure experiments were conducted to examine the kinetics of Pb accumulation onto the new and biofilm-laden pipes. Additionally, the influence of Pb initial concentration on the rate of its accumulation onto the pipes was examined. The results revealed greater biofilm biomass on the PEX-A pipes compared to the copper and HDPE pipes. More negative zeta potential was found for the biofilm-laden plastic pipes compared to the new plastic pipes. After five days of Pb exposure under stagnant conditions, the biofilm-laden PEX-A (980 μg m-2) and HDPE (1170 μg m-2) pipes accumulated more than three times the Pb surface loading compared to the new PEX-A (265 μg m-2) and HDPE pipes (329 μg m-2), respectively. However, under flow conditions, Pb accumulation on biofilm-laden plastic pipes was lower than on the new pipes. Moreover, with increasing the initial Pb concentration, greater rates of Pb surface accumulation were found for the biofilm-laden pipes compared to the new pipes under stagnant conditions. First-order kinetics model best described the Pb accumulation onto both new and biofilm-laden water pipes under both stagnant and flow conditions.
Collapse
Affiliation(s)
- Md Hadiuzzaman
- Department of Civil Engineering, The University of Memphis, Memphis, TN, USA
| | - Nahreen Mirza
- Department of Biological Sciences, The University of Memphis, Memphis, TN, USA
| | - Shawn P Brown
- Department of Biological Sciences, The University of Memphis, Memphis, TN, USA
| | - David A Ladner
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC, USA
| | - Maryam Salehi
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
5
|
Qin Z, Zhao Z, Xia L, Ohore OE. Research trends and hotspots of aquatic biofilms in freshwater environment during the last three decades: a critical review and bibliometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:47915-47930. [PMID: 35522418 DOI: 10.1007/s11356-022-20238-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Freshwater periphytic biofilms (FPBs), existing widely in various aquatic environments, have attracted extensive attention for many years. In the present study, a bibliometric analysis based on Web of Science Core Collection (WoSCC) was used to understand the research progress, trends, and hot topics of FPBs qualitatively and quantitatively. The results indicated that publications on FPBs have increased from 1991 to 2020 rapidly, and researchers have focused more on the areas of environmental sciences, microbiology, and marine freshwater biology. The most influential countries were mainly the USA, Spain, France, and Germany. Cooperation network analysis reflected that the USA and its affiliated institutions played crucial roles in the research of FPB cooperation, but the collaboration between core author groups still fell short. Based on the analysis of top 20 high-cited FPB documents over the last 30 years, research hotspots mainly included micro-observation and assembly mechanisms of FPBs; interactions of FPBs and pollutants including heavy metals, antibiotic resistance genes, pathogens, organic pollutants, and nanoparticles; and the role of FPBs for biogeochemical cycling, especially nitrogen cycling. Additionally, future research directions were proposed. Overall, this study provides a comprehensive and systematic overview of FPBs, which is useful for research development and researchers who are interested in this area.
Collapse
Affiliation(s)
- Zhirui Qin
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Zhenhua Zhao
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA.
| | - Liling Xia
- Nanjing Institute of Industry Technology, Nanjing, 210016, China
| | - Okugbe Ebiotubo Ohore
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
- Organization of African Academic Doctors, Off Kamiti Road, P.O. Box 25305-00100, Nairobi, Kenya
| |
Collapse
|
6
|
Silva PV, Pinheiro C, Morgado RG, Verweij RA, van Gestel CAM, Loureiro S. Bioaccumulation but no biomagnification of silver sulfide nanoparticles in freshwater snails and planarians. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:151956. [PMID: 34843767 DOI: 10.1016/j.scitotenv.2021.151956] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/21/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Bioaccumulation studies are critical in regulatory decision making on the potential environmental risks of engineered nanoparticles (NPs). The present study evaluated the toxicokinetics of silver, taken up from sulfide nanoparticles (Ag2S NPs; simulating an aged Ag NP form) and AgNO3 (ionic counterpart), in the pulmonate snail Physa acuta and the planarian Girardia tigrina. The snails were first exposed for 7 days to Ag-spiked water, along with the microalgae Raphidocelis subcapitata upon which they fed setting up a double route exposure, and subsequently provided as pre-exposed food to the planarians. Ag toxicokinetics and bioaccumulation were assessed in planarians and snails, and potential biomagnification from snail to planarian was evaluated. Gut depuration was also explored to understand whether it constitutes a factor likely to influence Ag toxicokinetics and internal concentrations in the test species. Both species revealed Ag uptake in Ag2S NP and AgNO3 treatments, with higher uptake from the latter. Uptake by the snails was probably via a combination of water exposure and ingested algae provided as food, but ingestion of algae possibly had higher relevance for Ag uptake from the Ag2S NPs compared to AgNO3. For planarians, diet probably was the most important exposure route since no Ag uptake was observed in previous waterborne exposures to Ag2S NPs. Kinetics and internal Ag concentrations did not significantly differ between depurated and non-depurated snails or planarians. The planarians fed on snails revealed no biomagnification. To the best of our knowledge this is the first study investigating the toxicokinetics and biomagnification of NPs in planarians, and with that providing important data on the kinetics and bioaccumulation of NPs in a relevant benthic species.
