1
|
Quarshie JT, Fosu K, Offei NA, Sobo AK, Quaye O, Aikins AR. Cryptolepine Suppresses Colorectal Cancer Cell Proliferation, Stemness, and Metastatic Processes by Inhibiting WNT/β-Catenin Signaling. Pharmaceuticals (Basel) 2023; 16:1026. [PMID: 37513937 PMCID: PMC10383422 DOI: 10.3390/ph16071026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/25/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Colorectal cancer (CRC) is the third most frequent cancer and the second leading cause of cancer-related deaths globally. Evidence shows that over 90% of CRC cases are initiated by a deregulated Wingless Integrated Type-1 (WNT)/β-catenin signaling pathway. The WNT/β-catenin pathway also promotes CRC cell proliferation, stemness, and metastasis. Therefore, modulators of the WNT/β-catenin pathway may serve as promising regimens for CRC. This study investigated the effect of cryptolepine-a plant-derived compound-on the WNT/β-catenin pathway in CRC. Two CRC cell lines, COLO205 and DLD1, were treated with cryptolepine or XAV 939 (a WNT inhibitor) in the presence or absence of WNT3a (a WNT activator). Using a tetrazolium-based assay, cryptolepine was found to reduce cell viability in a dose- and time-dependent manner and was a more potent inhibitor of viability than XAV 939. RT-qPCR analyses showed that cryptolepine reverses WNT3a-induced expression of β-catenin, c-MYC, and WISP1, suggesting that cryptolepine inhibits WNT3a-mediated activation of WNT/β-catenin signaling. Cryptolepine also repressed WNT3a-induced OCT4 and CD133 expression and suppressed colony formation of the cells, indicating that cryptolepine inhibits the stemness of CRC cells. Additionally, cryptolepine inhibited WNT3a-induced epithelial-to-mesenchymal transition by reducing the expression of SNAI1 and TWIST1 genes. In a wound healing assay, cryptolepine was found to suppress cell migration under unstimulated and WNT3a-stimulated conditions. Moreover, cryptolepine downregulated WNT3a-induced expression of MMP2 and MMP9 genes, which are involved in cancer cell invasion. Altogether, cryptolepine suppresses CRC cell proliferation, stemness, and metastatic properties by inhibiting WNT3a-mediated activation of the WNT/β-catenin signaling pathway. These findings provide a rationale for considering cryptolepine as a potential WNT inhibitor in CRC.
Collapse
Affiliation(s)
- Jude Tetteh Quarshie
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry Cell and Molecular Biology, University of Ghana, Accra P.O. Box LG 54, Ghana
| | - Kwadwo Fosu
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry Cell and Molecular Biology, University of Ghana, Accra P.O. Box LG 54, Ghana
| | - Nicholas Awuku Offei
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry Cell and Molecular Biology, University of Ghana, Accra P.O. Box LG 54, Ghana
| | - Augustine Kojo Sobo
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry Cell and Molecular Biology, University of Ghana, Accra P.O. Box LG 54, Ghana
| | - Osbourne Quaye
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry Cell and Molecular Biology, University of Ghana, Accra P.O. Box LG 54, Ghana
| | - Anastasia Rosebud Aikins
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry Cell and Molecular Biology, University of Ghana, Accra P.O. Box LG 54, Ghana
| |
Collapse
|
2
|
Dong Z, Geng Y, Zhang P, Tang J, Cao Z, Zheng H, Guo J, Zhang C, Liu B, Liu WJ. Identification of molecular mechanism and key biomarkers in membranous nephropathy by bioinformatics analysis. Am J Transl Res 2022; 14:5833-5847. [PMID: 36105034 PMCID: PMC9452341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Membranous nephropathy (MN) is an autoimmune nephropathy. The incidence of MN is increasing gradually in recent years. Previous studies focused on antibody production, complement activation and podocyte injury in MN. However, the etiology and underlying mechanism of MN remain to be further studied. METHODS GSE104948 and GSE108109 of glomerular expression profile were downloaded from Gene Expression Omnibus (GEO) database, GSE47184, GSE99325, GSE104954, GSE108112, GSE133288 of renal tubule expression profile, and GSE73953 of peripheral blood mononuclear cells (PBMCs) expression profile. After data integration by Networkanalyst, differentially expressed genes (DEGs) between MN and healthy samples were obtained. DEGs were enriched in gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG), and protein-protein interaction (PPI) networks of these genes were constructed through Metascape, etc. We further understood the function of hub genes through gene set enrichment analysis (GSEA). The diagnostic value of DEGs in MN was evaluated by receiver operating characteristic (ROC) analysis. RESULTS A total of 3 genes (TP53, HDAC5, and SLC2A3) were screened out. Among them, the up-regulated TP53 expression may be closely related to MN renal pathological changes. However, the expression of MN podocyte target antigen was not significantly different from that of healthy controls. In addition, the changes of Wnt signaling pathway in PBMCs and the effects of SLC2A3 on the differentiation of M2 monocyte need further study. CONCLUSION It is difficult to unify a specific mechanism for the changes of glomerulus, renal tubules and PBMCs in MN patients. This may be related to the pathogenesis, pathology and immune characteristics of MN. MN podocyte target antigen may not be the root cause of the disease, but a stage result in the pathogenesis process.
