1
|
Li K, Yang B, Du Y, Ding Y, Shen S, Sun Z, Liu Y, Wang Y, Cao S, Ren W, Wang X, Li M, Zhang Y, Wu J, Zheng W, Yan W, Li L. The HOXC10/NOD1/ERK axis drives osteolytic bone metastasis of pan-KRAS-mutant lung cancer. Bone Res 2024; 12:47. [PMID: 39191757 PMCID: PMC11349752 DOI: 10.1038/s41413-024-00350-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/09/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024] Open
Abstract
While KRAS mutation is the leading cause of low survival rates in lung cancer bone metastasis patients, effective treatments are still lacking. Here, we identified homeobox C10 (HOXC10) as a lynchpin in pan-KRAS-mutant lung cancer bone metastasis. Through RNA-seq approach and patient tissue studies, we demonstrated that HOXC10 expression was dramatically increased. Genetic depletion of HOXC10 preferentially impeded cell proliferation and migration in vitro. The bioluminescence imaging and micro-CT results demonstrated that inhibition of HOXC10 significantly reduced bone metastasis of KRAS-mutant lung cancer in vivo. Mechanistically, the transcription factor HOXC10 activated NOD1/ERK signaling pathway to reprogram epithelial-mesenchymal transition (EMT) and bone microenvironment by activating the NOD1 promoter. Strikingly, inhibition of HOXC10 in combination with STAT3 inhibitor was effective against KRAS-mutant lung cancer bone metastasis by triggering ferroptosis. Taken together, these findings reveal that HOXC10 effectively alleviates pan-KRAS-mutant lung cancer with bone metastasis in the NOD1/ERK axis-dependent manner, and support further development of an effective combinatorial strategy for this kind of disease.
Collapse
Affiliation(s)
- Kun Li
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Health Science Center, East China Normal University, Shanghai, 200241, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, China
| | - Bo Yang
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yingying Du
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yi Ding
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Shihui Shen
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
- Joint Center for Translational Medicine, Shanghai Fifth People's Hospital, Fudan University and School of Life Science, East China Normal University, Shanghai, 200240, China
| | - Zhengwang Sun
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yun Liu
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuhan Wang
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Siyuan Cao
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Wenjie Ren
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiangyu Wang
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Mengjuan Li
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yunpeng Zhang
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Juan Wu
- Department of Pharmacy The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Wei Zheng
- Orthopaedic Department of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
- Department of Orthopedics, General Hospital of Western Theater Command, Chengdu, 610000, China.
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China.
| | - Wangjun Yan
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Lei Li
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, China.
- School of Life Sciences, East China Normal University, Shanghai, 200241, China.
- Joint Center for Translational Medicine, Shanghai Fifth People's Hospital, Fudan University and School of Life Science, East China Normal University, Shanghai, 200240, China.
| |
Collapse
|
2
|
Ren JX, Chen L, Guo W, Feng KY, Cai YD, Huang T. Patterns of Gene Expression Profiles Associated with Colorectal Cancer in Colorectal Mucosa by Using Machine Learning Methods. Comb Chem High Throughput Screen 2024; 27:2921-2934. [PMID: 37957897 DOI: 10.2174/0113862073266300231026103844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/11/2023] [Accepted: 09/30/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) has a very high incidence and lethality rate and is one of the most dangerous cancer types. Timely diagnosis can effectively reduce the incidence of colorectal cancer. Changes in para-cancerous tissues may serve as an early signal for tumorigenesis. Comparison of the differences in gene expression between para-cancerous and normal mucosa can help in the diagnosis of CRC and understanding the mechanisms of development. OBJECTIVES This study aimed to identify specific genes at the level of gene expression, which are expressed in normal mucosa and may be predictive of CRC risk. METHODS A machine learning approach was used to analyze transcriptomic data in 459 samples of normal colonic mucosal tissue from 322 CRC cases and 137 non-CRC, in which each sample contained 28,706 gene expression levels. The genes were ranked using four ranking methods based on importance estimation (LASSO, LightGBM, MCFS, and mRMR) and four classification algorithms (decision tree [DT], K-nearest neighbor [KNN], random forest [RF], and support vector machine [SVM]) were combined with incremental feature selection [IFS] methods to construct a prediction model with excellent performance. RESULT The top-ranked genes, namely, HOXD12, CDH1, and S100A12, were associated with tumorigenesis based on previous studies. CONCLUSION This study summarized four sets of quantitative classification rules based on the DT algorithm, providing clues for understanding the microenvironmental changes caused by CRC. According to the rules, the effect of CRC on normal mucosa can be determined.
