1
|
Li M, Wu L, Si H, Wu Y, Liu Y, Zeng Y, Shen B. Engineered mitochondria in diseases: mechanisms, strategies, and applications. Signal Transduct Target Ther 2025; 10:71. [PMID: 40025039 PMCID: PMC11873319 DOI: 10.1038/s41392-024-02081-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/30/2024] [Accepted: 11/17/2024] [Indexed: 03/04/2025] Open
Abstract
Mitochondrial diseases represent one of the most prevalent and debilitating categories of hereditary disorders, characterized by significant genetic, biological, and clinical heterogeneity, which has driven the development of the field of engineered mitochondria. With the growing recognition of the pathogenic role of damaged mitochondria in aging, oxidative disorders, inflammatory diseases, and cancer, the application of engineered mitochondria has expanded to those non-hereditary contexts (sometimes referred to as mitochondria-related diseases). Due to their unique non-eukaryotic origins and endosymbiotic relationship, mitochondria are considered highly suitable for gene editing and intercellular transplantation, and remarkable progress has been achieved in two promising therapeutic strategies-mitochondrial gene editing and artificial mitochondrial transfer (collectively referred to as engineered mitochondria in this review) over the past two decades. Here, we provide a comprehensive review of the mechanisms and recent advancements in the development of engineered mitochondria for therapeutic applications, alongside a concise summary of potential clinical implications and supporting evidence from preclinical and clinical studies. Additionally, an emerging and potentially feasible approach involves ex vivo mitochondrial editing, followed by selection and transplantation, which holds the potential to overcome limitations such as reduced in vivo operability and the introduction of allogeneic mitochondrial heterogeneity, thereby broadening the applicability of engineered mitochondria.
Collapse
Affiliation(s)
- Mingyang Li
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Limin Wu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Haibo Si
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuangang Wu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuan Liu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yi Zeng
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Bin Shen
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
2
|
Rimskaya B, Shebanov N, Entelis N, Mazunin I. Enzymatic tools for mitochondrial genome manipulation. Biochimie 2025; 229:114-128. [PMID: 39426703 DOI: 10.1016/j.biochi.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Mutations in mitochondrial DNA (mtDNA) can manifest phenotypically as a wide range of neuromuscular and neurodegenerative pathologies that are currently only managed symptomatically without addressing the root cause. A promising approach is the development of molecular tools aimed at mtDNA cutting or editing. Unlike nuclear DNA, a cell can have hundreds or even thousands of mitochondrial genomes, and mutations can be present either in all of them or only in a subset. Consequently, the developed tools are aimed at reducing the number of copies of mutant mtDNA or editing mutant nucleotides. Despite some progress in the field of mitochondrial genome editing in human cells, working with model animals is still limited due to the complexity of their creation. Furthermore, not all existing editing systems can be easily adapted to function within mitochondria. In this review, we evaluate the mtDNA editing tools available today, with a particular focus on specific mtDNA mutations linked to hereditary mitochondrial diseases, aiming to provide an in-depth understanding of both the opportunities and hurdles to the development of mitochondrial genome editing technologies.
Collapse
Affiliation(s)
- Beatrisa Rimskaya
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, 143026, Russian Federation; Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, 141700, Russian Federation; Department of Biology and Genetics, Petrovsky Medical University, Moscow, 117418, Russian Federation
| | - Nikita Shebanov
- UMR7156 Molecular Genetics, Genomics, Microbiology, University of Strasbourg - CNRS, Strasbourg, 67000, France
| | - Nina Entelis
- UMR7156 Molecular Genetics, Genomics, Microbiology, University of Strasbourg - CNRS, Strasbourg, 67000, France.
| | - Ilya Mazunin
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, 143026, Russian Federation; Department of Biology and Genetics, Petrovsky Medical University, Moscow, 117418, Russian Federation.