Collapse
Affiliation(s)
- Zhaocheng Dong
- Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese MedicineBeijing, China
| | - Yunling Geng
- Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese MedicineBeijing, China
| | - Pingna Zhang
- Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese MedicineBeijing, China
| | - Jingyi Tang
- Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese MedicineBeijing, China
| | - Zijing Cao
- Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese MedicineBeijing, China
| | - Huijuan Zheng
- Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese MedicineBeijing, China
| | - Jing Guo
- Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese MedicineBeijing, China
| | - Chao Zhang
- Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese MedicineBeijing, China
| | - Baoli Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical UniversityBeijing, China
| | - Wei Jing Liu
- Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese MedicineBeijing, China
| |
Collapse
|
3
|
Wang J, Yang Q, Tang M, Liu W. Validation and analysis of expression, prognosis and immune infiltration of WNT gene family in non-small cell lung cancer. Front Oncol 2022; 12:911316. [PMID: 35957916 PMCID: PMC9359207 DOI: 10.3389/fonc.2022.911316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Early diagnosis and prognosis prediction of non-small cell lung cancer (NSCLC) have been challenging. Signaling cascades involving the Wingless-type (WNT) gene family play important biological roles and show prognostic value in various cancers, including NSCLC. On this basis, this study aimed to investigate the significance of WNTs in the prognosis and tumor immunity in NSCLC by comprehensive analysis. Expression and methylation levels of WNTs were obtained from the ONCOMINE, TIMER, and UALCAN. The dataset obtained from The Cancer Genome Atlas (TCGA) was utilized for prognostic analysis. cBioPortal was used to perform genetic alterations and correlation analysis of WNTs. R software was employed for functional enrichment and pathway analysis, partial statistics, and graph drawing. TRRUST was used to find key transcription factors. GEPIA was utilized for the analysis of expression, pathological staging, etc. Correlative analysis of immune infiltrates from TIMER. TISIDB was used for further immune infiltration validation analysis. Compared with that of normal tissues, WNT2/2B/3A/4/7A/9A/9B/11 expressions decreased, while WNT3/5B/6/7B/8B/10A/10B/16 expressions increased in lung adenocarcinoma (LUAD); WNT2/3A/7A/11 expressions were lessened, while WNT2B/3/5A/5B/6/7B/10A/10B/16 expressions were enhanced in squamous cell lung cancer (LUSC). Survival analysis revealed that highly expressed WNT2B and lowly expressed WNT7A predicted better prognostic outcomes in LUAD and LUSC. In the study of immune infiltration levels, WNT2, WNT9B, and WNT10A were positively correlated with six immune cells in LUAD; WNT1, WNT2, and WNT9B were positively correlated with six immune cells in LUSC, while WNT7B was negatively correlated. Our study indicated that WNT2B and WNT7A might have prognostic value in LUAD, and both of them might be important prognostic factors in LUSC and correlated to immune cell infiltration in LUAD and LUSC to a certain extent. Considering the prognostic value of WNT2B and WNT7A in NSCLC, we validated their mRNA and protein expression levels in NSCLC by performing qRT-PCR, western blot, and immunohistochemical staining on NSCLC pathological tissues and cell lines. This study may provide some direction for the subsequent exploration of the prognostic value of the WNTs and their role as biomarkers in NSCLC.
