1
|
Manno C, Carlig E, Falco PP, Castagno P, Budillon G. Life strategy of Antarctic silverfish promote large carbon export in Terra Nova Bay, Ross Sea. Commun Biol 2024; 7:450. [PMID: 38605093 PMCID: PMC11009349 DOI: 10.1038/s42003-024-06122-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/28/2024] [Indexed: 04/13/2024] Open
Abstract
Antarctic silverfish Pleuragramma antarcticum is the most abundant pelagic fish in the High Antarctic shelf waters of the Southern Ocean, where it plays a pivotal role in the trophic web as the major link between lower and higher trophic levels. Despite the ecological importance of this species, knowledge about its role in the biogeochemical cycle is poor. We determine the seasonal contribution of Antarctic silverfish to carbon flux in terms of faeces and eggs, from samples collected in the Ross Sea. We find that eggs and faeces production generate a flux accounting for 41% of annual POC flux and that the variability of this flux is modulated by spawning strategy. This study shows the important role of this organism as a vector for carbon flux. Since Antarctic silverfish are strongly dependent on sea-ice, they might be especially sensitive to climatic changes. Our results suggest that a potential decrease in the biomass of this organism is likely to impact marine biogeochemical cycles, and this should be factored in when assessing Southern Ocean carbon budget.
Collapse
Affiliation(s)
- Clara Manno
- British Antarctic Survey, Natural Environment Research Council, NERC, Cambridge, UK.
| | - Erica Carlig
- National Research Council (CNR) of Italy, Institute for the study of the Anthropic impacts and the Sustainability of the marine environment (IAS), Genoa, Italy
| | - Pier Paolo Falco
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Pasquale Castagno
- Department of Mathematics and Computer Sciences, Physical Sciences and Earth Sciences (MIFT), University of Messina, Messina, Italy
| | - Giorgio Budillon
- Department of Science and Technology, University of Naples "Parthenope", Naples, Italy
| |
Collapse
|
2
|
Aytan Ü, Başak Esensoy F, Şentürk Y, Güven O, Karaoğlu K, Erbay M. Plastic occurrence in fish caught in the highly industrialized Gulf of İzmit (Eastern Sea of Marmara, Türkiye). CHEMOSPHERE 2023; 324:138317. [PMID: 36889476 DOI: 10.1016/j.chemosphere.2023.138317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/16/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Occurrence of micro- (<5 mm) and mesoplastics (5-25 mm) in twelve fish species caught off Gulf of İzmit in the Sea of Marmara was investigated. Plastics were found in the gastrointestinal tracks of all the analysed species: Trachurus mediterraneus, Chelon auratus, Merlangius merlangus, Mullus barbatus, Symphodus cinereus, Gobius niger, Chelidonichthys lastoviza, Chelidonichthys lucerna, Trachinus draco, Scorpaena porcus, Scorpaena porcus, Pegusa lascaris, Platichthys flesus. From a total of 374 individuals examined plastics were found in 147 individuals (39%). The average plastic ingestion was 1.14 ± 1.03 MP. fish-1 (considering all the analysed fish) and 1.77 ± 0.95 MP. fish-1 (considering only the fish with plastic). Fibres were the primary plastic types found in GITs (74%), followed by films (18%) and fragments (7%), no foams and microbeads were found. A total of ten different colours of plastics were found with blue (62%) being the most common colour. Length of plastics ranged from 0.13 to 11.76 mm with an average of 1.82 ± 1.59 mm. A total of 95.5% of plastics were microplastics, and 4.5% as mesoplastics. The mean frequency of plastic occurrence was higher in pelagic fish species (42%), followed by demersal (38%) and bentho-pelagic species (10%). Fourier-transform infrared spectroscopy confirmed that 75% of polymers were synthetic with polyethylene terephthalate being the most common polymer. Our results indicated that carnivore species with a preference for fish and decapods were the highest impacted trophic group in the area. Fish species in the Gulf of İzmit are contaminated with plastics, representing a potential risk to ecosystem and human health. Further research is needed to understand the effects of plastic ingestion on biota and possible pathways. Results of this study also provide baseline data for the implementation of the Marine Strategy Framework Directive Descriptor 10 in the Sea of Marmara.
Collapse
Affiliation(s)
- Ülgen Aytan
- Recep Tayyip Erdogan University, Faculty of Fisheries, Department of Marine Biology, 53100, Rize, Türkiye.
