1
|
Herance JR, Ciudin A, Lamas-Domingo R, Aparicio-Gómez C, Hernández C, Simó R, Palomino-Schätzlein M. The Footprint of Type 1 Diabetes on Red Blood Cells: A Metabolomic and Lipidomic Study. J Clin Med 2023; 12:jcm12020556. [PMID: 36675484 PMCID: PMC9862852 DOI: 10.3390/jcm12020556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
The prevalence of diabetes type 1 (T1D) in the world populations is continuously growing. Although treatment methods are improving, the diagnostic is still symptom-based and sometimes far after onset of the disease. In this context, the aim of the study was the search of new biomarkers of the disease in red blood cells (RBCs), until now unexplored. The metabolomic and the lipidomic profile of RBCs from T1D patients and matched healthy controls was determined by NMR spectroscopy, and different multivariate discrimination models were built to select the metabolites and lipids that change most significantly. Relevant metabolites were further confirmed by univariate statistical analysis. Robust separation in the metabolomic and lipidomic profiles of RBCs from patients and controls was confirmed by orthogonal projection on latent structure discriminant analysis (OPLS-DA), random forest analysis, and significance analysis of metabolites (SAM). The main changes were detected in the levels of amino acids, organic acids, creatine and phosphocreatine, lipid change length, and choline derivatives, demonstrating changes in glycolysis, BCAA metabolism, and phospholipid metabolism. Our study proves that robust differences exist in the metabolic and lipidomic profile of RBCs from T1D patients, in comparison with matched healthy individuals. Some changes were similar to alterations found already in RBCs of T2D patients, but others seemed to be specific for type 1 diabetes. Thus, many of the metabolic differences found could be biomarker candidates for an earlier diagnosis or monitoring of patients with T1D.
Collapse
Affiliation(s)
- José Raul Herance
- Medical Molecular Imaging Research Group, Vall d’Hebron Research Institute and Autonomous University of Barcelona, 08035 Barcelona, Spain
- CIBER-bbn (ISCIII), 28040 Madrid, Spain
- Correspondence: (J.R.H.); (M.P.-S.); Tel.: +34-9-3489-3000 (ext. 4946) (J.R.H.); +34-9-6202-1811 (M.P.-S.)
| | - Andreea Ciudin
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute, Autonomous University of Barcelona, 08035 Barcelona, Spain
- CIBERDEM (ISCIII), 28040 Madrid, Spain
| | - Rubén Lamas-Domingo
- NMR Facility, Centro de Investigación Príncipe Felipe, 46013 Valencia, Spain
| | - Carolina Aparicio-Gómez
- Medical Molecular Imaging Research Group, Vall d’Hebron Research Institute and Autonomous University of Barcelona, 08035 Barcelona, Spain
- CIBER-bbn (ISCIII), 28040 Madrid, Spain
| | - Cristina Hernández
- CIBER-bbn (ISCIII), 28040 Madrid, Spain
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute, Autonomous University of Barcelona, 08035 Barcelona, Spain
| | - Rafael Simó
- CIBER-bbn (ISCIII), 28040 Madrid, Spain
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute, Autonomous University of Barcelona, 08035 Barcelona, Spain
| | - Martina Palomino-Schätzlein
- NMR Facility, Centro de Investigación Príncipe Felipe, 46013 Valencia, Spain
- ProtoQSAR SL, CEEI (Centro Europeo de Empresas Innovadoras), Parque Tecnológico de Valencia, 46980 Valencia, Spain
- Correspondence: (J.R.H.); (M.P.-S.); Tel.: +34-9-3489-3000 (ext. 4946) (J.R.H.); +34-9-6202-1811 (M.P.-S.)