| |
Collapse
|
3
|
Liu D, Zhou X, He Y, Zhao J. The Roles of CircRNAs in Mitochondria. J Cancer 2024; 15:2759-2769. [PMID: 38577612 PMCID: PMC10988319 DOI: 10.7150/jca.92111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/02/2024] [Indexed: 04/06/2024] Open
Abstract
Mitochondria participate in varieties of cellular events. It is widely accepted that human mitochondrial genome encodes 13 proteins, 2 rRNAs, and 22 tRNAs. Gene variation derived from human nuclear genome cannot completely explain mitochondrial diseases. The advent of high-throughput sequencing coupled with novel bioinformatic analyses decode the complexity of mitochondria-derived transcripts. Recently, circular RNAs (circRNAs) from both human mitochondrial genome and nuclear genome have been found to be located at mitochondria. Studies about the roles and molecular mechanisms underlying trafficking of the nucleus encoded circRNAs to mitochondria and mitochondria encoded circRNAs to the nucleus or cytoplasm in mammals are only beginning to emerge. These circRNAs have been associated with a variety of diseases, especially cancers. Here, we discuss the emerging field of mitochondria-located circRNAs by reviewing their identification, expression patterns, regulatory roles, and functional mechanisms. Mitochondria-located circRNAs have regulatory roles in cellular physiology and pathology. We also highlight future perspectives and challenges in studying mitochondria-located circRNAs, as well as their potential biomedical applications.
Collapse
Affiliation(s)
- Donghong Liu
- Department of Special Medical Care, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
| | - Xinyu Zhou
- Department of Epidemiology, Naval Medical University, Shanghai, 200433, China
| | - Yida He
- Department of Epidemiology, Naval Medical University, Shanghai, 200433, China
| | - Jun Zhao
- Department of Special Medical Care, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
| |
Collapse
|
4
|
Shamanskiy V, Mikhailova AA, Tretiakov EO, Ushakova K, Mikhailova AG, Oreshkov S, Knorre DA, Ree N, Overdevest JB, Lukowski SW, Gostimskaya I, Yurov V, Liou CW, Lin TK, Kunz WS, Reymond A, Mazunin I, Bazykin GA, Fellay J, Tanaka M, Khrapko K, Gunbin K, Popadin K. Secondary structure of the human mitochondrial genome affects formation of deletions. BMC Biol 2023; 21:103. [PMID: 37158879 PMCID: PMC10166460 DOI: 10.1186/s12915-023-01606-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 04/19/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Aging in postmitotic tissues is associated with clonal expansion of somatic mitochondrial deletions, the origin of which is not well understood. Such deletions are often flanked by direct nucleotide repeats, but this alone does not fully explain their distribution. Here, we hypothesized that the close proximity of direct repeats on single-stranded mitochondrial DNA (mtDNA) might play a role in the formation of deletions. RESULTS By analyzing human mtDNA deletions in the major arc of mtDNA, which is single-stranded during replication and is characterized by a high number of deletions, we found a non-uniform distribution with a "hot spot" where one deletion breakpoint occurred within the region of 6-9 kb and another within 13-16 kb of the mtDNA. This distribution was not explained by the presence of direct repeats, suggesting that other factors, such as the spatial proximity of these two regions, can be the cause. In silico analyses revealed that the single-stranded major arc may be organized as a large-scale hairpin-like loop with a center close to 11 kb and contacting regions between 6-9 kb and 13-16 kb, which would explain the high deletion activity in this contact zone. The direct repeats located within the contact zone, such as the well-known common repeat with a first arm at 8470-8482 bp (base pair) and a second arm at 13,447-13,459 bp, are three times more likely to cause deletions compared to direct repeats located outside of the contact zone. A comparison of age- and disease-associated deletions demonstrated that the contact zone plays a crucial role in explaining the age-associated deletions, emphasizing its importance in the rate of healthy aging. CONCLUSIONS Overall, we provide topological insights into the mechanism of age-associated deletion formation in human mtDNA, which could be used to predict somatic deletion burden and maximum lifespan in different human haplogroups and mammalian species.
