1
|
Blanter M, Sork H, Tuomela S, Flodström-Tullberg M. Genetic and Environmental Interaction in Type 1 Diabetes: a Relationship Between Genetic Risk Alleles and Molecular Traits of Enterovirus Infection? Curr Diab Rep 2019; 19:82. [PMID: 31401790 PMCID: PMC6689284 DOI: 10.1007/s11892-019-1192-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW We provide an overview of the current knowledge regarding the natural history of human type 1 diabetes (T1D) and the documented associations between virus infections (in particular the enteroviruses) and disease development. We review studies that examine whether T1D-specific risk alleles in genes involved in the function of the immune system can alter susceptibility to virus infections or affect the magnitude of the host antiviral response. We also highlight where the major gaps in our knowledge exist and consider possible implications that new insights gained from the discussed gene-environment interaction studies may bring. RECENT FINDINGS A commonality between several of the studied T1D risk variants studied is their role in modulating the host immune response to viral infection. Generally, little support exists indicating that the risk variants increase susceptibility to infection and moreover, they usually appear to predispose the immune system towards a hyper-reactive state, decrease the risk of infection, and/or favor the establishment of viral persistence. In conclusion, although the current number of studies is limited, this type of research can provide important insights into the mechanisms that are central to disease pathogenesis and further describe how genetic and environmental factors jointly influence the risk of T1D development. The latter may provide genetic markers that could be used for patient stratification and for the selection of method(s) for disease prevention.
Collapse
Affiliation(s)
- Marfa Blanter
- 0000 0000 9241 5705grid.24381.3cCenter for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- 0000 0001 0668 7884grid.5596.fLaboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, EU Belgium
| | - Helena Sork
- 0000 0000 9241 5705grid.24381.3cCenter for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Soile Tuomela
- 0000 0000 9241 5705grid.24381.3cCenter for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Malin Flodström-Tullberg
- 0000 0000 9241 5705grid.24381.3cCenter for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
2
|
Dunne JL, Richardson SJ, Atkinson MA, Craig ME, Dahl-Jørgensen K, Flodström-Tullberg M, Hyöty H, Insel RA, Lernmark Å, Lloyd RE, Morgan NG, Pugliese A. Rationale for enteroviral vaccination and antiviral therapies in human type 1 diabetes. Diabetologia 2019; 62:744-753. [PMID: 30675626 PMCID: PMC6450860 DOI: 10.1007/s00125-019-4811-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/11/2018] [Indexed: 12/13/2022]
Abstract
In type 1 diabetes, pancreatic beta cells are destroyed by chronic autoimmune responses. The disease develops in genetically susceptible individuals, but a role for environmental factors has been postulated. Viral infections have long been considered as candidates for environmental triggers but, given the lack of evidence for an acute, widespread, cytopathic effect in the pancreas in type 1 diabetes or for a closely related temporal association of diabetes onset with such infections, a role for viruses in type 1 diabetes remains unproven. Moreover, viruses have rarely been isolated from the pancreas of individuals with type 1 diabetes, mainly (but not solely) due to the inaccessibility of the organ. Here, we review past and recent literature to evaluate the proposals that chronic, recurrent and, possibly, persistent enteroviral infections occur in pancreatic beta cells in type 1 diabetes. We also explore whether these infections may be sustained by different virus strains over time and whether multiple viral hits can occur during the natural history of type 1 diabetes. We emphasise that only a minority of beta cells appear to be infected at any given time and that enteroviruses may become replication defective, which could explain why they have been isolated from the pancreas only rarely. We argue that enteroviral infection of beta cells largely depends on the host innate and adaptive immune responses, including innate responses mounted by beta cells. Thus, we propose that viruses could play a role in type 1 diabetes on multiple levels, including in the triggering and chronic stimulation of autoimmunity and in the generation of inflammation and the promotion of beta cell dysfunction and stress, each of which might then contribute to autoimmunity, as part of a vicious circle. We conclude that studies into the effects of vaccinations and/or antiviral drugs (some of which are currently on-going) is the only means by which the role of viruses in type 1 diabetes can be finally proven or disproven.