| |
Collapse
|
2
|
Li H, Shen X, Tong Y, Ji T, Feng Y, Tang Y, Mai R, Ye J, Que T, Luo X. Aggravation of hepatic ischemia‑reperfusion injury with increased inflammatory cell infiltration is associated with the TGF‑β/Smad3 signaling pathway. Mol Med Rep 2021; 24:580. [PMID: 34132369 PMCID: PMC8223105 DOI: 10.3892/mmr.2021.12219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 05/18/2021] [Indexed: 11/06/2022] Open
Abstract
Ischemia‑reperfusion (IR) injury is a major challenge influencing the outcomes of hepatic transplantation. Transforming growth factor‑β (TGF‑β) and its downstream gene, SMAD family member 3 (Smad3), have been implicated in the pathogenesis of chronic hepatic injuries, such as hepatic fibrosis. Thus, the present study aimed to investigate the role of the TGF‑β/Smad3 signaling pathway on hepatic injury induced by IR in vivo. In total, 20 129S2/SvPasCrl wild‑type (WT) mice were randomized into two groups; 10 mice underwent IR injury surgery and 10 mice were sham‑operated. Histopathological changes in liver tissues and serum levels of alanine aminotransferase (ALT) were examined to confirm hepatic injury caused by IR surgery. The expression levels of TGF‑β1, Smad3 and phosphorylated‑Smad3 (p‑Smad3) were detected via western blotting. Furthermore, a total of five Smad3‑/‑ 129S2/SvPasCrl mice (Smad3‑/‑ mice) and 10 Smad3+/+ littermates received IR surgery, while another five Smad3‑/‑ mice and 10 Smad3+/+ littermates received the sham operation. Histopathological changes in liver tissues and serum levels of ALT were then compared between the groups. Furthermore, hepatic apoptosis and inflammatory cell infiltration after IR were evaluated in the liver tissues of Smad3‑/‑ mice and Smad3+/+ mice. The results demonstrated that the expression levels of TGF‑β1, Smad3 and p‑Smad3 were elevated in hepatic tissue from WT mice after IR injury. Aggravated hepatic injury, increased apoptosis and enhanced inflammatory cell infiltration induced by hepatic IR injury were observed in the Smad3‑/‑ mice compared with in Smad3+/+ mice. Collectively, the current findings suggested that activation of the TGF‑β/Smad3 signaling pathway was present alongside the hepatic injury induced by IR. However, the TGF‑β/Smad3 signaling pathway may have an effect on protecting against liver tissue damage caused by IR injury in vivo.
Collapse
Affiliation(s)
- Haixia Li
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiaoyun Shen
- Key Laboratory of Endoscopic Technology Research, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Yifan Tong
- Key Laboratory of Endoscopic Technology Research, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Tong Ji
- Key Laboratory of Endoscopic Technology Research, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Yan Feng
- Research Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yanping Tang
- Research Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Rongyun Mai
- Research Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jiaxiang Ye
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Ting Que
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiaoling Luo
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
3
|
Gómez-Archila LG, Palomino-Schätzlein M, Zapata-Builes W, Galeano E. Development of an optimized method for processing peripheral blood mononuclear cells for 1H-nuclear magnetic resonance-based metabolomic profiling. PLoS One 2021; 16:e0247668. [PMID: 33630921 PMCID: PMC7906414 DOI: 10.1371/journal.pone.0247668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 02/11/2021] [Indexed: 01/04/2023] Open
Abstract
Human peripheral blood mononuclear cells (PBMCs) are part of the innate and adaptive immune system, and form a critical interface between both systems. Studying the metabolic profile of PBMC could provide valuable information about the response to pathogens, toxins or cancer, the detection of drug toxicity, in drug discovery and cell replacement therapy. The primary purpose of this study was to develop an improved processing method for PBMCs metabolomic profiling with nuclear magnetic resonance (NMR) spectroscopy. To this end, an experimental design was applied to develop an alternative method to process PBMCs at low concentrations. The design included the isolation of PBMCs from the whole blood of four different volunteers, of whom 27 cell samples were processed by two different techniques for quenching and extraction of metabolites: a traditional one using organic solvents and an alternative one employing a high-intensity ultrasound probe, the latter with a variation that includes the use of deproteinizing filters. Finally, all the samples were characterized by 1H-NMR and the metabolomic profiles were compared by the method. As a result, two new methods for PBMCs processing, called Ultrasound Method (UM) and Ultrasound and Ultrafiltration Method (UUM), are described and compared to the Folch Method (FM), which is the standard protocol for extracting metabolites from cell samples. We found that UM and UUM were superior to FM in terms of sensitivity, processing time, spectrum quality, amount of identifiable, quantifiable metabolites and reproducibility.