Collapse
Affiliation(s)
- Victor Shamanskiy
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Alina A Mikhailova
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Evgenii O Tretiakov
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Kristina Ushakova
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Alina G Mikhailova
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- Vavilov Institute of General Genetics RAS, Moscow, Russia
| | - Sergei Oreshkov
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Dmitry A Knorre
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Natalia Ree
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Jonathan B Overdevest
- Department of Otolaryngology, Columbia University Irving Medical Center, New York, USA
| | - Samuel W Lukowski
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, Australia
| | - Irina Gostimskaya
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Valerian Yurov
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Chia-Wei Liou
- Department of Neurology, Kaohsiung Chang-Gung Memorial Hospital and Chang-Gung University, Kaohsiung, Taiwan
| | - Tsu-Kung Lin
- Department of Neurology, Kaohsiung Chang-Gung Memorial Hospital and Chang-Gung University, Kaohsiung, Taiwan
| | - Wolfram S Kunz
- Division of Neurochemistry, Department of Experimental Epileptology and Cognition Research, University Bonn, Bonn, Germany
- Department of Epileptology, University Hospital of Bonn, Bonn, Germany
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Ilya Mazunin
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Georgii A Bazykin
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia
- Laboratory of Molecular Evolution, Institute for Information Transmission Problems (Kharkevich Institute) of the Russian Academy of Sciences, Moscow, Russia
| | - Jacques Fellay
- Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Masashi Tanaka
- Department for Health and Longevity Research, National Institutes of Biomedical Innovation, Health and Nutrition, 1-23-1 Toyama, Shinjuku-Ku, Tokyo, 162-8636, Japan
- Department of Neurology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
- Department of Clinical Laboratory, IMS Miyoshi General Hospital, Fujikubo, Miyoshi-Machi, Iruma, Saitama Prefecture, 974-3354-0041, Japan
| | | | - Konstantin Gunbin
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
| | - Konstantin Popadin
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russia.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
5
|
Soldatov VO, Kubekina MV, Skorkina MY, Belykh AE, Egorova TV, Korokin MV, Pokrovskiy MV, Deykin AV, Angelova PR. Current advances in gene therapy of mitochondrial diseases. J Transl Med 2022; 20:562. [PMID: 36471396 PMCID: PMC9724384 DOI: 10.1186/s12967-022-03685-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/04/2022] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial diseases (MD) are a heterogeneous group of multisystem disorders involving metabolic errors. MD are characterized by extremely heterogeneous symptoms, ranging from organ-specific to multisystem dysfunction with different clinical courses. Most primary MD are autosomal recessive but maternal inheritance (from mtDNA), autosomal dominant, and X-linked inheritance is also known. Mitochondria are unique energy-generating cellular organelles designed to survive and contain their own unique genetic coding material, a circular mtDNA fragment of approximately 16,000 base pairs. The mitochondrial genetic system incorporates closely interacting bi-genomic factors encoded by the nuclear and mitochondrial genomes. Understanding the dynamics of mitochondrial genetics supporting mitochondrial biogenesis is especially important for the development of strategies for the treatment of rare and difficult-to-diagnose diseases. Gene therapy is one of the methods for correcting mitochondrial disorders.
Collapse
Affiliation(s)
- Vladislav O Soldatov
- Core Facility Centre, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia.
- Laboratory of Genome Editing for Biomedicine and Animal Health, Belgorod State National Research University, Belgorod, Russia.