Collapse
Affiliation(s)
- Patrícia V Silva
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Carlos Pinheiro
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rui G Morgado
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rudo A Verweij
- Department of Ecological Science, Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Cornelis A M van Gestel
- Department of Ecological Science, Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Susana Loureiro
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
7
|
Silver nanoparticles produced from Cedecea sp. exhibit antibiofilm activity and remarkable stability. Sci Rep 2021; 11:12619. [PMID: 34135368 PMCID: PMC8209203 DOI: 10.1038/s41598-021-92006-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/31/2021] [Indexed: 12/18/2022] Open
Abstract
With multidrug-resistant bacterial pathogens on the rise, there is a strong research focus on alternative antibacterial treatments that could replace or complement classical antibiotics. Metallic nanoparticles, and in particular silver nanoparticles (AgNPs), have been shown to kill bacterial biofilms effectively, but their chemical synthesis often involves environmentally unfriendly by-products. Recent studies have shown that microbial and plant extracts can be used for the environmentally friendly synthesis of AgNPs. Herein we report a procedure for producing AgNPs using a putative Cedecea sp. strain isolated from soil. The isolated bacterial strain showed a remarkable potential for producing spherical, crystalline and stable AgNPs characterized by UV–visible spectroscopy, transmission electron microscopy, dynamic light scattering, and Fourier transform infrared spectroscopy. The concentration of produced nanoparticles was 1.31 µg/µl with a negative surface charge of − 15.3 mV and nanoparticles size ranging from 10–40 nm. The AgNPs was tested against four pathogenic microorganisms S. epidermidis, S. aureus, E. coli and P. aeruginosa. The nanoparticles exhibited strong minimum inhibitory concentration (MIC) values of 12.5 and 6.25 µg/µl and minimum bactericidal concentration (MBC) values of 12.5 and 12.5 µg/mL against E. coli and P. aeruginosa, respectively. One distinguishing feature of AgNPs produced by Cedecea sp. extracts is their extreme stability. Inductively coupled plasma mass spectrometry and thermogravimetric analysis demonstrated that the produced AgNPs are stable for periods exceeding one year. This means that their strong antibacterial effects, demonstrated against E. coli and P. aeruginosa biofilms, can be expected to persist during extended periods.