Collapse
Affiliation(s)
- León Gabriel Gómez-Archila
- Grupo de Investigación en Sustancias Bioactivas, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia (UdeA), Medellín, Colombia
| | | | - Wildeman Zapata-Builes
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medelín, Colombia
| | - Elkin Galeano
- Grupo de Investigación en Sustancias Bioactivas, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia (UdeA), Medellín, Colombia
| |
Collapse
|
4
|
Albors-Vaquer A, Rizvi A, Matzapetakis M, Lamosa P, Coelho AV, Patel AB, Mande SC, Gaddam S, Pineda-Lucena A, Banerjee S, Puchades-Carrasco L. Active and prospective latent tuberculosis are associated with different metabolomic profiles: clinical potential for the identification of rapid and non-invasive biomarkers. Emerg Microbes Infect 2020; 9:1131-1139. [PMID: 32486916 PMCID: PMC7448900 DOI: 10.1080/22221751.2020.1760734] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 04/19/2020] [Indexed: 12/22/2022]
Abstract
Although 23% of world population is infected with Mycobacterium tuberculosis (M. tb), only 5-10% manifest the disease. Individuals surely exposed to M. tb that remain asymptomatic are considered potential latent TB (LTB) cases. Such asymptomatic M. tb.-exposed individuals represent a reservoir for active TB cases. Although accurate discrimination and early treatment of patients with active TB and asymptomatic M. tb.-exposed individuals are necessary to control TB, identifying those individuals at risk of developing active TB still remains a tremendous clinical challenge. This study aimed to characterize the differences in the serum metabolic profile specifically associated to active TB infected individuals or to asymptomatic M. tb.-exposed population. Interestingly, significant changes in a specific set of metabolites were shared when comparing either asymptomatic house-hold contacts of active TB patients (HHC-TB) or active TB patients (A-TB) to clinically healthy controls (HC). Furthermore, this analysis revealed statistically significant lower serum levels of aminoacids such as alanine, lysine, glutamate and glutamine, and citrate and choline in patients with A-TB, when compared to HHC-TB. The predictive ability of these metabolic changes was also evaluated. Although further validation in independent cohorts and comparison with other pulmonary infectious diseases will be necessary to assess the clinical potential, this analysis enabled the discrimination between HHC-TB and A-TB patients with an AUC value of 0.904 (confidence interval 0.81-1.00, p-value < 0.0001). Overall, the strategy described in this work could provide a sensitive, specific, and minimally invasive method that could eventually be translated into a clinical tool for TB control.