| | - Marina V Kubekina
- Core Facility Centre, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Marina Yu Skorkina
- Department of Biochemistry, Belgorod State National Research University, Belgorod, Russia
- Laboratory of Genome Editing for Biomedicine and Animal Health, Belgorod State National Research University, Belgorod, Russia
| | - Andrei E Belykh
- Dioscuri Centre for Metabolic Diseases, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Tatiana V Egorova
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail V Korokin
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
| | - Mikhail V Pokrovskiy
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
| | - Alexey V Deykin
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
- Laboratory of Genome Editing for Biomedicine and Animal Health, Belgorod State National Research University, Belgorod, Russia
| | - Plamena R Angelova
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
6
|
Barrera-Paez JD, Moraes CT. Mitochondrial genome engineering coming-of-age. Trends Genet 2022; 38:869-880. [PMID: 35599021 PMCID: PMC9283244 DOI: 10.1016/j.tig.2022.04.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/11/2022] [Accepted: 04/27/2022] [Indexed: 12/16/2022]
Abstract
The mitochondrial genome has been difficult to manipulate because it is shielded by the organelle double membranes, preventing efficient nucleic acid entry. Moreover, mitochondrial DNA (mtDNA) recombination is not a robust system in most species. This limitation has forced investigators to rely on naturally occurring alterations to study both mitochondrial function and pathobiology. Because most pathogenic mtDNA mutations are heteroplasmic, the development of specific nucleases has allowed us to selectively eliminate mutant species. Several 'protein only' gene-editing platforms have been successfully used for this purpose. More recently, a DNA double-strand cytidine deaminase has been identified and adapted to edit mtDNA. This enzyme was also used as a component to adapt a DNA single-strand deoxyadenosine deaminase to mtDNA editing. These are major advances in our ability to precisely alter the mtDNA in animal cells.
Collapse
|
7
|
Silva-Pinheiro P, Minczuk M. The potential of mitochondrial genome engineering. Nat Rev Genet 2022; 23:199-214. [PMID: 34857922 DOI: 10.1038/s41576-021-00432-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2021] [Indexed: 12/19/2022]
Abstract
Mitochondria are subject to unique genetic control by both nuclear DNA and their own genome, mitochondrial DNA (mtDNA), of which each mitochondrion contains multiple copies. In humans, mutations in mtDNA can lead to devastating, heritable, multi-system diseases that display different tissue-specific presentation at any stage of life. Despite rapid advances in nuclear genome engineering, for years, mammalian mtDNA has remained resistant to genetic manipulation, hampering our ability to understand the mechanisms that underpin mitochondrial disease. Recent developments in the genetic modification of mammalian mtDNA raise the possibility of using genome editing technologies, such as programmable nucleases and base editors, for the treatment of hereditary mitochondrial disease.
Collapse
Affiliation(s)
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
8
|
Lipophilic Conjugates for Carrier-Free Delivery of RNA Importable into Human Mitochondria. Methods Mol Biol 2021; 2277:49-67. [PMID: 34080144 DOI: 10.1007/978-1-0716-1270-5_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Defects in human mitochondrial genome can cause a wide range of clinical disorders that still do not have efficient therapies. The natural pathway of small noncoding RNA import can be exploited to address therapeutic RNAs into the mitochondria. To create an approach of carrier-free targeting of RNA into living human cells, we designed conjugates containing a cholesterol residue and developed the protocols of chemical synthesis of oligoribonucleotides conjugated with cholesterol residue through cleavable pH-triggered hydrazone bond. The biodegradable conjugates of importable RNA with cholesterol can be internalized by cells in a carrier-free manner; RNA can then be released in the late endosomes due to a change in pH and partially targeted into mitochondria. Here we provide detailed protocols for solid-phase and "in solution" chemical synthesis of oligoribonucleotides conjugated to a cholesterol residue through a hydrazone bond. We describe the optimization of the carrier-free cell transfection with these conjugated RNA molecules and methods for evaluating the cellular and mitochondrial uptake of lipophilic conjugates.