| | - F Başak Esensoy
- Recep Tayyip Erdogan University, Faculty of Fisheries, Department of Marine Biology, 53100, Rize, Türkiye
| | - Yasemen Şentürk
- Recep Tayyip Erdogan University, Faculty of Fisheries, Department of Marine Biology, 53100, Rize, Türkiye
| | - Olgaç Güven
- Akdeniz University, Faculty of Fisheries, 07070, Antalya, Türkiye
| | - Kaan Karaoğlu
- Recep Tayyip Erdogan University, Vocational School of Technical Sciences Department of Chemical and Chemical Processing Technologies, 53100, Rize, Türkiye
| | - Murat Erbay
- Republic of Türkiye Ministry of Agriculture and Forestry Central Fisheries Research Institute, Trabzon, Türkiye
| |
Collapse
|
3
|
Bianchi D, Carozza DA, Galbraith ED, Guiet J, DeVries T. Estimating global biomass and biogeochemical cycling of marine fish with and without fishing. SCIENCE ADVANCES 2021; 7:eabd7554. [PMID: 34623923 PMCID: PMC8500507 DOI: 10.1126/sciadv.abd7554] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The biomass and biogeochemical roles of fish in the ocean are ecologically important but poorly known. Here, we use a data-constrained marine ecosystem model to provide a first-order estimate of the historical reduction of fish biomass due to fishing and the associated change in biogeochemical cycling rates. The pre-exploitation global biomass of exploited fish (10 g to 100 kg) was 3.3 ± 0.5 Gt, cycling roughly 2% of global primary production (9.4 ± 1.6 Gt year−1) and producing 10% of surface biological export. Particulate organic matter produced by exploited fish drove roughly 10% of the oxygen consumption and biological carbon storage at depth. By the 1990s, biomass and cycling rates had been reduced by nearly half, suggesting that the biogeochemical impact of fisheries has been comparable to that of anthropogenic climate change. Our results highlight the importance of developing a better mechanistic understanding of how fish alter ocean biogeochemistry.
Collapse
Affiliation(s)
- Daniele Bianchi
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, CA, USA
- Corresponding author.
| | - David A. Carozza
- Département de Mathématiques, Université du Québec à Montréal, Montréal, Quebec, Canada
| | - Eric D. Galbraith
- Institut de Ciència i Tecnologia Ambientals (ICTA-UAB), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
- Department of Earth and Planetary Science, McGill University, Montreal, Quebec, Canada
| | - Jérôme Guiet
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, CA, USA
- Institut de Ciència i Tecnologia Ambientals (ICTA-UAB), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Timothy DeVries
- Department of Geography, University of California, Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
4
|
Guo J, Costa OS, Wang Y, Lin W, Wang S, Zhang B, Cui Y, Fu H, Zhang L. Accumulation rates and chronologies from depth profiles of 210Pb ex and 137Cs in sediments of northern Beibu Gulf, South China sea. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 213:106136. [PMID: 31983445 DOI: 10.1016/j.jenvrad.2019.106136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 09/28/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Beibu Gulf is a highly dynamic and complex coastal environment that is currently experiencing one of the largest rates of development and urbanization in west China. Little is known about the effects of this increased human activity on coastal sedimentation processes and on the rates of sediment accumulation and the variation of organic materials to the coast. In this study, four sediment cores were collected and applied the 210Pb dating method to reconstruct sedimentation rates and historical changes of materials to the northern Beibu Gulf over the past century. Depth profiles of excess 210Pb (210Pbex) showed highest activity values at the surface (28.4-104.0 Bq kg-1) followed by a linear or exponential decay with depth for all but one study site. 137Cs activity ranged between 0.236 and 2.034 Bq kg-1, and a distinct peak activity - representing the 1963 fallout maximum - was observed at all but one site. Sediment chronologies were determined using the Constant Rate of Supply (CRS) model. Calculated accumulation rates in the studied sites were the lowest in the late 1920s and early 1930s (mass accumulation rate (MAR): 0.06 ± 0.01 g cm-2 y-1; sediment accumulation rate (SAR): 0.08 ± 0.01 cm y-1) and increased gradually until reaching maximum values in the 2010s (MAR: 0.22 ± 0.09 g cm-2 y-1; SAR: 0.46 ± 0.32 cm y-1). Current accumulation rates are up to 800% higher than rates observed in the 1920s, with most of the increase happening after 1970, coinciding with the increasing rate of urbanization and development in the region. The highest increase in SAR over the last century (+877%) was observed in Sanniang Bay, with the lowest rate of increase (+283%) observed in Lianzhou Bay. TOC content in these sediments has also increased over the last 100 years. Current values (0.98-1.28%) are about 170% higher than historical concentrations (before 1970). The positive correlations between TOC and population density and GDP growth in major cities surrounding the gulf, provide further indication that human activities have significantly altered the sedimentary environment in recent decades along the northern Beibu Gulf coast.
Collapse
Affiliation(s)
- Jing Guo
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, 530004, China; School of Marine Sciences, Guangxi University, Nanning, 530004, China; College of Civil Engineering and Architecture, Guangxi University, Nanning, 530004, China; School of Earth Sciences, The Ohio State University at Mansfield, Mansfield, OH, 44906, USA
| | - Ozeas S Costa
- School of Earth Sciences, The Ohio State University at Mansfield, Mansfield, OH, 44906, USA
| | - Yinghui Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, 530004, China; School of Marine Sciences, Guangxi University, Nanning, 530004, China.
| | - Wuhui Lin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, 530004, China; School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Shaopeng Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, 530004, China; School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Bo Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, 530004, China; School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Yefeng Cui
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, 530004, China; School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Hao Fu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, 530004, China; School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Linlin Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, 530004, China; School of Marine Sciences, Guangxi University, Nanning, 530004, China
| |
Collapse
|