Collapse
Affiliation(s)
- Jing Xin Ren
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200030, China
| | - Kai Yan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou, 510507, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|
3
|
Gu Q, Zou J, Zhou Y, Deng Q. Mechanism of inflammasomes in cancer and targeted therapies. Front Oncol 2023; 13:1133013. [PMID: 37020871 PMCID: PMC10067570 DOI: 10.3389/fonc.2023.1133013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/06/2023] [Indexed: 03/22/2023] Open
Abstract
Inflammasomes, composed of the nucleotide-binding oligomerization domain(NOD)-like receptors (NLRs), are immune-functional protein multimers that are closely linked to the host defense mechanism. When NLRs sense pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs), they assemble into inflammasomes. Inflammasomes can activate various inflammatory signaling pathways, including nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways, and produce a large number of proinflammatory cytokines, which are closely associated with multiple cancers. They can also accelerate the occurrence and development of cancer by providing suitable tumor microenvironments, promoting tumor cell proliferation, and inhibiting tumor cell apoptosis. Therefore, the exploitation of novel targeted drugs against various inflammasomes and proinflammatory cytokines is a new idea for the treatment of cancer. In recent years, more than 50 natural extracts and synthetic small molecule targeted drugs have been reported to be in the research stage or have been applied to the clinic. Herein, we will overview the mechanisms of inflammasomes in common cancers and discuss the therapeutic prospects of natural extracts and synthetic targeted agents.
Collapse
Affiliation(s)
- Qingdan Gu
- Department of Clinical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, Guangdong, China
| | - Jiazhen Zou
- Department of Laboratory Medicine, Shenzhen Second People’s Hospital, The First Affiliated 5 Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Ying Zhou
- Department of Clinical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, Guangdong, China
| | - Qiuchan Deng
- Department of Clinical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, Guangdong, China
- *Correspondence: Qiuchan Deng,
| |
Collapse
|
4
|
Man SM, Jenkins BJ. Context-dependent functions of pattern recognition receptors in cancer. Nat Rev Cancer 2022; 22:397-413. [PMID: 35355007 DOI: 10.1038/s41568-022-00462-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2022] [Indexed: 02/07/2023]
Abstract
The immune system plays a critical role in shaping all facets of cancer, from the early initiation stage through to metastatic disease and resistance to therapy. Our understanding of the importance of the adaptive arm of the immune system in antitumour immunity has led to the implementation of immunotherapy with immune checkpoint inhibitors in numerous cancers, albeit with differing efficacy. By contrast, the clinical utility of innate immunity in cancer has not been exploited, despite dysregulated innate immunity being a feature of at least one-third of all cancers associated with tumour-promoting chronic inflammation. The past two decades have seen innate immune pattern recognition receptors (PRRs) emerge as critical regulators of the immune response to microbial infection and host tissue damage. More recently, it has become apparent that in many cancer types, PRRs play a central role in modulating a vast array of tumour-inhibiting and tumour-promoting cellular responses both in immune cells within the tumour microenvironment and directly in cancer cells. Herein, we provide a comprehensive overview of the fast-evolving field of PRRs in cancer, and discuss the potential to target PRRs for drug development and biomarker discovery in a wide range of oncology settings.