Collapse
Affiliation(s)
- Jianglin Wang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qingping Yang
- Department of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Mengjie Tang
- Department of Pathology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei Liu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Wei Liu,
| |
Collapse
|
4
|
Hui J, Wang C, Miao Y, Liu R, Xu J. The pancancer landscape of Wnt family expression reveals potential biomarkers in urinary system tumors. Cancer Gene Ther 2021; 28:1035-1045. [PMID: 33311568 DOI: 10.1038/s41417-020-00273-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/03/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023]
Abstract
Immunotherapy and targeted therapy have been particularly effective in treating tumors of the urinary system; however, the mechanisms of the Wnt family of proteins in the tumorigenesis, development, and immune response of urinary system tumors are not fully understood. Here, we show that the Wnt family was extensively upregulated in and impacted the prognosis of patients with prostate adenocarcinoma (PRAD) and bladder urothelial carcinoma (BLCA). Moreover, the Wnt family correlated with the levels of infiltrating immune cells, including B cells, CD4 + T cells, CD8 + T cells, neutrophils, macrophages, and dendritic cells. The expression levels of Wnt family members were closely related to neoantigens, the mismatch repair system (MMRS) and DNA methyltransferases, and the mutation rate was generally low. Wnt family members are potential biomarkers for precision immunotherapy of urinary system tumors.
Collapse
Affiliation(s)
- Jialiang Hui
- Department of Organ Transplant, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Chengxinqiao Wang
- Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Yun Miao
- Department of Organ Transplant, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Ruiyu Liu
- Department of Urology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China.
| | - Jian Xu
- Department of Organ Transplant, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China.
| |
Collapse
|
5
|
Siman-Tov R, Zelikson N, Caspi M, Levi Y, Perry C, Khair F, Stauber H, Sznitman J, Rosin-Arbesfeld R. Circulating Wnt Ligands Activate the Wnt Signaling Pathway in Mature Erythrocytes. Arterioscler Thromb Vasc Biol 2021; 41:e243-e264. [PMID: 33626913 DOI: 10.1161/atvbaha.120.315413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Ronen Siman-Tov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Israel (R.S.-T., N.Z., M.C., Y.L., C.P., F.K., R.R.-A.)
| | - Natalie Zelikson
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Israel (R.S.-T., N.Z., M.C., Y.L., C.P., F.K., R.R.-A.)
| | - Michal Caspi
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Israel (R.S.-T., N.Z., M.C., Y.L., C.P., F.K., R.R.-A.)
| | - Yakir Levi
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Israel (R.S.-T., N.Z., M.C., Y.L., C.P., F.K., R.R.-A.)
| | - Chava Perry
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Israel (R.S.-T., N.Z., M.C., Y.L., C.P., F.K., R.R.-A.)
- BMT Unit, Institute of Hematology, Tel-Aviv Sourasky Medical Center, Israel (C.P.)
| | - Fayhaa Khair
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Israel (R.S.-T., N.Z., M.C., Y.L., C.P., F.K., R.R.-A.)
| | - Hagit Stauber
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa (H.S., J.S.)
| | - Josué Sznitman
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa (H.S., J.S.)
| | - Rina Rosin-Arbesfeld
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Israel (R.S.-T., N.Z., M.C., Y.L., C.P., F.K., R.R.-A.)
| |
Collapse
|
6
|
Ramos YAL, Souza OF, Novo MCT, Guimarães CFC, Popi AF. Quercetin shortened survival of radio-resistant B-1 cells in vitro and in vivo by restoring miR15a/16 expression. Oncotarget 2021; 12:355-365. [PMID: 33659046 PMCID: PMC7899548 DOI: 10.18632/oncotarget.27883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 09/10/2020] [Indexed: 11/25/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a malignancy disease characterized by the expansion of CD5+ B-1 cells. The NZB mouse model of CLL shows similarities to human CLL, has age-associated increase in malignant B-1 clones and decreased expression of miR-15a/16. It was demonstrated that systemic lentiviral delivery of miR-15a/16 ameliorates disease manifestations in this mouse model. Nowadays, new therapeutic approaches have been focus on miRNA in cancer cells. Natural compounds like quercetin can modulate these miRNAs, consequently, suppress oncogenes or stimulate tumor suppressor genes by altering miRNA expressions. Here we investigate the effects of quercetin on miRNA15a/16 expression by radio-resistant B-1 cells. It has been described that a small percentage of B-1 cell survives to irradiation in vitro, and these cells show similarities to B-CLL cells. In these cells, the level of miR15a/16 is diminished and Bcl-2 is overexpressed. Quercetin treatment restore both, miR15a/16 and Bcl-2, to normal levels. Furthermore, transference of radioresistant B-1 cells to NOD/SCID mice causes an expansion of this population and also a migration to the liver. However, after quercetin treatment, even radioresistant B-1 cells are not able to expand or disseminate in vivo, and the levels of miR15a/16 and Bcl-2 are also normalized. Our data support the hypothesis that quercetin is an important adjuvant molecule that acts on miRNA15a/16 level and leads cells more permissive to apoptosis. This work could help to design new approaches to therapy in CLL patients.