Collapse
Affiliation(s)
- A. Albors-Vaquer
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - A. Rizvi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | | | | | | | | - S. C. Mande
- National Centre For Cell Science, Pune, India
- Council of Scientific and Industrial Research, New Delhi, India
| | - S. Gaddam
- Department of Immunology, Bhagwan Mahavir Medical Research Center, Hyderabad, India
- Department of Genetics, Osmania University, Hyderabad, India
| | - A. Pineda-Lucena
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- Molecular Therapeutics Program, Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, Spain
| | - S. Banerjee
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - L. Puchades-Carrasco
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| |
Collapse
|
5
|
Palomino-Schätzlein M, Mayneris-Perxachs J, Caballano-Infantes E, Rodríguez MA, Palomo-Buitrago ME, Xiao X, Mares R, Ricart W, Simó R, Herance JR, Fernández-Real JM. Combining metabolic profiling of plasma and faeces as a fingerprint of insulin resistance in obesity. Clin Nutr 2020; 39:2292-2300. [DOI: 10.1016/j.clnu.2019.10.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/17/2019] [Accepted: 10/19/2019] [Indexed: 12/13/2022]
|
6
|
A Translational In Vivo and In Vitro Metabolomic Study Reveals Altered Metabolic Pathways in Red Blood Cells of Type 2 Diabetes. J Clin Med 2020; 9:jcm9061619. [PMID: 32471219 PMCID: PMC7355709 DOI: 10.3390/jcm9061619] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 12/21/2022] Open
Abstract
Clinical parameters used in type 2 diabetes mellitus (T2D) diagnosis and monitoring such as glycosylated haemoglobin (HbA1c) are often unable to capture important information related to diabetic control and chronic complications. In order to search for additional biomarkers, we performed a pilot study comparing T2D patients with healthy controls matched by age, gender, and weight. By using 1H-nuclear magnetic resonance (NMR) based metabolomics profiling of red blood cells (RBCs), we found that the metabolic signature of RBCs in T2D subjects differed significantly from non-diabetic controls. Affected metabolites included glutathione, 2,3-bisphophoglycerate, inosinic acid, lactate, 6-phosphogluconate, creatine and adenosine triphosphate (ATP) and several amino acids such as leucine, glycine, alanine, lysine, aspartate, phenylalanine and tyrosine. These results were validated by an independent cohort of T2D and control patients. An analysis of the pathways in which these metabolites were involved showed that energetic and redox metabolism in RBCs were altered in T2D, as well as metabolites transported by RBCs. Taken together, our results revealed that the metabolic profile of RBCs can discriminate healthy controls from T2D patients. Further research is needed to determine whether metabolic fingerprint in RBC could be useful to complement the information obtained from HbA1c and glycemic variability as well as its potential role in the diabetes management.
Collapse
|
7
|
Montecucco F, Liberale L, Carbone F. Novel cardiovascular risk biomarkers in metabolic syndrome. Biomark Med 2019; 13:1331-1334. [PMID: 31599166 DOI: 10.2217/bmm-2019-0366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 09/09/2019] [Indexed: 12/29/2022] Open
Affiliation(s)
- Fabrizio Montecucco
- Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, 10 Largo Benzi, Genoa 16132, Italy
- First Clinic of Internal Medicine, Department of Internal Medicine & Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 6 viale Benedetto XV, Genoa 16132, Italy
| | - Luca Liberale
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, Genoa 16132, Italy
| | - Federico Carbone
- Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, 10 Largo Benzi, Genoa 16132, Italy
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, Genoa 16132, Italy
| |
Collapse
|
8
|
Navarro SL, Tarkhan A, Shojaie A, Randolph TW, Gu H, Djukovic D, Osterbauer KJ, Hullar MA, Kratz M, Neuhouser ML, Lampe PD, Raftery D, Lampe JW. Plasma metabolomics profiles suggest beneficial effects of a low-glycemic load dietary pattern on inflammation and energy metabolism. Am J Clin Nutr 2019; 110:984-992. [PMID: 31432072 PMCID: PMC6766441 DOI: 10.1093/ajcn/nqz169] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Low-glycemic load dietary patterns, characterized by consumption of whole grains, legumes, fruits, and vegetables, are associated with reduced risk of several chronic diseases. METHODS Using samples from a randomized, controlled, crossover feeding trial, we evaluated the effects on metabolic profiles of a low-glycemic whole-grain dietary pattern (WG) compared with a dietary pattern high in refined grains and added sugars (RG) for 28 d. LC-MS-based targeted metabolomics analysis was performed on fasting plasma samples from 80 healthy participants (n = 40 men, n = 40 women) aged 18-45 y. Linear mixed models were used to evaluate differences in response between diets for individual metabolites. Kyoto Encyclopedia of Genes and Genomes (KEGG)-defined pathways and 2 novel data-driven analyses were conducted to consider differences at the pathway level. RESULTS There were 121 metabolites with detectable signal in >98% of all plasma samples. Eighteen metabolites were significantly different between diets at day 28 [false discovery rate (FDR) < 0.05]. Inositol, hydroxyphenylpyruvate, citrulline, ornithine, 13-hydroxyoctadecadienoic acid, glutamine, and oxaloacetate were higher after the WG diet than after the RG diet, whereas melatonin, betaine, creatine, acetylcholine, aspartate, hydroxyproline, methylhistidine, tryptophan, cystamine, carnitine, and trimethylamine were lower. Analyses using KEGG-defined pathways revealed statistically significant differences in tryptophan metabolism between diets, with kynurenine and melatonin positively associated with serum C-reactive protein concentrations. Novel data-driven methods at the metabolite and network levels found correlations among metabolites involved in branched-chain amino acid (BCAA) degradation, trimethylamine-N-oxide production, and β oxidation of fatty acids (FDR < 0.1) that differed between diets, with more favorable metabolic profiles detected after the WG diet. Higher BCAAs and trimethylamine were positively associated with homeostasis model assessment-insulin resistance. CONCLUSIONS These exploratory metabolomics results support beneficial effects of a low-glycemic load dietary pattern characterized by whole grains, legumes, fruits, and vegetables, compared with a diet high in refined grains and added sugars on inflammation and energy metabolism pathways. This trial was registered at clinicaltrials.gov as NCT00622661.