Collapse
Affiliation(s)
| | - Sarah J Richardson
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW, UK.
| | - Mark A Atkinson
- Departments of Pathology and Pediatrics, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Maria E Craig
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Knut Dahl-Jørgensen
- Department of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Malin Flodström-Tullberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Heikki Hyöty
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | | | - Åke Lernmark
- Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital, Malmö, Sweden
| | - Richard E Lloyd
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Noel G Morgan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW, UK
| | - Alberto Pugliese
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
3
|
Rodriguez-Calvo T. Enterovirus infection and type 1 diabetes: unraveling the crime scene. Clin Exp Immunol 2018; 195:15-24. [PMID: 30307605 DOI: 10.1111/cei.13223] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/02/2018] [Accepted: 10/02/2018] [Indexed: 12/15/2022] Open
Abstract
Enteroviruses (EV) have been historically associated to type 1 diabetes. Definitive proof for their implication in disease development is lacking, but growing evidence suggests that they could be involved in beta cell destruction either directly by killing beta cells or indirectly by creating an exacerbated inflammatory response in the islets, capable of attracting autoreactive T cells to the 'scene of the crime'. Epidemiological and serological studies have been associated with the appearance of islet autoimmunity and EV RNA has been detected in prospective studies. In addition, the EV capsid protein has been detected in the islets of recent-onset type 1 diabetic donors, suggesting the existence of a low-grade EV infection that could become persistent. Increasing evidence in the field shows that a 'viral signature' exists in type 1 diabetes and involves interferon responses that could be sustained during prolonged periods. These include the up-regulation of markers such as protein kinase R (PKR), melanoma differentiation-associated protein 5 (MDA5), retinoic acid inducible gene I (RIG-I), myxovirus resistance protein (MxA) and human leukocyte antigen-I (HLA-I) and the release of chemokines able to attract immune cells to the islets leading to insulitis. In this scenario, the hyperexpression of HLA-I molecules would promote antigen presentation to autoreactive T cells, favoring beta cell recognition and, ultimately, destruction. In this review, an overview is provided of the standing evidence that implicates EVs in beta cell 'murder', the time-line of events is investigated from EV entry in the cell to beta cell death and possible accomplices are highlighted that might be involved in beta cell demise.
Collapse
Affiliation(s)
- T Rodriguez-Calvo
- Institute for Diabetes Research, Helmholtz Diabetes Center at Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW We provide an overview of pancreas pathology in type 1 diabetes (T1D) in the context of its clinical stages. RECENT FINDINGS Recent studies of pancreata from organ donors with T1D and non-diabetic donors expressing T1D-associated autoantibodies reveal pathological changes/disease mechanisms beyond the well-known loss of β cells and lymphocytic infiltrates of the islets (insulitis), including β-cell stress, dysfunction, and viral infections. Pancreas pathology evolves through disease stages, is asynchronous, and demonstrates a chronic disease that remains active years after diagnosis. Critically, β-cell loss is not complete at onset, although young age is associated with increased severity. The recognition of multiple pathogenic alterations and the chronic nature of disease mechanisms during and after the development of T1D inform improved clinical trial design and reveal additional targets for therapeutic manipulation, in the context of an expanded time window for intervention.
Collapse
Affiliation(s)
- Teresa Rodriguez-Calvo
- Institute for Diabetes Research, Helmholtz Diabetes Center at Helmholtz Zentrum München, Munich, Germany
| | - Sarah J Richardson
- Islet Biology Exeter (IBEx), Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Alberto Pugliese
- Diabetes Research Institute, Department of Medicine, Division of Endocrinology, Department of Microbiology and Immunology, Leonard Miller School of Medicine, University of Miami, Miami, FL, USA.
- Diabetes Research Institute, 1450 NW 10th Avenue, Miami, FL, 33136, USA.
| |
Collapse
|