Collapse
Affiliation(s)
- Si Ming Man
- Division of Immunity, Inflammation and Infection, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Molecular and Translational Science, School of Clinical Sciences, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
5
|
Ozretić P, da Silva Filho MI, Catalano C, Sokolović I, Vukić-Dugac A, Šutić M, Kurtović M, Bubanović G, Popović-Grle S, Skrinjarić-Cincar S, Vugrek O, Jukić I, Rumora L, Bosnar M, Samaržija M, Bals R, Jakopović M, Försti A, Knežević J. Association of NLRP1 Coding Polymorphism with Lung Function and Serum IL-1β Concentration in Patients Diagnosed with Chronic Obstructive Pulmonary Disease (COPD). Genes (Basel) 2019; 10:783. [PMID: 31601004 PMCID: PMC6826440 DOI: 10.3390/genes10100783] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/05/2019] [Accepted: 10/01/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic disease characterized by a progressive decline in lung function due to airflow limitation, mainly related to IL-1β-induced inflammation. We have hypothesized that single nucleotide polymorphisms (SNPs) in NLRP genes, coding for key regulators of IL-1β, are associated with pathogenesis and clinical phenotypes of COPD. We recruited 704 COPD individuals and 1238 healthy controls for this study. Twenty non-synonymous SNPs in 10 different NLRP genes were genotyped. Genetic associations were estimated using logistic regression, adjusting for age, gender, and smoking history. The impact of genotypes on patients' overall survival was analyzed with the Kaplan-Meier method with the log-rank test. Serum IL-1β concentration was determined by high sensitivity assay and expression analysis was done by RT-PCR. Decreased lung function, measured by a forced expiratory volume in 1 s (FEV1% predicted), was significantly associated with the minor allele genotypes (AT + TT) of NLRP1 rs12150220 (p = 0.0002). The same rs12150220 genotypes exhibited a higher level of serum IL-1β compared to the AA genotype (p = 0.027) in COPD patients. NLRP8 rs306481 minor allele genotypes (AG + AA) were more common in the Global Initiative for Chronic Obstructive Lung Disease (GOLD) definition of group A (p = 0.0083). Polymorphisms in NLRP1 (rs12150220; OR = 0.55, p = 0.03) and NLRP4 (rs12462372; OR = 0.36, p = 0.03) were only nominally associated with COPD risk. In conclusion, coding polymorphisms in NLRP1 rs12150220 show an association with COPD disease severity, indicating that the fine-tuning of the NLRP1 inflammasome could be important in maintaining lung tissue integrity and treating the chronic inflammation of airways.
Collapse
Affiliation(s)
- Petar Ozretić
- Ruđer Bošković Institute, Division of Molecular Medicine, 10 000 Zagreb, Croatia.
| | | | - Calogerina Catalano
- Division of Molecular Genetic Epidemiology, DKFZ, 69 120 Heidelberg, Germany.
| | - Irena Sokolović
- Department for Respiratory Diseases Jordanovac, University of Zagreb School of Medicine, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia.
| | - Andrea Vukić-Dugac
- Department for Respiratory Diseases Jordanovac, University of Zagreb School of Medicine, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia.
| | - Maja Šutić
- Ruđer Bošković Institute, Division of Molecular Medicine, 10 000 Zagreb, Croatia.
| | - Matea Kurtović
- Ruđer Bošković Institute, Division of Molecular Medicine, 10 000 Zagreb, Croatia.
| | - Gordana Bubanović
- Department for Respiratory Diseases Jordanovac, University of Zagreb School of Medicine, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia.
| | - Sanja Popović-Grle
- Department for Respiratory Diseases Jordanovac, University of Zagreb School of Medicine, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia.
| | - Sanda Skrinjarić-Cincar
- Josip Juraj Strossmayer University of Osijek, School of Medicine, 31 000 Osijek, Croatia.
- Department of Pulmology, Universitiy Hospital Center Osijek, 31 000 Osijek, Croatia.
| | - Oliver Vugrek
- Ruđer Bošković Institute, Division of Molecular Medicine, 10 000 Zagreb, Croatia.
| | - Irena Jukić
- Croatian Institute of Transfusion Medicine, 10 000 Zagreb, Croatia.
| | - Lada Rumora
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000 Zagreb, Croatia.
| | - Martina Bosnar
- Fidelta d.o.o., Prilaz baruna Filipovića 29, 10 000 Zagreb, Croatia.
| | - Miroslav Samaržija
- Department for Respiratory Diseases Jordanovac, University of Zagreb School of Medicine, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia.
| | - Robert Bals
- Department of Internal Medicine V-Pulmonology, Allergology, Intensive Care Medicine, Saarland University, 66 424 Homburg, Germany.
| | - Marko Jakopović
- Department for Respiratory Diseases Jordanovac, University of Zagreb School of Medicine, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia.