Collapse
Affiliation(s)
- Sandi L Navarro
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA,Address correspondence to SLN (e-mail: )
| | - Aliasghar Tarkhan
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Ali Shojaie
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA,Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Timothy W Randolph
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Haiwei Gu
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Danijel Djukovic
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Katie J Osterbauer
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Meredith A Hullar
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Mario Kratz
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Marian L Neuhouser
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Paul D Lampe
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Daniel Raftery
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA,Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Johanna W Lampe
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
9
|
Gonzalez CG, Tankou SK, Cox LM, Casavant EP, Weiner HL, Elias JE. Latent-period stool proteomic assay of multiple sclerosis model indicates protective capacity of host-expressed protease inhibitors. Sci Rep 2019; 9:12460. [PMID: 31462662 PMCID: PMC6713765 DOI: 10.1038/s41598-019-48495-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/02/2019] [Indexed: 01/20/2023] Open
Abstract
Diseases are often diagnosed once overt symptoms arise, ignoring the prior latent period when effective prevention may be possible. Experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis, exhibits such disease latency, but the molecular processes underlying this asymptomatic period remain poorly characterized. Gut microbes also influence EAE severity, yet their impact on the latent period remains unknown. Here, we show the latent period between immunization and EAE's overt symptom onset is characterized by distinct host responses as measured by stool proteomics. In particular, we found a transient increase in protease inhibitors that inversely correlated with disease severity. Vancomycin administration attenuated both EAE symptoms and protease inhibitor induction potentially by decreasing immune system reactivity, supporting a subset of the microbiota's role in modulating the host's latent period response. These results strengthen previous evidence of proteases and their inhibitors in EAE and highlight the utility stool-omics for revealing complex, dynamic biology.
Collapse
Affiliation(s)
- Carlos G Gonzalez
- Chemical and Systems Biology Department, Stanford University School of Medicine, Stanford, USA
| | - Stephanie K Tankou
- Ann Romney Center for Neurological Diseases, Brigham and Women's Hospital, Harvard School of Medicine, Boston, MA, USA
- Department Of Neurology, Icahn School Of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School Of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School Of Medicine at Mount Sinai, New York, NY, USA
| | - Laura M Cox
- Ann Romney Center for Neurological Diseases, Brigham and Women's Hospital, Harvard School of Medicine, Boston, MA, USA
| | - Ellen P Casavant
- Chemical and Systems Biology Department, Stanford University School of Medicine, Stanford, USA
| | - Howard L Weiner
- Ann Romney Center for Neurological Diseases, Brigham and Women's Hospital, Harvard School of Medicine, Boston, MA, USA
| | - Joshua E Elias
- Chemical and Systems Biology Department, Stanford University School of Medicine, Stanford, USA.
- Chan Zuckerberg Biohub, San Francisco, California, USA.
| |
Collapse
|