Collapse
|
8
|
Saeki EK, Yamada AY, de Araujo LA, Anversa L, Garcia DDO, de Souza RLB, Martins HM, Kobayashi RKT, Nakazato G. Subinhibitory Concentrations of Biogenic Silver Nanoparticles Affect Motility and Biofilm Formation in Pseudomonas aeruginosa. Front Cell Infect Microbiol 2021; 11:656984. [PMID: 33869087 PMCID: PMC8047417 DOI: 10.3389/fcimb.2021.656984] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Biogenic silver nanoparticles (bio-AgNPs) are increasingly recognized as an antibiofilm and antivirulence strategy against P. aeruginosa, a bacterium that causes chronic infections in immunocompromised and cystic fibrosis patients. This study aimed to investigate the effects of subinhibitory concentrations of bio-AgNPs on motility and biofilm formation in P. aeruginosa. Bio-AgNPs were synthesized via reduction of ionic silver catalyzed by cell-free culture filtrate from Fusarium oxysporum. A total of 17 P. aeruginosa isolates and strains were evaluated for swarming, swimming, and twitching motility in the presence and absence (control) of bio-AgNPs, including 10 clinical isolates from patients with and without cystic fibrosis, 5 environmental isolates obtained from the public water supply system, and 2 reference strains (PAO1 and PA14). Isolates were identified by biochemical and molecular methods. Minimum inhibitory concentrations (MICs) were determined by the broth microdilution method. Swarming, swimming, and twitching motility assays were performed in Petri dishes. Biofilm formation capacity was assessed quantitatively by the crystal violet method. MIC values ranged from 15.62 to 62.50 µM. The results showed that subinhibitory concentrations of bio-AgNPs (½ MIC, 7.81-31.25 µM) significantly increased (p < 0.05) swarming, swimming, and twitching motility in 40.0, 40.0, and 46.7% of isolates, respectively. Subinhibitory bio-AgNP treatment enhanced (p < 0.05) biofilm formation capacity in PA14 and a cystic fibrosis isolate (P11). It is concluded that subinhibitory concentrations of bio-AgNPs increased biofilm formation and swarming, swimming, and twitching motility in PA14 and some P. aeruginosa isolates. These virulence factors are directly involved with quorum-sensing systems. Further research should investigate the effects of AgNPs on P. aeruginosa quorum sensing to help elucidate their mechanism of action at subinhibitory concentrations.
Collapse
Affiliation(s)
- Erika Kushikawa Saeki
- Regional Laboratory of Presidente Prudente, Adolfo Lutz Institute, Presidente Prudente, Brazil
| | - Amanda Yaeko Yamada
- Regional Laboratory of Presidente Prudente, Adolfo Lutz Institute, Presidente Prudente, Brazil
| | | | - Laís Anversa
- Regional Laboratory of Bauru, Adolfo Lutz Institute, Bauru, Brazil
| | | | | | - Heloísa Moreira Martins
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Renata Katsuko Takayama Kobayashi
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Gerson Nakazato
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| |
Collapse
|
9
|
Openda YI, Ngoy BP, Nyokong T. Photodynamic Antimicrobial Action of Asymmetrical Porphyrins Functionalized Silver-Detonation Nanodiamonds Nanoplatforms for the Suppression of Staphylococcus aureus Planktonic Cells and Biofilms. Front Chem 2021; 9:628316. [PMID: 33777896 PMCID: PMC7991625 DOI: 10.3389/fchem.2021.628316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/03/2021] [Indexed: 11/13/2022] Open
Abstract
New asymmetrical porphyrin derivatives containing a p-hydroxyphenyl moiety and p-acetylphenyl moieties along with their functionalized silver-detonation nanodiamonds nanohybrids were characterized and their photophysicochemical properties were established. The study provides evidence that the metalated porphyrin derivatives were red-shifted in absorption wavelength and possessed high singlet oxygen quantum yield comparative to the unmetalated core, thus making them suitable agents for photodynamic antimicrobial chemotherapy. As a result of conjugation to detonation nanodiamonds and silver nanoparticles, these compounds proved to be more effective as they exhibited stronger antibacterial and anti-biofilm activities on the multi-drug resistant S. aureus strain due to synergetic effect, compared to Ps alone. This suggests that the newly prepared nanohybrids could be used as a potential antimicrobial agent in the treatment of biofilms caused by S. aureus strain.
Collapse
Affiliation(s)
- Yolande I. Openda
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda, South Africa
| | - Bokolombe P. Ngoy
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda, South Africa
- Département de Chimie, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda, South Africa
| |
Collapse
|
10
|
Openda YI, Matshitse R, Nyokong T. A search for enhanced photodynamic activity against Staphylococcus aureus planktonic cells and biofilms: the evaluation of phthalocyanine-detonation nanodiamond-Ag nanoconjugates. Photochem Photobiol Sci 2020; 19:1442-1454. [PMID: 33000851 DOI: 10.1039/d0pp00075b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The present work reports on the synthesis and characterization of novel zinc (2) and indium (3) 2-amino-4-bromophenoxy substituted phthalocyanines (Pcs) along with the self-assembled nanoconjugates formed viaπ-π stacking interaction onto detonation nanodiamonds (DNDs) to form 2@DNDs and 3@DNDs. 2@DNDs and 3@DNDs were covalently linked to chitosan-silver mediated nanoparticles (CSAg) to form 2@DNDs-CSAg and 3@DNDs-CSAg nanoconjugates. High singlet oxygen quantum yields in DMSO of 0.69 and 0.72 for Pcs alone and 0.90 and 0.92 for 2@DNDs-CSAg and 3@DNDs-CSAg, respectively, were obtained. The photodynamic antimicrobial chemotherapy (PACT) activity of both phthalocyanines and nanoconjugates was tested against planktonic cells and biofilms of S. aureus. 2@DNDs-CSAg and 3@DNDs-CSAg caused effective killing with a log reduction of 9.74. In addition, PACT studies on single-species S. aureus biofilms were carried out with log reduction values of 5.12 and 5.27 at 200 μg mL-1 for 2@DNDs-CSAg and 3@DNDs-CSAg, respectively.