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, DKFZ, 69 120 Heidelberg, Germany.
| | - Jelena Knežević
- Ruđer Bošković Institute, Division of Molecular Medicine, 10 000 Zagreb, Croatia.
| |
Collapse
|
6
|
do Prado SBR, Castro-Alves VC, Ferreira GF, Fabi JP. Ingestion of Non-digestible Carbohydrates From Plant-Source Foods and Decreased Risk of Colorectal Cancer: A Review on the Biological Effects and the Mechanisms of Action. Front Nutr 2019; 6:72. [PMID: 31157230 PMCID: PMC6529955 DOI: 10.3389/fnut.2019.00072] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/30/2019] [Indexed: 12/13/2022] Open
Abstract
The hypothesis that links the increase in the intake of plant-source foods to a decrease in colorectal cancer (CRC) risk has almost 50 years. Nowadays, systematic reviews and meta-analysis of case-control and cohort studies confirmed the association between dietary patterns and CRC risk, in which the non-digestible carbohydrates (NDC) from plant-source foods are known to play beneficial effects. However, the mechanisms behind the physicochemical properties and biological effects induced by NDC on the decrease of CRC development and progression remain not fully understood. NDC from plant-source foods consist mainly of complex carbohydrates from plant cell wall including pectin and hemicellulose, which vary among foods in structure and in composition, therefore in both physicochemical properties and biological effects. In the present review, we highlighted the mechanisms and described the recent findings showing how these complex NDC from plant-source foods are related to a decrease in CRC risk through induction of both physicochemical effects in the gastrointestinal tract, fermentation-related effects, and direct effects resulting from the interaction between NDC and cellular components including toll-like receptors and galectin-3. Studies support that the definition of the structure-function relationship-especially regarding the fermentation-related effects of NDC, as well as the direct effects of these complex carbohydrates in cells-is crucial for understanding the possible NDC anticancer effects. The dietary recommendations for the intake of NDC are usually quantitative, describing a defined amount of intake per day. However, as NDC from plant-source foods can exert effects that vary widely according to the NDC structure, the dietary recommendations for the intake of NDC plant-source foods are expected to change from a quantitative to a qualitative perspective in the next few years, as occurred for lipid recommendations. Thus, further studies are necessary to define whether specific and well-characterized NDC from plant-source foods induce beneficial effects related to a decrease in CRC risk, thereby improving nutritional recommendations of healthy individuals and CRC patients.
Collapse
Affiliation(s)
- Samira Bernardino Ramos do Prado
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, Brazil
| | - Victor Costa Castro-Alves
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, Brazil
| | - Gabrielle Fernandez Ferreira
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
NOD-like receptors: major players (and targets) in the interface between innate immunity and cancer. Biosci Rep 2019; 39:BSR20181709. [PMID: 30837326 PMCID: PMC6454022 DOI: 10.1042/bsr20181709] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/18/2022] Open
Abstract
Innate immunity comprises several inflammation-related modulatory pathways which receive signals from an array of membrane-bound and cytoplasmic pattern recognition receptors (PRRs). The NLRs (NACHT (NAIP (neuronal apoptosis inhibitor protein), C2TA (MHC class 2 transcription activator), HET-E (incompatibility locus protein from Podospora anserina) and TP1 (telomerase-associated protein) and Leucine-Rich Repeat (LRR) domain containing proteins) relate to a large family of cytosolic innate receptors, involved in detection of intracellular pathogens and endogenous byproducts of tissue injury. These receptors may recognize pathogen-associated molecular patterns (PAMPs) and/or danger-associated molecular patterns (DAMPs), activating host responses against pathogen infection and cellular stress. NLR-driven downstream signals trigger a number of signaling circuitries, which may either initiate the formation of inflammasomes and/or activate nuclear factor κB (NF-κB), stress kinases, interferon response factors (IRFs), inflammatory caspases and autophagy. Disruption of those signals may lead to a number of pro-inflammatory conditions, eventually promoting the onset of human malignancies. In this review, we describe the structures and functions of the most well-defined NLR proteins and highlight their association and biological impact on a diverse number of cancers.
Collapse
|
8
|
Abstract
The innate immune system has evolved as a first line of defense against invading pathogens and acts via classes of germline-encoded receptor systems to respond with proinflammatory cytokines. Innate immune cells, predominantly cells of the myeloid compartment, are capable of providing a potent basis for boosting adaptive immunity in malignant diseases. The authors review their current understanding of the molecular mechanisms whereby innate pattern recognition receptors participate in immunosurveillance of cancer cells. They discuss how innate effector mechanisms are currently being targeted pharmacologically and how improved understanding of the biology of these pathways is leading to novel immunotherapies of cancer.
Collapse
|