Collapse
Affiliation(s)
- Yasmim Alefe Leuzzi Ramos
- Laboratory of Ontogeny of Lymphocytes, Discipline of Immunology, Departament of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| | - Olivia Fonseca Souza
- Laboratory of Ontogeny of Lymphocytes, Discipline of Immunology, Departament of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| | - Marilia Campos Tavares Novo
- Laboratory of Ontogeny of Lymphocytes, Discipline of Immunology, Departament of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| | - Caroline Ferreira Cunha Guimarães
- Laboratory of Ontogeny of Lymphocytes, Discipline of Immunology, Departament of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| | - Ana Flavia Popi
- Laboratory of Ontogeny of Lymphocytes, Discipline of Immunology, Departament of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| |
Collapse
|
7
|
Patel S, Alam A, Pant R, Chattopadhyay S. Wnt Signaling and Its Significance Within the Tumor Microenvironment: Novel Therapeutic Insights. Front Immunol 2019; 10:2872. [PMID: 31921137 PMCID: PMC6927425 DOI: 10.3389/fimmu.2019.02872] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 11/22/2019] [Indexed: 01/05/2023] Open
Abstract
Wnt signaling is one of the central mechanisms regulating tissue morphogenesis during embryogenesis and repair. The pivot of this signaling cascade is the Wnt ligand, which binds to receptors belonging to the Frizzled family or the ROR1/ROR2 and RYK family. This interaction governs the downstream signaling cascade (canonical/non-canonical), ultimately extending its effect on the cellular cytoskeleton, transcriptional control of proliferation and differentiation, and organelle dynamics. Anomalous Wnt signaling has been associated with several cancers, the most prominent ones being colorectal, breast, lung, oral, cervical, and hematopoietic malignancies. It extends its effect on tumorigenesis by modulating the tumor microenvironment via fine crosstalk between transformed cells and infiltrating immune cells, such as leukocytes. This review is an attempt to highlight the latest developments in the understanding of Wnt signaling in the context of tumors and their microenvironment. A dynamic process known as immunoediting governs the fate of tumor progression based on the correlation of various signaling pathways in the tumor microenvironment and immune cells. Cancer cells also undergo a series of mutations in the tumor suppressor gene, which favors tumorigenesis. Wnt signaling, and its crosstalk with various immune cells, has both negative as well as positive effects on tumor progression. On one hand, it helps in the maintenance and renewal of the leucocytes. On the other hand, it promotes immune tolerance, limiting the antitumor response. Wnt signaling also plays a role in epithelial-mesenchymal transition (EMT), thereby promoting the maintenance of Cancer Stem Cells (CSCs). Furthermore, we have summarized the ongoing strategies used to target aberrant Wnt signaling as a novel therapeutic intervention to combat various cancers and their limitations.
Collapse
Affiliation(s)
- Sonal Patel
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| | - Aftab Alam
- Department of Cancer Biology and Inflammatory Disorder, Indian Institute of Chemical Biology, Kolkata, India
| | - Richa Pant
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| | - Samit Chattopadhyay
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, India.,Department of Cancer Biology and Inflammatory Disorder, Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
8
|
Alterations in GRHL2-OVOL2-ZEB1 axis and aberrant activation of Wnt signaling lead to altered gene transcription in posterior polymorphous corneal dystrophy. Exp Eye Res 2019; 188:107696. [DOI: 10.1016/j.exer.2019.107696] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/02/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022]
|