Collapse
Affiliation(s)
- Yolande Ikala Openda
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda, 6140, South Africa.
| | | | | |
Collapse
|
11
|
Zakaria BS, Dhar BR. Changes in syntrophic microbial communities, EPS matrix, and gene-expression patterns in biofilm anode in response to silver nanoparticles exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139395. [PMID: 32454336 DOI: 10.1016/j.scitotenv.2020.139395] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/10/2020] [Accepted: 05/10/2020] [Indexed: 05/25/2023]
Abstract
Understanding the toxic effect of silver nanoparticles (AgNPs) on various biological wastewater treatment systems is of significant interest to researchers. In recent years, microbial electrochemical technologies have opened up new opportunities for bioenergy and chemicals production from organic wastewater. However, the effects of AgNPs on microbial electrochemical systems are yet to be understood fully. Notably, no studies have investigated the impact of AgNPs on a microbial electrochemical system fed with a complex fermentable substrate. Here, we investigated the impact of AgNPs (50 mg/L) exposure to a biofilm anode in a microbial electrolysis cell (MEC) fed with glucose. The volumetric current density was 29 ± 2.0 A/m3 before the AgNPs exposure, which decreased to 20 ± 2.2 A/m3 after AgNPs exposure. The biofilms produced more extracellular polymeric substances (EPS) to cope with the AgNPs exposure, while carbohydrate to protein ratio in EPS considerably increased from 0.4 to 0.7. Scanning electron microscope (SEM) imaging also confirmed the marked excretion of EPS, forming a thick layer covering the anode biofilms after AgNPs injection. Transmission electron microscope (TEM) imaging showed that AgNPs still penetrated some microbial cells, which could explain the deterioration of MEC performance after AgNPs exposure. The relative expression level of the quorum signalling gene (LuxR) increased by 30%. Microbial community analyses suggested that various fermentative bacterial species (e.g., Bacteroides, Synergistaceae_vadinCA02, Dysgonomonas, etc.) were susceptible to AgNPs toxicity, which led to the disruption of their syntrophic partnership with electroactive bacteria. The abundance of some specific electroactive bacteria (e.g., Geobacter species) also decreased. Moreover, decreased relative expressions of various extracellular electron transfer associated genes (omcB, omcC, omcE, omcZ, omcS, and pilA) were observed. However, the members of family Enterobacteriaceae, known to perform a dual function of fermentation and anodic respiration, became dominant after biofilm anode exposed to AgNPs. Thus, EPS extraction provided partial protection against AgNPs exposure.