Collapse
|
9
|
Almutairi ZM. Molecular characterization and expression analysis of ribosomal L18/L5e gene in Pennisetum glaucum (L.) R. Br. Saudi J Biol Sci 2021; 28:3585-3593. [PMID: 34121902 PMCID: PMC8176002 DOI: 10.1016/j.sjbs.2021.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/21/2022] Open
Abstract
Ribosomal L18/L5e (RL18/L5e) is a member of the ribosomal L18/L5e protein family, which has an essential function in translation of mRNA into protein in the large ribosomal subunit. In this study, RL18/L5e was isolated and sequenced from local Pennisetum glaucum (L.) R. Br. cultivar which is known to adapt to environmental stress. The obtained cDNA for PgRL18/L5e was 699 bp in length, with an open reading frame of 564 bp. The deduced protein sequence contained 187 amino acids and comprised an RL18/L5e domain, which shared high sequence identity with orthologous proteins from Viridiplantae. The obtained PgRL18/L5e cDNA contained two exons of 154 and 545 bp, respectively, and an intron of 1398 bp. Secondary and 3D structures of the deduced PgRL18/L5e protein were predicted using in silico tools. Phylogenetic analysis showed close relationships between the PgRL18/L5e protein and its orthologs from monocot species. Multiple sequence alignment showed high identity in the RL18/L5e domain sequence in all orthologous proteins in Viridiplantae. Moreover, all orthologous RL18/L5e proteins shared the same domain architecture and were nearly equal in length. Quantitative real-time PCR indicated a higher transcript abundance of PgRL18/L5e in shoots than in roots of 3-day-old seedlings. Moreover, the expression of PgRL18/L5e in seedlings under cold and drought stress was substantially lower than that in untreated seedlings, whereas the highest expression was shown under heat stress. This study provides insights into the structure and function of the RL18/L5e gene in tolerant crops, which could facilitate the understanding of the role of the various plant ribosomal proteins in adaptation to extreme environments.
Collapse
Affiliation(s)
- Zainab M. Almutairi
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdulaziz University, P.O. Box: 83, Al-kharj 11942, Saudi Arabia
| |
Collapse
|
10
|
Hussain SRA, Yalvac ME, Khoo B, Eckardt S, McLaughlin KJ. Adapting CRISPR/Cas9 System for Targeting Mitochondrial Genome. Front Genet 2021; 12:627050. [PMID: 33889176 PMCID: PMC8055930 DOI: 10.3389/fgene.2021.627050] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/01/2021] [Indexed: 12/21/2022] Open
Abstract
Gene editing of the mitochondrial genome using the CRISPR-Cas9 system is highly challenging mainly due to sub-efficient delivery of guide RNA and Cas9 enzyme complexes into the mitochondria. In this study, we were able to perform gene editing in the mitochondrial DNA by appending an NADH-ubiquinone oxidoreductase chain 4 (ND4) targeting guide RNA to an RNA transport-derived stem loop element (RP-loop) and expressing the Cas9 enzyme with a preceding mitochondrial localization sequence. We observe mitochondrial colocalization of RP-loop gRNA and a marked reduction of ND4 expression in the cells carrying a 11205G variant in their ND4 sequence coincidently decreasing the mtDNA levels. This proof-of-concept study suggests that a stem-loop element added sgRNA can be transported to the mitochondria and functionally interact with Cas9 to mediate sequence-specific mtDNA cleavage. Using this novel approach to target the mtDNA, our results provide further evidence that CRISPR-Cas9-mediated gene editing might potentially be used to treat mitochondrial-related diseases.
Collapse
Affiliation(s)
- Syed-Rehan A Hussain
- Center for Molecular and Human Genetics, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States.,Center for Clinical and Translational Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States
| | - Mehmet E Yalvac
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Benedict Khoo
- Center for Molecular and Human Genetics, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States
| | - Sigrid Eckardt
- Center for Molecular and Human Genetics, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States
| | - K John McLaughlin
- Center for Molecular and Human Genetics, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States
| |
Collapse
|
11
|
Zakirova EG, Muzyka VV, Mazunin IO, Orishchenko KE. Natural and Artificial Mechanisms of Mitochondrial Genome Elimination. Life (Basel) 2021; 11:life11020076. [PMID: 33498399 PMCID: PMC7909434 DOI: 10.3390/life11020076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 01/11/2023] Open
Abstract
The generally accepted theory of the genetic drift of mitochondrial alleles during mammalian ontogenesis is based on the presence of a selective bottleneck in the female germline. However, there is a variety of different theories on the pathways of genetic regulation of mitochondrial DNA (mtDNA) dynamics in oogenesis and adult somatic cells. The current review summarizes present knowledge on the natural mechanisms of mitochondrial genome elimination during mammalian development. We also discuss the variety of existing and developing methodologies for artificial manipulation of the mtDNA heteroplasmy level. Understanding of the basics of mtDNA dynamics will shed the light on the pathogenesis and potential therapies of human diseases associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Elvira G. Zakirova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.G.Z.); (V.V.M.)
