1
|
Guo Y, Boughton EH, Bohlman S, Bernacchi C, Bohlen PJ, Boughton R, DeLucia E, Fauth JE, Gomez-Casanovas N, Jenkins DG, Lollis G, Miller RS, Quintana-Ascencio PF, Sonnier G, Sparks J, Swain HM, Qiu J. Grassland intensification effects cascade to alter multifunctionality of wetlands within metaecosystems. Nat Commun 2023; 14:8267. [PMID: 38092756 PMCID: PMC10719369 DOI: 10.1038/s41467-023-44104-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Sustainable agricultural intensification could improve ecosystem service multifunctionality, yet empirical evidence remains tenuous, especially regarding consequences for spatially coupled ecosystems connected by flows across ecosystem boundaries (i.e., metaecosystems). Here we aim to understand the effects of land-use intensification on multiple ecosystem services of spatially connected grasslands and wetlands, where management practices were applied to grasslands but not directly imposed to wetlands. We synthesize long-term datasets encompassing 53 physical, chemical, and biological indicators, comprising >11,000 field measurements. Our results reveal that intensification promotes high-quality forage and livestock production in both grasslands and wetlands, but at the expense of water quality regulation, methane mitigation, non-native species invasion resistance, and biodiversity. Land-use intensification weakens relationships among ecosystem services. The effects on grasslands cascade to alter multifunctionality of embedded natural wetlands within the metaecosystems to a similar extent. These results highlight the importance of considering spatial flows of resources and organisms when studying land-use intensification effects on metaecosystems as well as when designing grassland and wetland management practices to improve landscape multifunctionality.
Collapse
Affiliation(s)
- Yuxi Guo
- School of Forest, Fisheries, and Geomatics Sciences, Fort Lauderdale Research and Education Center, University of Florida, 3205 College Ave, Davie, FL, USA
| | - Elizabeth H Boughton
- Archbold Biological Station, Buck Island Ranch, 300 Buck Island Ranch Road, Lake Placid, FL, USA.
| | - Stephanie Bohlman
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL, USA
| | - Carl Bernacchi
- U.S. Department of Agriculture, ARS Global Change and Photosynthesis Research Unit, Urbana, IL, USA
| | - Patrick J Bohlen
- Department of Biology, University of Central Florida, Orlando, FL, USA
| | - Raoul Boughton
- Archbold Biological Station, Buck Island Ranch, 300 Buck Island Ranch Road, Lake Placid, FL, USA
| | - Evan DeLucia
- Department of Plant Biology, University of Illinois at Urbana - Champaign, Urbana, IL, USA
| | - John E Fauth
- Department of Biology, University of Central Florida, Orlando, FL, USA
| | - Nuria Gomez-Casanovas
- Texas A&M AgriLife Research Center, Texas A&M University, Vernon, TX, USA
- Rangeland, Wildlife & Fisheries Management Department, Texas A&M University, College Station, TX, USA
| | - David G Jenkins
- Department of Biology, University of Central Florida, Orlando, FL, USA
| | - Gene Lollis
- Archbold Biological Station, Buck Island Ranch, 300 Buck Island Ranch Road, Lake Placid, FL, USA
| | - Ryan S Miller
- U.S. Department of Agriculture, APHIS Veterinary Services, Center for Epidemiology and Animal Health, Fort Collins, CO, USA
| | | | - Grégory Sonnier
- Archbold Biological Station, Buck Island Ranch, 300 Buck Island Ranch Road, Lake Placid, FL, USA
| | - Jed Sparks
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Hilary M Swain
- Archbold Biological Station, Buck Island Ranch, 300 Buck Island Ranch Road, Lake Placid, FL, USA
| | - Jiangxiao Qiu
- School of Forest, Fisheries, and Geomatics Sciences, Fort Lauderdale Research and Education Center, University of Florida, 3205 College Ave, Davie, FL, USA.
- School of Natural Resources and Environment, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
2
|
Sonnier G, Boughton EH, Whittington R. Long-term response of wetland plant communities to management intensity, grazing abandonment, and prescribed fire. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2732. [PMID: 36054269 PMCID: PMC10078234 DOI: 10.1002/eap.2732] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 05/09/2022] [Accepted: 05/31/2022] [Indexed: 05/12/2023]
Abstract
Isolated, seasonal wetlands within agricultural landscapes are important ecosystems. However, they are currently experiencing direct and indirect effects of agricultural management surrounding them. Because wetlands provide important ecosystem services, it is crucial to determine how these factors affect ecological communities. Here, we studied the long-term effects of land-use intensification, cattle grazing, prescribed fires, and their interactions on wetland plant diversity, community dynamics, and functional diversity. To do this, we used vegetation and trait data from a 14-year-old experiment on 40 seasonal wetlands located within seminatural and intensively managed pastures in Florida. These wetlands were allocated different grazing and prescribed fire treatments (grazed vs. ungrazed, burned vs. unburned). Our results showed that wetlands within intensively managed pastures have lower native plant diversity, floristic quality, evenness, and higher nonnative species diversity and exhibited the most resource-acquisitive traits. Wetlands embedded in intensively managed pastures were also characterized by lower species turnover over time. We found that 14 years of cattle exclusion reduced species diversity in both pasture management intensities and had no effect on floristic quality. Fenced wetlands exhibited lower functional diversity and experienced a higher rate of community change, both due to an increase in tall, clonal, and palatable grasses. The effects of prescribed fires were often dependent on grazing treatment. For instance, prescribed fires increased functional diversity in fenced wetlands but not in grazed wetlands. Our study suggests that cattle exclusion and prescribed fires are not enough to restore wetlands in intensively managed pastures and further highlights the importance of not converting seminatural pastures to intensively managed pastures. Our study also suggests that grazing levels applied in seminatural pastures maintained high plant diversity and prevented tree and shrub encroachment and that in the absence of grazing, prescribed fire became crucial to maintaining higher species evenness.
Collapse
Affiliation(s)
| | | | - Ruth Whittington
- Archbold Biological StationVenusFloridaUSA
- Colorado Natural Heritage ProgramColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
3
|
Michaels JS, Tate KW, Eviner VT. Vernal pool wetlands respond to livestock grazing, exclusion and reintroduction. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.14001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Kenneth W. Tate
- Department of Plant Sciences University of California Davis CA USA
| | | |
Collapse
|
4
|
Goodwillie C, McCoy MW, Peralta AL. Long‐term nutrient enrichment, mowing, and ditch drainage interact in the dynamics of a wetland plant community. Ecosphere 2020. [DOI: 10.1002/ecs2.3252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Carol Goodwillie
- Department of Biology East Carolina University Greenville North Carolina27858USA
| | - Michael W. McCoy
- Department of Biology East Carolina University Greenville North Carolina27858USA
| | - Ariane L. Peralta
- Department of Biology East Carolina University Greenville North Carolina27858USA
| |
Collapse
|