Collapse
Affiliation(s)
- Basem S Zakaria
- Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Bipro Ranjan Dhar
- Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
12
|
Komendová R, Žídek J, Berka M, Jemelková M, Řezáčová V, Conte P, Kučerík J. Small-sized platinum nanoparticles in soil organic matter: Influence on water holding capacity, evaporation and structural rigidity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133822. [PMID: 31756795 DOI: 10.1016/j.scitotenv.2019.133822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/26/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
Engineered and anthropogenic nanoparticles represent a new type of pollutants. Up until now, many studies have reported its adverse effect on biota, but the potential influence on the properties and functions of environmental compartments has largely been ignored. In this work, the effect of Pt nanoparticles on the functions and properties of model soil organic matter has been studied. Using differential scanning calorimetry and molecular modeling, the effect of a wide range of 3 nm Pt nanoparticles concentrations on water holding capacity, the strength of water binding, the stability of water molecule bridges and the content of aliphatic crystallites was studied. It was found that strong hydration of the nanoparticles influences the 3D water structural network and acts as kosmotropic agents (structure-forming) in water bridges and as chaotropic agents (i.e. water destructuring) in larger water volumes. Contrarily, the interaction with soil organic matter moieties partially eliminates these effects. As a result, the 3 nm Pt nanoparticles decreased the evaporation enthalpy of water in soil organic matter and supported soil desiccation. They also increased the strength of water molecule bridges and increased the soil structural rigidity even at low concentrations. Additionally, at high concentrations, they decreased the water content in soil organic matter and induced the aliphatic moieties' crystallization. It is concluded that the small-sized Pt nanoparticles, and perhaps other types as well, may affect the local physicochemical processes in soils and may consequently contribute to enhanced evapotranspiration and deterioration of soil functions.
Collapse
Affiliation(s)
- Renata Komendová
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200 Brno, Czech Republic
| | - Jan Žídek
- Central European Institute of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Michal Berka
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200 Brno, Czech Republic
| | - Marta Jemelková
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200 Brno, Czech Republic
| | - Veronika Řezáčová
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200 Brno, Czech Republic
| | - Pellegrino Conte
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, v.le delle Scienze edificio 4, 90128 Palermo, Italy
| | - Jiří Kučerík
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200 Brno, Czech Republic.
| |
Collapse
|
13
|
Alizadeh S, Abdul Rahim A, Guo B, Hawari J, Ghoshal S, Comeau Y. Impacts of Continuous Inflow of Low Concentrations of Silver Nanoparticles on Biological Performance and Microbial Communities of Aerobic Heterotrophic Wastewater Biofilm. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:9148-9159. [PMID: 31294965 DOI: 10.1021/acs.est.9b01214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Attached-growth wastewater processes are currently used in water resource recovery facilities (WRRFs) for required upgrades due to an increase in influent loading or to reach more stringent discharge criteria. Yet, the distribution and long-term inhibitory effects of silver nanoparticles (AgNPs) in attached-growth biological wastewater processes and their impact on involved microbial communities are poorly understood at relevant, low concentrations. Retention, distribution, and long-term inhibitory effect of polyvinylpyrrolidone (PVP)-coated AgNPs were evaluated in bench-scale moving bed biofilm reactors (MBBRs), achieving soluble organic matter removal, over a 64 day exposure to nominal concentrations of 10 and 100 μg/L. Distributions of continuously added AgNPs were characterized in the influent, bioreactor, and effluent of MBBRs using single particle inductively coupled plasma mass spectroscopy (spICP-MS). Aerobic heterotrophic biofilms in MBBRs demonstrated limited retention capacity for AgNPs over long-term exposure, with release of AgNPs, and Ag-rich biofilm sloughed from the carriers. Continuous exposure to both influent AgNP concentrations significantly decreased soluble chemical oxygen demand (SCOD) removal efficiency (11% to 31%) and reduced biofilm viability (8% to 30%). Specific activities of both intracellular dehydrogenase (DHA) and extracellular α-glucosidase (α-Glu) and protease (PRO) enzymes were significantly inhibited (8% to 39%) with an observed NP dose-dependent intracellular reactive oxygen species (ROS) production and shift in biofilm microbial community composition by day 64. Our results indicated that long-term exposure to AgNPs in biofilm processes at environmentally relevant concentrations can impact the treatment process stability and the quality of the discharged effluent.