| | - Vladimir V. Muzyka
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.G.Z.); (V.V.M.)
- Department of Genetic Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Ilya O. Mazunin
- Skolkovo Institute of Science and Technology, 143026 Skolkovo, Russia;
| | - Konstantin E. Orishchenko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.G.Z.); (V.V.M.)
- Department of Genetic Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
12
|
Loutre R, Heckel AM, Smirnova A, Entelis N, Tarassov I. Can Mitochondrial DNA be CRISPRized: Pro and Contra. IUBMB Life 2018; 70:1233-1239. [PMID: 30184317 DOI: 10.1002/iub.1919] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 01/08/2023]
Abstract
Mitochondria represent a chimera of macromolecules encoded either in the organellar genome, mtDNA, or in the nuclear one. If the pathway of protein targeting to different sub-compartments of mitochondria was relatively well studied, import of small noncoding RNAs into mammalian mitochondria still awaits mechanistic explanations and its functional issues are often not understood thus raising polemics. At the same time, RNA mitochondrial import pathway has an obvious attractiveness as it appears as a unique natural mechanism permitting to address nucleic acids into the organelles. Deciphering the function(s) of imported RNAs inside the mitochondria is extremely complicated due to their relatively low abundance, which suggests their regulatory role. We previously demonstrated that mitochondrial targeting of small noncoding RNAs able to specifically anneal with the mutant mitochondrial DNA led to a decrease of the mtDNA heteroplasmy level by inhibiting mutant mtDNA replication. We then demonstrated that increasing level of expression of such antireplicative recombinant RNAs increases significantly the antireplicative effect. In this report, we present a new data investigating the possibility to establish a CRISPR-Cas9 system targeting mtDNA exploiting of the pathway of RNA import into mitochondria. Mitochondrially addressed Cas9 versions and a set of mitochondrially targeted guide RNAs were tested in vitro and in vivo and their effect on mtDNA copy number was demonstrated. So far, the system appeared as more complicated for use than previously found for nuclear DNA, because only application of a pair of guide RNAs produced the effect of mtDNA depletion. We discuss, in a critical way, these results and put them in a broader context of polemics concerning the possibilities of manipulation of mtDNA in mammalians. The findings described here prove the potential of the RNA import pathway as a tool for studying mtDNA and for future therapy of mitochondrial disorders. © The Authors. IUBMB Life published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology, 70(12):1233-1239, 2018.
Collapse
Affiliation(s)
- Romuald Loutre
- UMR 7156 GMGM (Molecular Genetics, Genomics, Microbiology), University of Strasbourg - CNRS, Strasbourg, France
| | - Anne-Marie Heckel
- UMR 7156 GMGM (Molecular Genetics, Genomics, Microbiology), University of Strasbourg - CNRS, Strasbourg, France
| | - Anna Smirnova
- UMR 7156 GMGM (Molecular Genetics, Genomics, Microbiology), University of Strasbourg - CNRS, Strasbourg, France
| | - Nina Entelis
- UMR 7156 GMGM (Molecular Genetics, Genomics, Microbiology), University of Strasbourg - CNRS, Strasbourg, France
| | - Ivan Tarassov
- UMR 7156 GMGM (Molecular Genetics, Genomics, Microbiology), University of Strasbourg - CNRS, Strasbourg, France
| |
Collapse
|