Collapse
Affiliation(s)
- Sanaz Alizadeh
- Department of Civil, Geological and Mining Engineering , Polytechnique Montreal , 2500 Polytechnique road , Montreal ( Quebec ) Canada H3T 1J4
| | - Arshath Abdul Rahim
- Department of Civil Engineering , McGill University , 817 Sherbrooke Street West , Montreal ( Quebec ) Canada H3A 0C3
| | - Bing Guo
- Department of Civil Engineering , McGill University , 817 Sherbrooke Street West , Montreal ( Quebec ) Canada H3A 0C3
| | - Jalal Hawari
- Department of Civil, Geological and Mining Engineering , Polytechnique Montreal , 2500 Polytechnique road , Montreal ( Quebec ) Canada H3T 1J4
| | - Subhasis Ghoshal
- Department of Civil Engineering , McGill University , 817 Sherbrooke Street West , Montreal ( Quebec ) Canada H3A 0C3
| | - Yves Comeau
- Department of Civil, Geological and Mining Engineering , Polytechnique Montreal , 2500 Polytechnique road , Montreal ( Quebec ) Canada H3T 1J4
| |
Collapse
|
14
|
Zhang L, Wu L, Mi Y, Si Y. Silver Nanoparticles Induced Cell Apoptosis, Membrane Damage of Azotobacter vinelandii and Nitrosomonas europaea via Generation of Reactive Oxygen Species. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 103:181-186. [PMID: 31049596 DOI: 10.1007/s00128-019-02622-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
Silver nanoparticles (AgNPs) is widely used as an antibacterial agent, but the specific antibacterial mechanism is still conflicting. This study aimed to investigate the size dependent inhibition of AgNPs and the relationship between inhibition and reactive oxygen species (ROS). Azotobactervinelandii and Nitrosomonaseuropaea were exposed to AgNPs with different particles size (10 nm and 50 nm). The ROS production was measured and the results showed that the generation of ROS related to the particle size and concentrations of AgNPs. At 10 mg/L of 10 nm Ag particles, the apoptosis rate of A. vinelandii and N. europaea were 20.23% and 1.87% respectively. Additionally, the necrosis rate of A. vinelandii and N. europaea reached to 15.20% and 42.20% respectively. Furthermore, transmission electron microscopy images also indicated that AgNPs caused severely bacterial cell membrane damage. Together these data suggested that the toxicity of AgNPs depends on its particle size and overproduction of ROS.
Collapse
Affiliation(s)
- Li Zhang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Lingli Wu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Yazhu Mi
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Youbin Si
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
15
|
Zhang W, Ke S, Sun C, Xu X, Chen J, Yao L. Fate and toxicity of silver nanoparticles in freshwater from laboratory to realistic environments: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:7390-7404. [PMID: 30673947 DOI: 10.1007/s11356-019-04150-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
The fate and risk assessment of silver nanoparticles (Ag NPs) is an important environmental health issue. The toxic effects, mechanisms, and modes of action of Ag NPs on aquatic organisms have been extensively determined in the laboratory. However, knowledge gaps and discrepancies exist between laboratory studies and realistic environmental research; such inconsistencies hinder the development of health and safety regulations. To bridge these gaps, this review summarizes how environmental conditions and the physicochemical properties of Ag NPs affect the inconsistent findings between laboratory studies and realistic environmental research. Moreover, this paper systematically reviews different toxic effects of Ag NPs in a realistic environment and compares these effects with those in the laboratory, which is helpful for assessing the environmental fate and risk of Ag NPs. The hazardous effects of Ag NPs on the whole aquatic ecosystem with low concentrations (μg L-1) and long-term periods (months to years) are detailed. Furthermore, two perspectives of future toxicity studies of Ag NPs in realistic freshwater environments are emphasized.
Collapse
Affiliation(s)
- Weicheng Zhang
- Collaborative Innovation Center of Water Security for the Water Source Region of Mid-line of the South-to-North Diversion Project of Henan Province, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan Province, China.
- Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan Province, China.
| | - Song Ke
- Collaborative Innovation Center of Water Security for the Water Source Region of Mid-line of the South-to-North Diversion Project of Henan Province, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan Province, China
- Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan Province, China
| | - Caiyun Sun
- Collaborative Innovation Center of Water Security for the Water Source Region of Mid-line of the South-to-North Diversion Project of Henan Province, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan Province, China
- Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan Province, China
| | - Xin Xu
- Collaborative Innovation Center of Water Security for the Water Source Region of Mid-line of the South-to-North Diversion Project of Henan Province, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan Province, China
- Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan Province, China
| | - Jibao Chen
- Collaborative Innovation Center of Water Security for the Water Source Region of Mid-line of the South-to-North Diversion Project of Henan Province, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan Province, China
- Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan Province, China
| | - Lunguang Yao
- Collaborative Innovation Center of Water Security for the Water Source Region of Mid-line of the South-to-North Diversion Project of Henan Province, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan Province, China.
- Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan Province, China.
| |
Collapse
|